CHAPTER 1

GENERAL INTRODJICTION

1.1 An Outline of the Grdwth of Lattice Dynamics

The static (non-vibrating) lattice model of crysta~
1line solids is not in ¢onsonahce with Heisenberg's uncer-
tainty principle according to which Ap Ax % h, where
AP and Ax represent the uncertainties in the momentum
and position of a quantum particle of mass m and h is
Planck's constant. 8ince ap ~ %fi s the uncertainty in ,
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the particle energy ~ --h-.-..é , and if the particle is
2n( A x)

localised ( Ax — 0) it will require an infinite energy.

Hence the atoms (or ions) constituting a erystalline solid
cannot just sit on the lattice sites. They have to vibrate
even at 0:K temperature which gives rise to the zero-point
energy. As the temperature increases the amplitude of the

atomic vibrations increases. \

It is the object of Lattice Dynééics to study the
vibrations of the atoms (or ions) about their mean positions
in the crystal lattice as well as the effects of these

lattice vibrations on various physical properties of solids,

It is well known now that lattice vibrations play an

important (even crucial) role in deciding the equilibrium



and transport properties of solids as well as in their
interaction with electromagnetic radiation (X-rays, laser

light, infrared) and thermal neutrons.l‘4

Einstein5 was the first to apply Planck's quantum
theory to atomic vibrations in solids and thus to provide
an explanation for the temperature variation of the specific
heat. Considering the collective motions of atoms as equi-
valent to the propagation of elastic waves in a continuum
with frequencies ranging from zero to a maximum, Debye6
succeded in getting better agreement with experiment. Indeed,
because of its simplicity and ability to match experimental
specific heat data available at the time, Débye's theory

eclipsed the more elaborate atomistic theory of Born and

. 7
von Karman for over 20 years.

It was after the careful and elaborate work of
Blackman® 10 that the deficiencies of the Debye theory were
realized and the superiority of the Born-Von Karman approach
was established, Careful comparisions with accurate experi—
mental data have shown that the Debye theory gives incorrect
values of the specific heat if a single Debye temperature is
used for the éalculation of specific heat 'at different
temperagtures., If the limiting value of the Debye tempera-
ture at low temperature (eo) is used for the evaluation
of the specific heat, the disagreement with experiment

becomes evident at temperatures even a few degrees above



absolute zero. However, because of its simplicity, the
Debye theory contimues and is likely to continue to be used
for approximate evaluations of thermodynamic properties of

solids.

The progress of the Born-V¥on Karman approach to
lattice dynamics in explaining the thermodynamic properties
of erystals has been well summarized in the classic work of

11

Bern and Huang ™, and the review articles of Leibfriedlg,

Blackman;B, de Launayl4 and Cochran;s.

The advent of neutron spectroscopy and high speed

electronic computers in the &0's started a new spurt of

activity in the study of the dynamicgl properties of solids.

Coherent inelastic scattering of thermal neutrons
from crystals has provided accurate data on phonon disper-
sion relations. These results have shown the inadequacy
of the rigid-ion model for ionic-crystals and the simple
force constant models of metals which take into considera-
tion only the nearest or nearest and next-nearest neighbour
interactions into account.

This situation has resulted in the development of

microscopic theories of lattice dynamics for metallicl6°18,

19-21 19,22

covalent and ionic crystals. At the same time

efforts to develop more realistic phenomenological models

are continuing. 23-25



The study of the localized vibrations of atoms in
perfect and imperfect crystals has achieved much attention

in the past two decades. These have been admirably presented

26
by Maradudin et al .

The study of anharmonic effects in crystals has been

a very active field in the recent past. The articles of

Cowley27 s Barron and Klein28, Hbrner29

30

and the book by

Wallace are valuable sources for the study of this topic.

Lattice dynémics has also found gpplication in the
study of phase transitionsgl. The fields of gpplication of
~ 32-35
lattice dynamics are gorwing with time and hence the

importance of the study of lattice dynamics.

1.2 The Secular Equation for a Vibrating Metallic Crystal

In a macroscopic metallic crystal ﬁany-body inter-~
actions are essentiaglly present because of the presence of
a large number of ions and free electrons and the exact
solution of the dynamical problem is a formidable task.
Hence some essential approximations have to be introduced

to tackle the problem,
In the Born-von Karman approach, three essential app-

roximations are made to solve the lattice dynamical problem.

(1) The rigid ion approximation

It is assumed that the electrons forming the core



about the nuclei move rigidly with the nuclei and are not

excited to higher energy states.

(2) The adiabatic approximation

This approximagtion plays a cardinal role in lattice
dynamics. It was proved by Born and Oppenheimer36 that
because of their comparatively smaller mass the conduction
electrons follow the thermal motion of the nuclei instanta-
neously or adisbatically so that there is no change in the
electronie ground state energy. The net effect of the
adiabatic gpproximation is that the effective potential
energy for the vibration of the nuclei (or ions) can be

written as
(M =05 + g% D) (1.1)

where ﬁi(?) is the potential energy due to the ionic
lattice and gea(%) is the ground state energy of the elec-

tronic system, obtained as a function of the ionic positions.,

Thus the effect of the conduction electrons on the
motion of the nuclei (ions) is incorporated by adding an
extra term in the potential energy expressiqn written as a
function of the nuclear (ionic) coordinates. The validity
of the adigbatic gpproximation in the case of metals has

been discussed by Chester37 and Brovman and.KagansS.



