List of Tables

No.	Description	Page
4.1.	Physical properties of swarna paddy	47
4.2	Values of the variables for the experiment of vibration still air drying	51
4.3	The values of the independent variables for vibration assisted drying with air flow	64
5.1.1	Heat and Mass Transfer Coefficients at different drying temperatures in still air drying with perforated trays.	88
5.1.2	ANOVA for heat transfer coefficients in still air drying (1%)	89
5.1.3	ANOVA for mass transfer coefficients in still air drying (1%)	89
5.2.1.	Time in min require for still air drying paddy up to 22% mc db	96
5.3.1	The diffusivity values for vibration assisted drying.	100
5.3.2	The drying time (min) required to reduce the moisture from 50 to 22% d.b. for still air drying.	100
5.3.3.	The variables and the responses for 3 mm layer vibration assisted drying in still air	101
5.3.4	ANOVA for different models for 3 mm layer vibration assisted drying in still air.	102
5.3.5	The coefficients of the quadratic model for the response variables for 3 mm later (in coded units)	109
5.3.6	The optimization parameters selected for 3 mm layer vibration drying in still air	110
5.3.7	Solutions for optimum conditions with desirability for 3 mm layer.	110
5.3.8	Optimum solutions for the vibration assisted still air drying for different bed depths	113
5.4.1	The experimental design data with responses for the vibration assisted dryer with change in air supply.	116
5.4.2	ANOVA for response surface model (Response 1 drying time) in vibration drying with changing air velocity	118
5.4.3	ANOVA for Response surface quadratic model (Response-2 Brokens)	120
5.4.4	ANOVA for response surface quadratic model (response 3 cooking time)	124
5.4.5	Criteria for the optimization for in vfb with changing air velocity	126
5.4.6	Solutions for the optimization for the vibration assisted dryer with changing air velocity	126
5.4.7	Statastical analysis of prediction of optimum solution	127
5.4.8	Comparison of predicted with experimental values at optimum level	130

v

List of Figures

No.	Description	Page
4.5.1	The sketch of experimental setup for vibration assisted drying in still air	50
4.8.1	Front view, side view and top view of the experimental setup for vibration assisted drying with forced convection	61
5.1.1	Relation between moisture % d.b. and time in still air drying for non perforated trays	73
5.1.2	Relation between moisture content and time in still air drying with perforated tray	75
5.1.3	Relation between natural log of moisture ratio and time in still air drying in non perforated travs	81
5.1.4	Relation between drying rate constant and temperature for non perforated travs	82
5.1.5	Relation between diffusivity and drying temperature for non perforated travs	83
5.1.6	Relation between natural log of moisture ratio and time in still air drying in perforated trays	84
5.1.7	Relation between drying rate constant vs drying temperature for perforated travs	85
5.1.8	Relation between diffusivity and drying temperature for perforated travs	85
5.1.9	Arrhenius type relationship for still air drying for non perforated trays	87
5.1.10	Arrhenius type relationship for still air drying in perforated travs	87
5.2.1	Relation in moisture content db and time for infrared drying	90
5.2.2	Relation between deffusivity D_{eff} and drying temperature for infrared radiations (Expt1)	91
5.2.3	Arrhenius type relationship for infra red moisture analyzer (Expt1)	92
5.2.4	Relation in moisture content and time for infra red moisture analyzer (Expt 2)	93
5.2.5	Relation between diffusivity and drying temperature for infra red moisture analyzer (Expt2)	94
5.2.6	Arrhenius type relationship for infrared moisture analyzer (Expt2)	95
5.2.7	Relationship between drying time to dry up to 22% db and temperature for perforated trays	95
5.2.8	Relationship between drying air temperature and % head rice	96
5.2.9	Time required for drying (up to 22% db) in still air.	97
5.3.1a	Effect of variables on drying time in 3 mm paddy layer in still air	104
5.3.1b	Effect of variables on drying time in 3 mm paddy layer in still air	105
5.3.2 a	Effect of variables on brokens in 3 mm layer vibration dryer	106

vi

5.3.2 b	Effect of variables on brokens in 3 mm layer vibration dryer	107
5.3.3	Effect of variables on cooking time in 3 mm layer vibration dryer	108
5.3.4	The optimization of the desirability and drying time for 3 mm layer vibration assisted dryer	111
5.3.5	The optimization of the brokens and cooking time for 3 mm layer vibration assisted dryer	112
5.4.1	The effect of variables on drying time for vibration dryer with air	119
5.4.2	Contour plots showing the effect of variables on brokens in vibration dryer with air.	122
5.4.3	Response surface plot of brokens showing variation with process variables in vibration dryer with air	122
5.4.4	Contour and cube showing the effect of variables on the cooking time in Vibration dryer with changing air velocity	124
5.4.5	The contour and 3-D plot for optimum desirability in vibration dryer with changing air velocity	128
5.4.6	The contour and 3-D plot for optimum drying time in vibration dryer with changing air velocity	128
5.4.7	The contour and 3-D plot for optimum brokens in vibration dryer with changing air velocity	129
5.4.8	The contour and 3-D plot for optimum cooking time in vibration dryer with changing air velocity	130

vii

List of Plates

No.	Description	Page
1	The hot air oven used in natural convection drying	52
2	The cam mechanism used for vibration in natural convection drying	52
3	Experimental setup for vibration assisted drying in natural convection	52
4	Experimental setup for infrared drying with computer	53
5	Experimental setup for vibration assisted drying with forced air	53
6	Experimental setup for vibration assisted forced convection drying	54
7	Experimental setup view showing the driving mechanism	54
8	ANAMED digital Electronic Balance	55
9	Rubber roll sheller	55
10	Abrasive polisher	55

viii

List of Symbols and Abbreviations

a = Amplitude

A = cross sectional area of drying bin

Ar = dimensionless number known as the Archimedes number

ANOVA= Analysis of variance

Bim= Biot mass transfer number

B_{ih}= Biot heat transfer number

C= spring index i.e. D_h / d_h

CCRD = Central Composite Rotatable Design

C.V. = Coefficient of Variation,

CI= confidence interval

db= Dry basis

 $d_e = Equivalent diameter of particle$

 $d_h =$ Wire diameter, mm

D = Internal diameter of the duct, m

D = diameter of drying bin

 D_0 = effective diffusion coefficient at M_o , m²/s

 D_{AB} = diffusion of gas A into B (for water-air system, 0.288x10⁻⁴ m²/s at 42°C),

 m^2/s

DC = Direct current

D_{eff} = effective Moisture diffusivity

 $(D_{eff-)Avg} =$ average moisture diffusivity in m²/s.

 $D_h =$ Mean coil diameter, mm

DP = drying performance (g of water evaporated / J of supplied energy)

 $D_p =$ Equivalent diameter of the paddy grain,

DF= Degrees of freedom

EMC= Equilibrium moisture content

FAO =Food and Agricultural Organization

g = Acceleration due to gravity

 $G_a =$ Mass flow rate of the air, kg/s

G= Modulus of rigidity, N/mm²

h' = convective heat transfer coefficients, kcal $m^{-2} \circ C^{-1} h^{-1}$

 h_D =Convective mass transfer coefficient, kg h⁻¹m⁻²

 h_2 = energy consumed by motor, kJ

H= Height of drying bin

ho= Bed depth

i = initial,

I= Specific vibration power or vibration intensity

 $k = drying constant, sec^{-1} or h^{-1}$

 $\dot{k_c}$ = Equimolar countercurrent mass transfer coefficient, m/s

L = Latent heat of vapourization, kJ/kg

L = Length of the grain bed (depth)

LSU =Louisiana State University

LOF Lack of fit.

M = moisture content, % wet basis

- M = moisture content, dry basis
- $M_0 =$ initial moisture content, dry basis

M_d = equilibrium moisture content, dry basis

MR= moisture ratio

 \overline{M} = moisture content of grain, % db

N = Revolution per minute of the motor

 N_t =Number of turns

 N_{Sc} = Schmidt number, $\mu / \rho D_{AB}$ dimensionless

NMR Nuclear Magnetic Resonance

P = Axial force, N

P = vapour pressure, kg/cm²

 $P_m = power of the motor, kW$

 $P_{\rm v\,wb}$ = saturated vapour pressure at the wet bulb temperature

 P_v = partial pre ssure of water vapour in ambient air, kPa

Prob = Probability

PRESS=Predicted Residual Error Sum of Squares

Q = power input

 Q_a = Sensible heat gained by air,

 Q_a = enthalpy of hot drying air, kJ/ s

r = particle co-ordinate,

 $r_o = particle diameter$

r = diffusion path or length,m

r = radius of a small cylindrical segment

r= radius of sphere, m

R = universal gas constant, 8.314 J/ mole

 $Re_{mf} = Reynolds$ number at incipient fluidization,

RH = Relative humidity

s = Specific surface area of the grain mass

 S_{ut} =Ultimate tensile strength, N/mm²

Tc= Absolute temperature

 $T = Drying air temperature, {}^{0}C$

 T_{wb} = wet bulb temperature

 $T_{abs} = Absolute temperature$

T = absolute temperature, K

 ΔT = Temperature rise of drying air

µm= micro meter

U_{mf=} minimum fluidization velocity

 U_{mvf} = velocity of incipient vibro- fluidization

V = volume of the body m^3

V = Mean velocity of air, m/s

 $V_o =$ Superficial air velocity, m/s

VIF =Variance Inflation Factor

wb= wet basis

w = absolute humidity of air, kg water/ kg dry air

 θ = Time

Ø = Time

 Γ = dimensionless trajectory parameter

 ω =Angular velocity

ΓVFB= extended trajectory parameter

 μ = viscosity of air, Pa.s

 ρ = Density of air, Kg/m³

 η = efficiency of electrical heaters

 η =The energy efficiency

 η_o = overall efficiency of blower and motor

 ε = Porosity of the grain bed

 ρ_f = density of drying fluid

 ρ_p = Particle density of the parboiled paddy

 ρ = Density of fluid (air) = 1.298 kg/m³

 ϕ_s = Sphericity of grain

 τ_1 = Torsional shear stress, N/mm²

 τ_2 = Direct shear stress, N/mm²

 $\tau =$ Resultant shear stress, N/mm²

 δ = Axial defection of the spring, mm

 τ_d = Standard the permissible shear stress =0.5S_{ut}

 θ = product temperature, °C