Abstract

Fourteen microalgal/cyanobacterial species were examined for their lipid accumulation potential under batch mode study. On the basis of specific growth rate and lipid content, the green microalga *Scenedesmus obliquus* was selected for further study.

Various factors affecting the biomass and lipid yield in *S. obliquus* was investigated. The most significant rise in lipid content, i.e. 43% of dry cell weight (dcw) was recorded under N-deficiency against 13% control. Under P-deficiency and thiosulphate supplementation the lipid content was also increased up to 30% (dcw). Multifactor optimization of the above variables resulted into an accumulation of 58% (dcw) at 0.04, 0.03 and 1.0 g 1^{-1} of nitrate, phosphate and sodium thiosulphate, respectively for an incubation period of 8 days. *Scenedesmus* cultures pre-grown in glucose (1.5%)-supplemented N 11 medium when subjected to the above optimized condition, the lipid accumulation was boosted up to 2.2 g 1^{-1} , the value ~18-fold higher with respect to the control condition.

S. obliquus was cultivated in various wastes viz. poultry litter (PL), municipal secondary settling tank discharge (SST) and fish pond discharge (FP). The biofiltration efficiency of *S. obliquus* was reflected by significant reduction in nutrient load of the waste discharges over the experimental period. Lipid content was raised up to 1.0 and 0.9 g 1^{-1} , respectively in cultures pre-grown in 15 g 1^{-1} PL-supplemented SST and FP discharges, when subjected to the optimized condition at the second stage. In outdoor study, biomass and lipid yield of *S. obliquus* was found to be higher in sedimented FP discharge at 15 cm culture depth with stirring, and lipid yield up to 0.8 g 1^{-1} was recorded.

S. obliquus biodiesel mainly consisted of palmitate followed by oleate, linolenate and linoleate methyl esters. Cultures grown in waste discharges depicted a rise in saturated fatty acid content and reduction in poly-unsaturated fatty acid pool, which is desired for a good quality biodiesel. The fuel properties of *S. obliquus* biodiesel are found to be comparable with the international and Indian biodiesel standards.

Keywords: Biodiesel, Bioremediation, Lipid, N-limitation, P-limitation, Scenedesmus obliquus, Transesterification, Response surface methodology (RSM), Recirculatory Aquaculture System (RAS), Waste discharges