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Introduction

1.1 Graphs

In this thesis by a graph we mean a simple graph G = (V,E), where V is a finite

nonempty set and E is a subset of the set of all 2-subsets of V . The elements

in V and E are called the vertices and edges respectively. Sometimes the vertex

and the edge sets of G are denoted by V (G) and E(G) respectively. The total

number of vertices in V (G) is called the order of G. Two vertices x and y are said

to be adjacent if {x, y} is an edge; otherwise they are non-adjacent. If e = {x, y}

is an edge then both x and y are called the end vertices of e. If two vertices are

adjacent then each is called a neighbour of the other vertex. The complement of

a graph G is the graph G on the same vertices of G such that two vertices of G

are adjacent if and only if they are not adjacent in G.

A graph G is called a complete graph if for any two vertices x and y in G,

{x, y} is an edge. In this thesis we denote a complete graph with n vertices by the

symbol Kn. A graph G is called a bipartite graph if the vertex set V (G) can be
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partitioned into two nonempty subsets X and Y in such a way that each edge of

G has one end vertex in X and another end vertex in Y . The partition {X,Y } is

called a bipartition of G. A complete bipartite graph G is a bipartite graph with

bipartition V (G) =X ∪Y , such that every vertex in X is adjacent to every vertex

in Y . If ∣X ∣ =m and ∣Y ∣ = n, then a complete bipartite graph is denoted by Km,n.

A graph G is called t-partite graph if the vertex set V (G) can be partitioned into

two nonempty subsets X1,X2, . . . ,Xt such that each edge of G has one end vertex

in Xi and the other end vertex in Xj, 1 ≤ i ≠ j ≤ t. A complete t-partite graph is

a t-partite graph with partition V (G) = X1 ∪X2 ∪ ⋅ ⋅ ⋅ ∪Xt such that every vertex

in Xi is adjacent to every vertex in Xj, 1 ≤ i ≠ j ≤ t. If ∣Xi∣ = ni, for i = 1,2, . . . , t,

then a complete t-partite graph is denoted by Kn1,n2,...,nt .

A graph H = (V1,E1) is said to be a subgraph of a graph G = (V,E) if V1 ⊆ V

and E1 ⊆ E. Further H is called an induced subgraph if H contains all the edges

of G whose end vertices are in H. The degree of a vertex x in a graph G is the

number of vertices in G which are adjacent to x. In this thesis we denote the

degree of a vertex x in a graph G by degG(x) (or simply deg(x), if the graph is

understood). A degree one vertex is called a pendant vertex or a leaf.

A walk in a graph G is a finite sequence W ∶ v0e1v1e2v2 . . . vk−1ekvk whose terms

are alternately vertices and edges (starting and ending with vertices) such that,

for 1 ≤ i ≤ k, the edge ei has end vertices vi−1 and vi. If v0 = vk then W is called

a closed walk. If the vertices v0, v1, . . . , vk of the walk W ∶ v0e1v1e2v2 . . . vk−1ekvk
are distinct then W is called a path (or a v0 − vk path). A path on n vertices

is denoted by Pn. The number of edges in a path is called its length. If G is a

connected graph then the distance between two vertices u and v in G, denoted

by dG(u, v) (or simply d(u, v) if the graph is understood), is the minimum of

the lengths of all u − v paths in G. A graph G is said to be connected if each

pair of vertices in G belongs to a path; otherwise G is called disconnected. The
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1.1 Graphs

eccentricity of a vertex v in a connected graph G is denoted by e(v) and defined

as e(v) =max{d(u, v) ∶ u ∈ V (G)}. The diameter of a connected graph G, denoted

by diam(G), is given by max{e(v) ∶ v ∈ V (G)}. A cycle is a closed walk W ∶

v0e1v1e2v2 . . . vk−1ekv0 where all the vertices are distinct. A cycle with n vertices

is denoted by Cn. A tree is a connected graph without any cycle. A star is a

tree having a vertex which is adjacent to all the other vertices. A star with n

vertices is the bipartite graph K1,n−1. A rooted tree is a tree with one vertex

chosen as the root. A complete m-ary tree is a rooted tree such that the degree

of the root vertex is m, the degree of all other non-pendant vertices is equal to

m + 1, and all pendant vertices are of the same distance from the root. A tree

T is said to be a m-distant tree if there is a path P of maximum length in T

such that every vertex in T is of distance at the most m from P . This path P

is called a central path of T . Every tree is an m-distant tree for some m. An

1-distant tree is called a caterpillar and a 2-distant tree is called a lobster. The

n-dimensional cube or hypercube Qn is the graph whose vertices are the n-tuples

with entries in {0,1} and its edges are the pairs of n-tuples that differ in exactly

one position. The cartesian product G12G2 of graphs G1 and G2 is the graph

whose vertex set is the cartesian product V (G1) × V (G2), and any two vertices

(u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and v1 is adjacent

to v2 in G2 or v1 = v2 and u1 is adjacent to u2 in G1. One can easily verify that

G12G2 = G22G1. The hypercube Qn can be expressed as the cartesian product of

n copies of K2. The book graph Bm is defined as the cartesian product Sm+12P2,

where Sm+1 is the star graph K1,m. The cartesian product Sm+12Pn is called the

stacked book graph Bm,n. The prism graph Ym is the cartesian product Cm2P2.

A two dimensional grid graph is the cartesian product Pm2Pn. For any graph G

and a positive integer r, the rth power of G, denoted by Gr, is the graph with the

vertex set same as that of G and two vertices u and v are adjacent in Gr if and
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Introduction

only if dG(u, v) ≤ r. For any list l chosen from {1,2,3, . . . , ⌊n2 ⌋}, a circulant graph

Cin(l) is a graph on the vertices v0, v1, . . . , vn−1 such that each vi, 0 ≤ i ≤ n − 1,

is adjacent to vi+j and vi−j (subscripts are taken mod n) for every j in the list l.

The circulant graph Cin (1,2, . . . , ⌊n2 ⌋) is the complete graph Kn and the graph

Cin(1) is the cycle Cn. The generalized Petersen graph GP (n, r), for n ≥ 3 and

1 ≤ r ≤ ⌊n−12 ⌋, is the graph with vertex set {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and

edge set {{ui, ui+1},{ui, vi},{vi, vi+r}, i = 0,1,2, . . . , n − 1}, where subscripts are to

be read modulo n.

1.2 Motivation for Radio k-colorings of Graphs

The Frequency Assignment Problem (FAP) is the problem of assigning frequencies

to transmitters in some optimal manner that avoids interferences. Nearly three

decade back this problem has been modeled as a graph coloring (labeling) problem

see, Hale (1980). This coloring has several variations depending upon the type of

assignment of frequency to transmitters. In this section, we discuss some of them

including radio k-coloring of graphs.

The FAP plays an important role in wireless network and is a well-studied

interesting problem. Due to rapid growth of wireless networks and to the relatively

scarce radio spectrum the importance of FAP is growing significantly. Many

researchers have modeled FAP as an optimization problem as follows: Given

a collection of transmitters to be assigned operating frequencies and a set of

interference constraints on transmitter pairs, find an assignment that satisfies

all the interference constraints and minimizes the value of a given objective

function. Hale (1980) has modeled FAP as both frequency-distance constrained

and frequency constrained optimization problems. Since then, a number of graph

colorings have been inspired by the FAP.
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1.2 Motivation for Radio k-colorings of Graphs

T -colorings of graphs is also a model of FAP, studied by Liu (1992, 1994, 1996,

2000), Cozzens et al. (1982, 1991), Griggs et al. (1994), Rabinowitz et al. (1985),

Raychaudhuri (1994) and Tesman (1989). For any simple connected graph G

and a list T of non-negative integers containing 0, T -coloring is a mapping f from

the vertex set V of G to the set of non-negative integers {0,1,2, . . .} such that

∣f(x) − f(y)∣ ∉ T whenever x and y are adjacent in G. The span of a T -coloring

f is the difference between the largest and the smallest numbers in f(V ), i.e.,

max{∣f(x) − f(y)∣ ∶ x, y ∈ V }. The minimum span among all T -colorings of G is

called T -span of G.

Roberts (1988) proposed an FAP with two levels of interference which Griggs

(1992) adapted to graphs and extended to a more general graph problem of

distance-constrained coloring as follows. For nonnegative integers p1, . . . , pm, an

L(p1, . . . , pm)-coloring of a graph G is a coloring of its vertices by nonnegative

integers such that vertices at distance exactly i receive labels that differ by at

least pi. The maximum label assigned to any vertex is called the span of the

coloring. The goal of the problem is to construct an L(p1, . . . , pm)-coloring of the

smallest span. Sometime the distance constraints are considered to decrease with

the distance which were studied by Bertossi et al. (2003), i.e., p1 ≥ p2 ≥ ⋅ ⋅ ⋅ ≥ pm ≥ 1.

However, there are also practical applications of the case p1 = 0, p2 = 1 studied

by Bertossi et al. (1995) and Jin et al. (2005). Distance-constrained coloring

problem is related to ordinary graph coloring problem of graphs. If p1 = ⋅ ⋅ ⋅ =

pm = 1, then the problem reduces to the coloring of the kth power of the graph

G. So many results on colorings of graph powers translate to distance-constrained

coloring and vice versa (for example see Molloy et al. (2005, 2002)).

More popular distance-constrained coloring is the L(2,1)-coloring of graphs.

A major open problem in this coloring is the conjecture of Griggs and Yeh (1992)

that asserts that every graph G with maximum degree ∆ ≥ 2 has an L(2,1)-
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coloring of span at most ∆2. Lots of research work has been done on L(2,1)-

coloring of graphs and their algorithmic aspects (for example see Bella et al.

(2007), Calamoneri (2006), Chang et al. (2000b, 1996), Georges et al. (1995,

2003), Král’ (2004) and Mc Diarmid (2003)). An another version of FAP is

described by a graph G in which each edge e is assigned a positive integer weight

w(e) and the problem is to give colorings to the vertices of G with positive integers

such that the colors of adjacent vertices u and v differ by at least w(uv). A survey

on this problem is made by Mc Diarmid (2001). Instead of integer coloring in

the above FAP real number colorings are also considered by some researchers, a

survey of which given by Griggs et al. (2009).

Radio k-colorings of graphs is also a type of FAP . In fact a radio k-coloring

is the same as L(k, k − 1, . . . ,2,1) coloring, in which the colors are the positive

integers. This problem is also a generalization of the usual vertex coloring problem.

In a proper vertex coloring of a graph two vertices at distance one get different

colors whereas in radio k-coloring two vertices having distance less than or equal

to k have to get different colors satisfying a condition. In this thesis, we are

interested on radio k-colorings of graphs, 1 ≤ k ≤ diam(G), suggested by Chartrand

et.al (2001). The term “radio k-coloring” emanates from its connection with the

Frequency Assignment Problem.

1.2.1 Graph Theoretic Modeling

Suppose that nine radio stations s1, s2, s3, s4, s5, s6, s7, s8 and s9 are planning to

start broadcasting in a country. We want to assign a frequency to each station

so that no two stations interfere with each other. Depending on interference area

of stations and their geometric locations we draw circles (of the same diameters)

taking these stations as centers as shown in Figure 1.1. The diameter of circles

should be less than or equal to the diameters of the interference area of stations
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1.2 Motivation for Radio k-colorings of Graphs

to ensure the interference between stations whose respective circles intersect. If

a station is such that it is not coming within the interference area of any other

station, then we can leave that station as we can assign any frequency to it. Now

we construct a graph taking radio stations as vertices and two vertices are adjacent

if the corresponding circles intersect. Then we will get a connected graph as shown

in Figure 1.2.
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Figure 1.1: Interference structure of radio stations.
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Figure 1.2: Graph theoretical model of frequency assignment problem.

Generally diameters of the interference area of stations will be less than or equal to

the diameter of the graph except the case when each station is in the interference
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area of all other stations. In that case we will get a complete graph and it is easy

to assign frequencies without interference. We choose a positive integer k such

that beyond the graph theoretical distance k there will not be any interference.

So we can assign same frequency to two vertices of k + 1 distance apart.

8 11

5

26
23

20

17
14

20

Figure 1.3: Assignment of frequencies with k = 3 and minimum frequency 5.

1

4 7

10
13

16

16

22
19

Figure 1.4: Assignment of frequencies with k = 3 and with minimum frequency 1.

Figures 1.3, 1.4 and 1.5 are all assignments of frequencies when k = 3. Observe

that the assignment shown in Figure 1.4 is obtained by subtracting 4 from each

frequency in the assignment shown in Figure 1.3. So we can say that in our

assignment we should use 1 (minimum available frequency) to some vertex as

our aim is to reduce the maximum frequency assigned. The maximum frequency

assigned in Figure 1.4 is still reduced in Figure 1.5. So the main aim here is that
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1.2 Motivation for Radio k-colorings of Graphs

8

8
12

5

1

10 3
5

1

Figure 1.5: Assignment of frequencies with k = 3 and reduced maximum frequency.

minimizing the highest frequency assigned and this is what the radio k-coloring

problem (precise mathematical definition will be given in the following subsection).

1.2.2 Terminology and Definitions

Definition 1.1 Let G be a simple connected graph with diameter d and k, 1 ≤ k ≤

d, be an integer. A radio k-coloring of G is an assignment f of positive integers

to the vertices of G such that for any two distinct vertices u and v,

∣f(u) − f(v)∣ ≥ 1 + k − d(u, v), (1.1)

where d(u, v) is the distance between u and v in G.

In this thesis we refer (1.1) as the radio condition.

Definition 1.2 Let f be a radio k-coloring of a simple connected graph G. The

span of f , rck(f), is max{f(u): u ∈ V (G)}. The radio k-chromatic number,

rck(G), of G is min{ span of f : f is a radio k-coloring of G}. A radio k-coloring

of G having the span rck(G) is called a minimal radio k-coloring.

Example 1.1 In the following figures, we give two different radio k-colorings of

the same graph.

9
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1 20 5 24 9 2

11 15 17 13

Figure 1.6: Radio 5-coloring with span 24.

11 6 1 14 9 4

23 191721

Figure 1.7: Radio 5-coloring with span 23.

It is not difficult to give a radio k-coloring to any graph. But finding radio k-

chromatic number is challenging.

In the literature, for some special values of k there are special names of radio

k-coloring and radio k-chromatic number which are given below.

k Name of coloring rck(G)

1 Usual coloring Chromatic number, χ(G)

diam(G) Radio coloring Radio number, rn(G)

diam(G) − 1 Antipodal coloring Antipodal number, ac(G)

diam(G) − 2 Nearly antipodal coloring Nearly antipodal number, ac′(G)

1.3 Literature Survey

Radio k-coloring was introduced by Chartrand et al. (2001). Two survey papers

are published on radio k-colorings, one is by Chartrand et al. (2007) and the

other is by Panigrahi (2009). Since finding radio k-chromatic number is highly

nontrivial, it is known for very few graphs and lower and upper bounds have

been given for some graphs. Only radio numbers of graphs are studied by several

authors and so more results are there on this than the radio k-chromatic number

10
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of graphs for k different from the diameter. Therefore we divide the survey part

into two different subsections.

1.3.1 Known Results on Radio Number of Graphs

In their introductory paper Chartrand et al. (2001) have studied radio number

of some well known graphs, namely, cycles, complete multipartite graphs, and

graphs with diameter 2. They have shown that rn(G) = n+ t− 1 if and only if the

minimum number of components in a spanning linear forest of the complement

G of G is t, where a linear forest is a graph all of whose components are paths.

They have computed the radio numbers of Cn, for n ≤ 8, and have given bounds

for other values of n. For n ≥ 9, the lower bound of rn(Cn) is 3⌈n2 − 1⌉ and the

upper bound is (n−1)2

2
+ 1 for n odd and n

2
2 − n

2 + 2 for n even. The radio number

of a complete t-partite graph Kn1,...,nt is
t

∑
1

ni + (t − 1). Bounds for rn(G) of a

connected graph G of order n and diameter d were given by Chartrand et al.

(2005) as rn(Pd+1) ≤ rn(G) ≤ rn(Pd+1)+ (n−d−1)d. In the same paper they have

presented two lower bounds for rn(G), first in terms of the diameter d and the

maximum degree ∆ of G, and the second in terms of the diameter and the clique

number ω of G. They are 2 +∆(d − 1) and 1 + d(ω − 1) respectively.

For paths and cycles, the radio numbers were studied by Chartrand et al.

(2005) and Zhang (2002), while the exact value remained open until solved by

Liu and Zhu (2005). They have determined the exact value of radio number of

path Pn, n ≥ 4, as 2p2 − 2p + 2 if n = 2p and 2p2 + 3 if n = 2p + 1. They have

also determined the exact value of radio number of Cn, n ≥ 3, as n−2
2 ϕ(n) + 2 if

n ≡ 0,2 (mod 4) and n−1
2 ϕ(n) + 1 if n ≡ 1,3 (mod 4), where ϕ(n) is equal to s + 1

if n = 4s + 1 and is s + 2 if n = 4s + r for some r = 0,2 or 3.

Fernandez et al. (preprint) have given the radio number of the complete graph

Kn and the wheel graph Wn as n and n + 2 respectively, where the wheel graph

11
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Wn consists of a cycle Cn together with a center vertex that is adjacent to all

vertices of the Cn. They have also computed rn(Gn) = 4n + 2, n ≥ 4, where Gn is

the n-gear graph obtained from Wn by inserting one vertex between each pair of

vertices on the main cycle Cn of Wn.

The radio number rn(C2
n), n even, of the square of even cycles are completely

determined by Liu and Xie (2004). They are 2p2−5p−1
2 if n = 4p and p is odd,

2p2+3p
2 if n = 4p and p is even, p2 + 5p + 1 if n = 4p + 2 and p is odd, and p2 + 4p + 1

if n = 4p + 2 and p is even. In case of square of odd cycle C2
n, n = 4p + 1, they

have found out that the value of rn(C2
n) as p2 + 2p if p is even and p2 + p if

p ≡ 3 (mod 4). Moreover, for the case p ≡ 1(mod 4), they have given bounds as

p2 + p + 1 ≤ rn(C2
4p+1) ≤ p2 + p + 2. For n = 4p + 3, the value of rn(C2

n) is given as

follows: for some positive integer m, if p = 4m, or p = 4m + 2 for m ≢ 5(mod 7),

then rn(C2
n) is

2p2+9p+6
2 ; 2p2+9p+6

2 ≤ rn(C2
n) ≤

2p2+9p+12
2 if p = 4m + 2, m ≡ 5(mod 7);

2p2+7p+5
2 if p = 4m + 1, m ≡ 0,1(mod 3); 2p2+2p+7

2 if p = 4m + 1, m ≡ 2(mod 3);
2p2+7p+7

2 if p = 4m + 3, m ≡ 0(mod 3); and 2p2+7p+5
2 if p = 4m + 2, m ≡ 1,2(mod 3).

Liu and Xie (2009) have determined the exact value of radio number of the square

path P 2
n , n ≥ 9, as p2 + 2 if n ≡ 1(mod 4), and p2 + 1 otherwise, where p = ⌊n2 ⌋.

Sooryanarayana and Raghunath (2007) have determined the radio number of the

cube of a cycle, C3
n, for all n ≤ 20 and for n ≡ 0 or 2 or 4 (mod 6).

Next, Liu (2008) has studied the radio number of trees. She has given a

lower bound for the radio number rn(T ) of an n-vertex tree with diameter d as

(n − 1)(d + 1) + 1 − 2w(T ), where w(T ) is the weight of T defined as w(T ) =

min
u∈V (T )

⎧⎪⎪⎨⎪⎪⎩
∑

v∈V (T )
d(u, v)

⎫⎪⎪⎬⎪⎪⎭
. She also has characterized the trees achieving this bound.

A spider is a tree with at most one vertex of degree more than two. If the spider

has no vertex with degree more than two then it is a path and the radio number

has already been discussed for this. If the spider has a vertex v of degree more

than two, say m, then the spider will have m number of paths with one end at v

12
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and the other at a pendant vertex. If the length of these paths be l1, l2, l3, . . . , lm

with l1 ≥ l2 ≥ ⋅ ⋅ ⋅ ≥ lm, m ≥ 3, then the spider is denoted by Sl1,l2,l3,...,lm . Liu (2008)

has also given a lower bound for the radio number of Sl1,l2,l3,...,lm as
m

∑
i=1

li(l1 + l2 −

li) + ⌈
l1 − l2
2
⌉⌊ l1 − l2

2
⌋ + 1 and has characterized the spiders achieving this bound.

Li et al. (2010) have determined the radio number of complete m-ary trees

(m ≥ 3) with height k (≥ 2), denoted by Tk,m, as
mk+2+mk+1−2km2+(2k−3)m+1

(m−1)2 .

1.3.2 Known Results on Other rck(G)

For general k, 1 ≤ k ≤ d, radio k-chromatic number of very few graphs are known

so far, even for all paths these numbers have not yet been determined completely.

Upper and lower bounds were established for ac(G) of a graph G with diameter

d ≥ 3, and n vertices, by Chartrand et al. (2002), as 1+d2

4 ≤ ac(G) ≤
(d−1)(2n−d−2)

2 +1.

Also, they have determined two lower bounds for the same first in terms of the

diameter d and the maximum degree ∆ and the second in terms of the diameter d

and the clique number ω as 2+∆(d−2) and 1+(d−1)(ω−1) respectively. For n > k

Chartrand et al. (2004) have given an upper bound for the radio k-chromatic

number, rck(Pn), of path Pn as k2+2k+1
2 if k is odd and k2+2k+2

2 if k is even. Also

they have given a lower bound for the same as k2+3
4 if k is odd and k2+4

4 if k is

even. Panigrahi and Kola (2009) have improved the upper bound of rck(Pn) for

some values of k and n. Kola and Panigrahi (2010b, communicated) have further

improved the upper bound of rck(Pn) for n ≤ ⌊k
2+2k
2 ⌋.

Although Chartrand et al. (2005) have defined radio k-colorings of graphs G

for 1 ≤ k ≤ diam(G), from the mathematical point of view one can also see this

problem for k > diam(G) as this may be useful to find radio k-chromatic number

of supergraphs H of G with bigger diameter than that of G. Therefore Kchikech

et al. (2007) have given exact value of rck(Pn) for k ≥ n as (n−1)k− 1
2n(n−2)+1

13
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if n is even and (n − 1)k − 1
2n(n − 1)2 + 2 if n is odd. Also they have improved

the lower bound for the same when 1 ≤ k ≤ n − 1 as k2+3
2 if k is odd and k2+6

2

if k is even. Panigrahi and Kola (2009) have improved the above lower bound

of rck(Pn), k odd, from k2+3
2 to k2+5

2 . Liu and Zhu (2005) determined the exact

value of radio (n − 1)-chromatic number (which is the radio number) of path Pn

(that has already been discussed in the previous subsection). Khennoufa and

Togni (2005) determined the exact value of the radio (n − 2)-chromatic number

(i.e., radio antipodal number ac(Pn)) of the path Pn as 2p2 − 4p + 5 if n = 2p and

2p2 −2p+3 if n = 2p+1. Although these numbers are correct, Kola and Panigrahi

(2009a) found an error in their proof of the lower bound and have established the

same in a different way.

Let d be the diameter of the cycle Cn on n vertices. Juan and Liu (2006) have

determined rcd−1(Cn) as 2s2+1 when n = 4s+1, 2s2+2s+1 when n = 4s+3 and have

given an upper and lower bounds when n = 4s as 2s2 and 2s2 − ⌊ s2⌋ respectively.

Whereas Chartrand et al. (2000) have computed the exact value of the same

when n = 4s + 2. See p. 27.

Kchikech et al. (2008) have given upper and lower bounds for the radio k-

chromatic number, rck(G2G′), of the cartesian product G2G′ of any two graphs

G and G′ of order n and m respectively, as below. The upper bound is m(rck(G)+

(m−1)k−∑G′+1) for k ≥ diam(G2G′)−1 and the lower bound is (mn−1)(k+1)−

m∑cG − n∑cG
′ + 2 for k ≥ 1, where for any graph H with the vertex set V (H) =

{v0, . . . vp−1}, ∑H and ∑cH are defined as ∑H = maxπ

p−2

∑
i=0

d(π(vi+1), π(vi)), and

∑cH = maxπ

p−1

∑
i=0

d(π(vi+1), π(vi)) respectively, π is a permutation of V (H) and

indices are taken modulo p. Also they have given upper and lower bounds for

radio k-chromatic number, rck(Qn), of hypercube Qn as (2n − 1)k − 2n−1 + 1 if

n − 1 ≤ k < 2n − 2 and (2n − 1)k − 2n−1(2n − 3) − n if k ≥ 1.

Kchikech et al. (2007) have found the exact value of the radio k-chromatic
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1.4 Basic Results

number of stars K1,n as n(k − 1)+ 2 and have also given an upper bound for radio

k-chromatic number, rck(T ), k ≥ 2, of an arbitrary non-star tree T on n vertices

as (n − 1)(k − 1).

1.4 Basic Results

Recall that giving a radio k-coloring f to a graph is not at all difficult, but

minimizing the span of f is the most difficult problem. It is clear that if for a radio

k-coloring f and any pair of vertices u and v, ∣f(u)− f(v)∣ is a large number then

the span of f is also a large number. So naturally it comes that we should consider

those radio k-colorings for which ∣f(u)−f(v)∣ is as small as possible for every pair

of vertices u and v. The lower bound of ∣f(u)−f(v)∣ is k+1−d(u, v). So we try to

get those radio k-colorings for which ∣f(u) − f(v)∣ = k + 1 − d(u, v), for every pair

of vertices u and v. However, such radio k-colorings may not be possible for all

graphs and so we go for minimizing the difference ∣f(u) − f(v)∣ − (k + 1 − d(u, v))

and arrive at the following definition.

Definition 1.3 For any radio k-coloring f of a simple connected graph G on

n vertices and an ordering x1, x2, . . . , xn of vertices of G with f(xi) ≤ f(xi+1),

1 ≤ i ≤ n− 1, we define ϵi(or ϵfi to specify the coloring f) = (f(xi)− f(xi−1))− (1+

k − d(xi, xi−1)), 2 ≤ i ≤ n. It is clear from definition of radio k-coloring that ϵi ≥ 0,

for all i.

The above definition was given by Khennoufa et al. (2005) while finding the

antipodal number of Pn.

Notation 1.1 Notice that the ordering of vertices in Definition 1.3 will be

different for different radio k-colorings. However for the sake of convenience we use

the same names x1, x2, . . . , xn (in order) for the ordering of vertices (with respect

15
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Introduction

to non-decreasing vertex coloring) corresponding to any radio k-coloring of the

graph. On the other hand for the sum of distances between consecutive pairs in

the ordering x1, x2, . . . , xn, we record the corresponding radio k-coloring i.e., by

the notation ∑f d(xi, xi−1) we mean the sum
n

∑
i=2

d(xi, xi−1) where x1, x2, . . . , xn is

an ordering of the vertices according to non-decreasing order of vertex coloring by

the radio k-coloring f .

The next theorem is important for most of the chapters in the thesis as we apply

this to get minimal radio k-colorings.

Theorem 1.1 Let f be a radio k-coloring of G on n vertices.

(a) If max
g
∑g d(xi, xi−1) = ∑f d(xi, xi−1) and min

g

n

∑
i=2

ϵgi =
n

∑
i=2

ϵfi , where maximum

and minimum is over all possible radio k-colorings g of G, then f is a minimal

radio k-coloring of G.

(b) If max
g
∑g d(xi, xi−1) = ∑f d(xi, xi−1) and

n

∑
i=2

ϵfi = 0, then f is a minimal radio

k-coloring of G.

Proof: Let g be an arbitrary radio k-coloring of G. Then

g(xn) − g(x1) =
n

∑
i=2
[g(xi) − g(xi−1)]

=
n

∑
i=2
[1 + k − d(xi, xi−1) + ϵgi ]

= (n − 1)(1 + k) −∑g d(xi, xi−1) +
n

∑
i=2

ϵgi .

Since g(x1) = 1, we get,

g(xn) = (n−1)(1+k)−∑g d(xi, xi−1)+
n

∑
i=2

ϵgi +1 (1.2)

If f satisfies the conditions in (a) part (i.e., f is a single radio k-coloring for

which the distance sum is maximum and the ϵ-sum is minimum), then rck(G) =

16
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1.5 Chapterization

min
g
g(xn) = (n − 1)(1 + k) − max

g
∑g d(xi, xi−1) + min

g

n

∑
i=2

ϵgi + 1 = (n − 1)(1 + k) −

∑f d(xi, xi−1) +
n

∑
i=2

ϵfi + 1 = f(xn) = rck(f). So f is a minimal radio k-coloring and

we prove (a) part. Part (b) follows from (a) immediately because the smallest

possible value of
n

∑
i=2

ϵfi is zero. 2

Although the next lemma looks simple, it helps to get many important consequences

that is seen in many results in the thesis.

Lemma 1.1 If H is a subgraph of a graph G, then rck(H) ≤ rck(G).

Proof: Every radio k-coloring f of G induces a radio k-coloring of H. So we get

rck(H) ≤ min
f

rck(f) = rck(G), where minimum is taken over all possible radio

k-colorings f of G. 2

1.5 Chapterization

The thesis consists of seven chapters of which Chapter 1 contains introduction, a

brief survey of research carried out on radio k-colorings of graphs and basic results

which will be used in the consequent chapters.

In Chapter 2, we give a lower bound for radio k-chromatic number of an

arbitrary graph G in terms of k, number of vertices n and a positive integer M ,

where M is the smallest integer such that d(u, v)+d(v,w)+d(w,u) ≤M for every

triplet u, v and w in V (G). We determine the M -value for cartesian product of

two graphs G1 and G2 in terms of the M -values of G1 and G2, and the M -value

of power of a graph G in terms of the M -value of G. Also, we give lower bounds

to rck(Cn), rck(Pm2Pn), rck(Cm2Pn) and rck(Sm+12Pn). We see that the lower

bound of rck(Cn) obtained here coincides with the radio and antipodal numbers

of Cn (which were determined earlier), when k = diam(G) and k = diam(G) − 1.
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As the hypercube Qn plays an important role in networking, in Chapter 3 we

study radio k-coloring of this graph. We use the technique discussed in Chapter

2 and find a lower bound for rck(Qn). Further, we verify that this lower bound

achieves the radio number of Qn by giving a minimal radio coloring. Also, we

determine the M -value of rth power of Qn, denoted by Qr
n, from which we get a

lower bound for rck(Qr
n).

We devote Chapter 4 to study radio k-chromatic number of path Pn. We

determine nearly antipodal number of Pn and found radio (n−4)-chromatic number

of the same when n is odd and give an upper bound when n is even. Also, we

improve the lower bound of rck(Pn) for any odd integer k ≥ 3. Kchikech et al.

(2007) have conjectured that for a fixed k, lim
n→∞

rck(Pn) = l, where l = k2+2k+1
2 if k is

odd and l = k2+2k+2
2 if k is even. We improve the existing upper bound of rck(Pn),

for any k and n < ⌊k2+2k+22 ⌋. Further, we conjecture that rck(Pn) = k2+2k+1
2 when k

is odd and n ≥ k2+2k+1
2 and rck(Pn) = k2+2k+2

2 when k is even and n ≥ k2+2k+2
2 . In

this chapter, we also relate this conjecture with the conjecture on the antipodal

chromatic number of Cn (n ≡ 0(mod 4)).

In Chapter 5, we give some results on radio colorings of m-distant trees. We

determine radio numbers of some classes of caterpillars and extend the technique

to find radio numbers of some m-distant trees.

In Chapter 6, we give a way of getting minimal radio colorings of graphs.

Also, we use this technique to define minimal radio colorings of some classes of

generalized petersen graphs and circulant graphs.

Lastly, Chapter 7 contains the conclusion and discussions on future scope of

research.

D
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