=

1 .
‘ SHEET NO.— =+ ——
>

« 1+ Inadequacy of classical theories? The classical linear
theory of isotropic elastic solid is based on the Hooke~Cauchy

law
. . . ¢
‘tj =Ag % 53 +’l,ﬁe€d ’
(1)

where 't; is the stress tensor, e& is the infinitesimsl
strain temsor, \c and [l are the moduli of elasticity.

Similarly, the classical theory of isotropic visgous fluid is
based on the comstitutive equation (Newton-Cauchy-Poisson law)

L ‘i, Kol i
tjz—b85+)\qdksj+z}hv¢3 : -

b being the pressure, cLi the flow temsor, ), and ;lv
are the material constants, also called the coefficients of
'viscoaity. The theory of viscous flow based on (2) succeeded
admirably in explaining the phenocmena of 1ift, skin frietion,
form drag, separation, secondary flows ete. It proved to be
a useful tool in the hands of hydraulic and aeronautical engin~-
sers. It falled, however, to explain the behaviour of paints,
ceramies, lubricants, starch solution, rubber toluene solutiocn,

poly-iso~-butylene solution in mineral oil or in tetralin, flow
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of colloids and suspensions, the creep of steel at high tempe~

ratures, etc.

This inadequacy of the c¢lassical theory of Newtonian ==

.fluids has led to the concept of generalized Newtonian fluids
and non-Newtonian fluids. The generalization has been made in

three different ways.

2. Generalizationy .+ The first approach
consists in retaining (2) and regarding )w and /J.,, as
functions of strain-rate invariasnts I, II, III. Non-linearity
in stress-strain-rate relation is thus introduced through the
coefficients of the medium. This fluid is called generalized
Newtonisn fimiald) ,

The second approach consists in introducing in (2) more
terms corresponding to the properties of the material, such as,
elasticity and ﬁlasticity. This leads to the following types
of non-Newtonian fluidss

i) Ha;:;;;;gg_zln;ﬂ‘a)z It is a viscous fluid endowed
'vith elasticity and is characterized by the constitutive equa~
tion

. Y i ‘I'
L

cL-:——EL—\- b

J Q_/LE lﬂv ’

(2)

where the dot'denotes material derivative and k; the devia~
J
toric stress tensor, If this material is suddenly stressed and
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it is desired to keep the deformstion constant, the strcs-s
should be gradually decreased. This is called ‘relaxation of

stress' and llv/ ,1@ is known as 'relaxation time'. B
. ii) Bingham s0lid% It i1s a material which ecan support

a finite stress elastically without flow. It flows with cons~
tant mobility (or plastic fluidity) when the stress exceeds a
certain value. In a state of flow the constitutive equation
is

b= 2%

(4)

where

M = 1’\‘4—3(7-&3 Clii)ﬂf: (5)

The above equation has been given by Oldroyd( 3J. He has shown
that this material, ‘in a state of flow, can be regarded as a
viscous fluid with variable viscosity Y\ y @8 scalar function
of strain~rate tensor involving physical constants of the ma~-
terial ’V\l s (reeiprocal mobility) and 3 (yield stress).

The third approach consists in reformulating the stress-
strain-rate relation in a more accurate manner by appealing to
Stokes' principle of fluidity(4):

'The difference between the pressure on a plane in a
given direcfion passing through any point TP ora fluid in
motion and the pressure which would exist in all directions
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about P if the fluid in its neighbourhood were in a state of
relative equilibrium depends only on the relative motion of the
fluld immediately about [ ;  and the relative motion due to —
,any motion of rotation may be eliminated without affect.ing the
differences of the pressurels above mentioned'. '

Mathematically speaking, this leads to the equation

F': -—i) = 'Y Li-) ?

(6)
J where '\; is the deviatoric stress tensor and dL is the
strain-rate tensor. If -\> is an isotropiec function of a ’

the fluid is said to be isotropic. 1In this case the most gene-
ral relation between deviatoric stress tensor and the strain-rate

tensor is *

E\ v Qﬁag; s Q3\ dLJ+ EazCLi‘ Cr} ’

(7)

+ For the symmetrie temior: }) and cL the condition of iso-

tropy is b }{E d where '%iq— are scalar functions of
the invariants of A . With the help of Gayley-Hamiltén

Wheores (d mai-— E& -k-[& ) 3\3 and higher

powers of J  can be expressed in terms of 1 a and ‘1.

i
i
E

Hence the expression for -L for isotropic fluid reduces to

= D—éoi * H;é' * Qj.;rg which is the same as (7).

- =
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The power series for Q;}T (r=o0,l »>2) is of the form

y = -
=Y I T
(8)
where "}f ik are dimensional constants. A fluid |
obeying (7) is also called non-Newtonian fluid. Non=linearity
in stress-strain-rate relation is introduced through the
coefficients !  and also through the occurrence of the
term d.,a oL j in (7). This non-linearity persists even
when Rj ¢ @are taken as material constants. This generaliza=«
tion leads to two different types of fluldss (1) Stokesian
fluid (4i) Reiner=Rivlia fluid.
The non-Newtonian fluid eonsidered in different prob-
lems presented in this thesis is the Reiner-Rivlin fluid.
We shall desecribe some characteristic features of this fluid
in the following few pages.

8. HNatural time?! In general the coefficlent of viscosity M,
of a fluld depends on temperature and pressure. This relation

can be expressed in the non-dimensional form

B—\i = —{ (%‘ ) L g mmeeEm ')9
}va 2 ILEN
: (9)

where © is the temperature, ;AVN i s ’Lsu are material
-\ -\ ~ i
moduli of dimensions M| | ) ®, my' T 2 respectively
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and the dots stand: for other possible dimensionless loaiara. '

The ratio ﬂLw /ke v =1n has dimensions of | and is
called the 'natural time' of the fluid.

-

4, Wm‘s)t This fluid possesses natural
time. Its response depends on its history and it may be
called a body with memory. The mathematical formulation of
Stokes' principle for this fluld is

L= bt ad o8 fovo b 5 082,

(10)
For an isotropic fluid (10) reduces to
L | (o : v (O
E B Pw (—{“%-83 J«-i&‘é.a + d.0dy),
(11)
- Led )2k ¢ ke
%wr o gfcjk'\-h I H.Jm,
| (12)
where %-ij are dimensionless functions of Fﬁ: 20 /6,

and H,, /hw.- The relation between Qgr and %f can
be obtained by comparing (11) with (7).
Rivlin has considered the case of incompressible fluids

where Qa i are taken as material constants. The natural

time 1, for this fluid is

|
I
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‘t'n = Rj""“ = 2‘_._./{L__§-— ’
n&iaoo ﬂ\r
(13)

where H}!wo = 7—/1\: and 2008 — 4—/,{ ¢« (the coe-
fficient of cross=-viscosity).

_— =
5. lon fur The joint invarisnt of P  and d-
which is also called dissipated power, is defined by

m
L L]

b @53 y=tk, = gdsR).

(14)
Consideration of isotropy reduces it to
= Gt d el
¢(" > 1):-" q) O-)H. )m): CP.'.;,J- ﬂ m.,
(15)
where
le’-jk: DEL yL=\, j,k+ Qél,i--l,‘;,“‘ 1-#2 le,i. s =15k
+%1,L*3,3,k+3%1,1,*_ﬁk_\ .
(16)

Using (8) and (168), we ean write (15) as
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(17)

From physical considerations, the dissipated power
should always be positive for all types of flows actually
taking place. Duhem and Stokes found that for Newtonian flulds

¢ reduces to a guadratic form which is positive definite,
ir

X W3+ v Zlol,

‘They proved that this condition is also sufficient. In
the next approximation é is given by a cubie function of
strain=rate, which is not positive for all values of strain-
rate tensor. Hence the inequality

Pz o

restricts the possible type of flows actually taking place in
non-Newtonian fluids.

(18)

6. Mean pressurei For incompressible fluids I. =0 .

There 1s no loss of generality in assuming Mo-: 0 g for in
incompressible fluids k: always oeccurs in the combination
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—b+ 930 , which can be taken to be the unknown.

In this case the stress-strain-rate relation for iso-

tropic flulds reduces to

-

b= b (I, dS Y (LT bl o

(12)
From (19), we get
2(b-b)= 20 Y (LT,
(20)
where \; is the hydrostatic pressure. For a compressible

fluid }; is taken to be the thermo-dynamic pressure, for an
incompressible fluid \9 is a primitive unknown and may be
taken as any convenient part of the stress. Here F‘o denctes
the mean pressure. In the case of Newtonian fluids 9-32_: 0,
8o \>=}-' « The statement | :ﬂ\: implies linear rela-
tionship betﬁoan the stress tensor and the strain-rate tensore.
The value of II is slways negative and if has been proved

by Reinexr{®) that \?317 0 for all fluids. Hence it can

be concluded that in non-Newtonian fluids the hydrostatiec pre=

8sure exceeds the mean pressure at every point where the fiuid

is suffering deformation.
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constitutive equation (7) was proposed on purely theoretiecal
considerations by Reiner({7) in 1945. The incompressible non-
Newtonian fluid is characterized by three material constants,

its density /7 , the eoefficient of viscosity '/bw W LT"T".)
and the ccefficient of ercss-viscosity /é_c (m L'") . Reiner(8)
showed that the presence df Aé implies that a simple shea~
ring stress causes not only a continuous shearing of the liguid
but also a 'oont;nuoua 1angthén1ns {or shorteding) in the diree=-
tion normal to the plane of shear's. In short the finid exhibits
Kelvin and Poynting“) effects so well knowm in the theory of

non-linear elasticity. -

8. Experimental work: BExperimental confirmation of Reiner's
theoretical prcdiouom about the behaviour of such fluids came

from Weissenberg{1®) Garner and Nissan(1l) ree and
Wu'rcn(m), and Ha:rinzton‘ls) « Weissenberg explains these
effects by attributing the property of slastiecity to the fluid.
Bivlin(u) has argued that the liquid in Weissenberg's experi-
ments cannot possess elasticity and that the effeet is entirely
due to eross-viscosity. Truesdell!l®) 35 of the opinion that
an attempt to represent the phenomena in fluids by a theory of
elasticity is inappropriate.




11
SHEET NO.—— =

©. Measurement of the coefficient of eross-viscosity: The

measurement of the coefficient of cross-viscosity was attempted
by Greensmith and Riv1in(18) in 1052, They subjected the
solution of poly-iso~butylene in tetralin tc torsional motion
between the parallel bases of two co-axial cylindrical cups,
the inner being stationary and the outer rotating at a comstant '
speed L + The surface traction normasl to the hase of the
stationary cup was measured with the help of manometer inser-
ted in it. They called the coefficient of gross-viscosity as
the normal stress coefficisnt and dencted it by LF « They
took Y  to be function of the segomd imvariant K, of
the strain-rate tensor, the third invariant being zero. They

found, by plotting graph of h, —h against v [{ ,
that the relation Botwnln them is linear for all values of
S| except when - [f is very small or very

large. In this experiment A  1s the distance between the

bases of the two eylinders and v is the radial distance

from the centre of the inner cylinder. The mean rise of the

liguid in the n&nnm-tei for two directions of rotation is

denoted by h o whike, W. 4is the vise of the liquid at Y=0

For the range of linear relationship between \. -} and
-ij/Q they took

_i:\u-'—i‘\ :OCTﬂKE )
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whqrs
_ T -
K = 3600 (t?:) :

. Putting this value of |, — h
theoretiéally deduced, they got

o
L\):W!Kl.l J

where
|

Plotting (hi—h) /+=5" against
values of Y S) / [ . they found

in the expression for Yy »

2.
Y 2 for small

_\_ﬂa "1\ - (&"‘/;IKQ.)K‘L 2

where

' = 1AL % 100 Sec ™,

/ =
" /3 = ':71‘\101 o sect,

-

Putting this value of No— h
theoretically deduced, they found

W:LH; Jt‘LVI. KL:

where

Q=g ga =t dpnes

in the expression for Y 5

£ -
Sec  emE
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U,/ - _-Z paq /il:.."jj(\[) o\LJ-nrs Sec#crf".
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In 1987 the results of Greensmith and Bivlin's(lﬁ) experiment
were disputed by Robarts(17). He subjected the.solution of
poly-iso-butylene in tetralin to stationary torsion shearing
motion in the conical cup of the type introduced by Hbonsy‘la).
His experimental results were incompatible with the theory of
Reiner':?) ang Riviin€29) ang vere inm accordance with the
theory of Weissenberg(1®) and Lodge. They assumed that there
are in the liquid elastic elements, whiech as a2 result of velo=-
city gradient existing in the liquid, are subjected to finite
strains. The normal stiress arises as a result of these finite
strains. Greensmith observed this experiment and agreed with
Roberts’ view. In his opinion the theory developed for his
experiment on the basis of eross-viscosity did not correspond
to the experiment, for the theory did not take into aceount
the edge effects present in his experiment.

10, Theoretical work: Reiner{®) solved the following prob-
lems:
i) A cylindriecal rod retating in a liquld (Reiner-
Riviin).

i1) 7The rotating coaxial eylindricsl viscometer.

1ii) The tube viscometer.
iv) The parallel plate torsion viscometer.
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The motivation was rheological and erucial tests were
proposed to ascertain whether the observed effects were due
to elasticity or eross-visgosity. He found that rubber-
toluene solutions possessed cross-viscosity as well as elas-
ticitys It appeared to him that the elastic compponent was
more pronounced but less stable gradually disappearing im con~-
tinuous shear and restored through rest, while the viscous
component was apparently stable but less proncunced.

Ericksen{2%) nas discussed the flow of Reinei-Rivlin
fluld through straight pipes of non-eircular eross-section
under constant pressure gradient. He finds that no reectilinear
flow is, in general, pessible unless body forees are applied
%o the fluld. For circular pipe slone rectilinear flow is
possible without body forcess Green and Rivlin‘al) have
found that for an elliptic pipe, in addition to axial flow,
secondary flows are developed in the cross~sectional planes.
Similar phenomena are observed in the turbulent flow of New=
tonian fluids. This led Riv1in(22) g4 gugsest thet turbulent
Fewtonian fluid may, for certain purpose, be regarded as non=-
Newtonian fluid.

1l. Motivation, extent and scope of the work: The investi-
gationsrepq;tad in part I of the thesis were undertaken to

extend the idea of superposability to the domain of non-
Fewtonian fluids. This idea was first proposed by Str@ng and
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and developed by Btlllbhﬁaa) in the case of Newtonian flﬁids--
This theoretical study led us to investigate the relationship
hotuncﬁ eirculation preserving motions and superposable motions
in non-Newtonian fluids. For Newtonlan fluids, this relation
was first explicitly stated by Truosdell(24). We have proved
a number of theorems on superposability and circulation pre-
serving motions in non-lNewtonian fluids. Some theorems are
the extensions of their classical analogues while others are
new and do not have theilr counterparts in the elalsiﬁal theory.
This is due to non-linesrity in the stress=-strain-rate rela-
tion.

The special problems treated in part Il are extensions
of some classical results to non-Newtonian fluids. They are

i) Rotation of an infinite plane lamina.

i .‘”.
i1) Rotation of two infinite plates spaced a distance O
‘Wtb )

1ii) Rotatory oscillations of an infinite plane lamina.
iv) TFlow near a stagnation point (axisymmetric case).

In these problems the equations of motion of non~
Newtonian fluids reduce to ordinary differential equations
which can be integrated by numerical methods. It is expected
that the solutions will provide useful information about the
behaviour of non-Newtonlan fluids, and may eventually explain
gome experimental results of Popper and Rninar(as), and Wardy

and Lordﬂ‘ga). The results of the investigations are summa=
rized in the syncpsis.




