Contents

Title	i
Certificate of Approval	iii
Certificate by the Supervisor	v
Acknowledgement	vii
Declaration	ix
List of Symbol	xi
List of Figures	xiv
List of Tables	xxi
Abstract	xxiii
Contents	XXV

Chapter 1:	Introduction to Oxygen Safety	1
1.1	Fires in oxygen system	2
1.2	Oxygen system accidents and observations	3
1.3	Potential ignition sources and material compatibility in oxygen	6
	systems	
1.4	Oxygen system cleanliness	11
1.5	Technological gap and motivation of the present work	14
	Reference	17
Chapter 2:	Introduction to Triboelectricity and Electrostatic Discharges	21
2.1	Charging of Solid Particles	21
	2.1.1 Contact-electrification or tribocharging of materials	22
	2.1.2 Developments in triboelectricity research	27
2.2	Electrostatic discharge	31
	2.2.1 Classification of ESD	34
	2.2.2 Incendivity of ESD	38
	2.2.3 Dispersed dust and sufficiency of energy from PBD for dust	40
	ignition	
	2.2.4 Sufficiency of PBD as ignition source	46
	2.2.5 Ignition of solid particles	47
	Summary	50
	Reference	51
Chapter 3:	Objective and Outline of the Thesis	55
3.1	Objective	55
	3.1.1 Numerical simulation of velocity and tribocharging of non-	55
	metallic particles	
	3.1.2 Experiments on tribocharging of metallic particles	55
	3.1.3 Numerical simulation of flow in valves used for oxygen system application	56
	~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

	3.1.4 Investigation of dispersion and settling of 66 µm sized dust particles in a pressure regulator and prediction of outbreak of PBD	56
3.2	Thesis organization	57
	Reference	58
Chapter 4:	Numerical Simulation of Velocity and Charge Generation in Particles	59
4.1	Governing Equation	59
	4.1.1 Fluid flow modeling	60
	4.1.2 Solver formulation	61
	4.1.3 Selection of the turbulence model	61
	4.1.4 Particle trajectory equations	63
1.0	4.1.5 Tribocharging of particles and pipe wall	65
4.2	Result and Discussion on charge generation	66
	4.2.1 Determination and comparison of charge separation as a function of powder flow rate in a horizontal pipe for quartz and PVC	66
	4.2.2 Determination and comparison of current generation in steel pipe with bend in a vertical plane	69
	4.2.3 Determination and comparison of fluid velocity profile in a vertical pipe	71
	4.2.4 Determination and comparison of charge per unit length as a function of length in a vertical pipe	73
	4.2.5 Determination of charge separation as a function of particle radius in a horizontal pipe	75
	Summary	76
	Reference	77
		,,
Chapter 5:	Experimental Validation of Tribocharging of Particles	79
5.1	Presence and accumulation of contaminant in oxygen systems	79
5.2	Existing experimental work on tribocharging of particles in gas-solid flow	80
5.3	Experimental set-up	84
	5.3.1 Fluid handling system	85
	5.3.2 Solid handling system	86
5.4	Experimental procedure	91
5.5	Particle characteristics	92
	5.5.1 Microstructural characterization and analysis of surface morphology of particles	93
5.6	Error analyses	96
	5.6.1 Expressions for uncertainty in measurement	96
	5.6.2 Error Analysis of the Experimental data	97
5.7	Analyses	98
	5.7.1 Contact Charge	100

101
101
102
102
103
104
105
106

Chapter 6:	Two Dimensional CFD Modeling of Globe Valve for Oxygen Application	109
6.1	Survey of past analyses in valves	109
6.2	Selection of valve for high pressure and high flow rate gaseous stream	110
6.3	Oxygen system hazard and its analysis using cfd	113
6.4	System considered	114
6.5	CFD and selection of turbulent model	116
6.6	Results and discussion	119
6.7	Accumulation of dust	123
	Summary	125
	Reference	125
Chapter 7:	Numerical Simulation of Dispersion and Settling of Particles in Pressure Regulator	129
7.1	Methodology of simulation	129
7.2	System considered	132
7.3	Assumptions of the model	134
7.4	Governing equations	135
	7.4.1 Continuity equation	135
	7.4.2 Momentum equations	135
	7.4.3 Particle phase kinetic theory	137
7.5	Boundary conditions and solution strategies	138
7.6	Results and discussion	139
	7.6.1 Velocity distribution	141
	7.6.2 Distribution of particles during the flow	142
	7.6.3 Settling of particles after the closure of regulator	144
	Summary	156
	Reference	157
Chapter 8:	Conclusion, Contribution and Scope of Future Work	159
8.1	Contributions	162
8.2	Scope of Future Work	164
	8.2.1 Experimentation on charging of particles	164
	8.2.2 Experimentation on PBD	164
	8.2.3 Numerical simulation	165

xxviii