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Chapter 1

Introduction

This chapter starts with an introduction to Electron Beam Welding (EBW) process and its

applications in various fields. A review of the available literature regarding EBW shows the

type and extent of work done earlier, and the unexplored areas left thereafter. The chapter

then focuses on the application and utility of soft computing in modeling of EBW process.

After highlighting the aims and objectives of the present research work, the scholar claims

the contributions made by him in this study. The final sectionof this chapter lays down the

layout of the thesis.

1.1 Introduction to Electron Beam Welding

Electron beam welding is a fusion welding process. Here, theheat required to fuse metal

is obtained, when a concentrated beam of high velocity electrons strikes the surfaces to be

joined. The kinetic energy of the electrons changes to thermal energy, and thereby, the pieces

to be joined melt and finally join upon solidification.

Electron beams can produce high quality welds, free from defects like porosity and

contamination at very high speeds. The fusion zone and heat affected zone are extremely

narrow. The weld distortion problem, compared to other welding processes, is considerably

less, as the input energy is concentrated in a very narrow zone. Highly reactive materials like

titanium, zirconium, etc. may be welded, without any contamination by this process, as the

welding is performed at a very high degree of vacuum. Weld materials as thin as0.025 mm

to as thick as100 mm steel can be easily welded in a single pass by this process.

The electron beam is usually generated from a triode system that comprises of a heated

filament (cathode), a bias cup and an anode. The electrons, after being generated, are sub-
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jected to a huge potential difference called accelerating potential [1]. The accelerated elec-

trons are then focused by an electrostatic lens. The beam canalso be made to oscillate in

a circular motion by means of an alternating current whose frequency may be varied up to

20,000 Hz. Electron beam welding is influenced by a large number of parameters. This

include material to be welded, type of EBW device and different working parameters. The

subsequent paragraphs discuss the history of EBW, EBW-related equipments and information

related to the welding of ferrous, non-ferrous and dissimilar metals using electron beams.

1.1.1 A Brief History of Electron Beam Welding

Electron was discovered by J.J. Thompson in the year as earlyas 1897. Fifty years later,

in the year 1948, K.H.Steigerwald noticed that a huge heat was generated, when high speed

electrons impinged on a metallic target. During his work at the Suddeutsche Laboratory, he

realized that high intensity electron beams, generated during experiments with electron mi-

croscopy, could melt the anodes. Almost ten years later, during November 1957, Dr. J. A.

Stohr of the French Atomic Commission made public the first electron beam welding unit

made at Scaleys laboratories. It could weld Zircoloy reactor components very well. After

1960, more radical advances took place as non-vacuum welding technique was first achieved

by Heraeus. By the mid of 60s, a closed-circuit TV could also be used for viewing the weld-

ing process.

It is also said that by mid 1950s [2], completely independentand unrelated to the above

activities, Wyman of the Hanford Atomic Products Operationof the General Electric Com-

pany initiated work in this field too. Amongst others who contributed to the development of

electron beam welding were Briola, Adams and Olshansky. Olshansky’s work in 1958 ap-

peared to be the earliest Soviet reference.

During early 1960s, the field of work of electron beam weldingin France was mostly in

the area of welding of fuel elements for atomic industry, whereas in the United States, during

the same period, the research was carried out to weld heavy gauges of aluminum, stainless

steels and refractory metals [3]. In 1963 [4], an electron beam welding gun was developed,

which could weld in atmospheric conditions. The quality of weld, in atmospheric electron

beam welding, was at par with those welded in vacuum. The vacuum electron beam weld-

ing process had the greatest limitations regarding workingchamber size for welding of large

sized components. The other limitation was the working distance below the gun. Welding

of ship hulls, missile cases, pressure tanks, hydraulic tubing and cable sheathing were few

immediate potential applications of the newly developed process. In July of 1966, a new

breed of electron beam welding equipment called CV2 was developed by Sciaky Electric

Welding Machines ltd. [5] having two chambers. One was the Gun Chamber and the other

was the Work Chamber. The gun chamber was maintained at a lower pressure than the work
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chamber. Such soft vacuum machines are being built till date. Another way of tackling larger

component was a concept of mobile EBW gun [6]. A mobile gun wasdeveloped at Clover,

in France, in 1973. Hamilton Standard division [7] of the United Aircraft Corporation con-

structed an electron beam welding machine, which automatedthe pipeline joining process.

EBW was not only utilized in the industries but also effectively used in space exploration. A

battery powered 2 kW electron beam welder developed by Westinghouse Electric Company

[8] could be used for repairing job in space.

By 1974, digital computers were used in designing electron beam machines. This gave

an insight into the detailed working of a gun rather than the hit-and-miss methods of design-

ing. A computer aided designed 75 kW machine [9] could weld 200 mm thick steel and over

300 mm thick aluminum plates.

1.1.2 Electron Beam Welding and Soft Computing

In order to successfully weld with electron beam there are many parameters (machine and

material) which need to be properly controlled. A few of themare:

• level of vacuum in the gun and work chambers,

• current required to heat the emitter to eject sufficient quantity of electrons,

• accelerating voltage between the emitter and the hollow anode, which accelerates the

electrons towards the target,

• current in the focusing coil required to focus the electronson to the target,

• stand-off distance between the gun and the target,

• type of material to be welded,

• thickness of the materials,

• speed of welding.

Thus, it can be seen that a welder has to have enough expertisein order to successfully

weld. To select proper inputs of the above mentioned parameters either the welder has to

have a good intuition or a past experience of welding on that material. One step ahead, the

welder also may be interested to know different mechanical and metallurgical properties of

the welded material. Thus, there always exists, a relationship between the inputs to a process

and the desired outputs. This is known asforward mapping.
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For all research purposes, a proper understanding of these relationships help to math-

ematically model the process. This is possible, when we can precisely understand all the

physical phenomena involved in a particular process. Thesephysical phenomena are then

converted into differential equations which are then solved with boundary conditions. In case

of electron beam welding, there are so many variables involved that often it becomes highly

challenging to account for all the phenomena with correct boundary conditions. Here comes

the role of soft computing. In soft computing, we are not concerned about the intricacies of

the physical phenomena. Here, all these phenomena are kept confined, as if, they were in a

black box. Soft computing comprises of different tools which try to imitate the way human

learns. Though we try to prove our intelligence, by trying tobe precise by performing rig-

orous computations, our natural instincts are just the opposite. Over the centuries, man has

learned from

• experience,

• generalized learning rules,

• recognition of patterns,

• heuristics.

These learning methods may not give rise to very accurate results but we can always counter

accuracy with cost of evaluation.

Ever since its invention electron beam has been used mostly to weld highly reactive and

refractory materials. These materials have strategic applications and thus, detailed techniques

of welding with electron beam are mostly classified. A database needs to be generated, which

will comprise of different working parameters and materialproperties as inputs and mechan-

ical and metallurgical properties as outputs. To generate such a database, which contains the

end and mid values of all the parameters, the experiments have to be performed in accordance

with the philosophy of design of experiments. Central Composite Design (CCD) is one such

tool in design of experiments, which is generally utilized in such situations.

When two pieces are welded together, the mechanical strength and metallurgical prop-

erties are found to depend upon the weld-bead profile. Some ofthe weld-bead profile features,

which are the outputs of an experiment, are like Bead-Penetration (BP), Bead-Width (BW),

Bead-Height (BH) etc. To get a desired output, one has to optimize the inputs by selecting

a combination of values for various parameters within theirspecified ranges. It may be seen

that some of the inputs may be retrograde for an output. However, when there are more than

one outputs, one of the outputs may be retrograde to another.These are, then, treated as

constrained optimization problem and, may be, effectivelysolved using a Genetic Algorithm

(GA) with a Penalty approach. The optimized input parameters can be then utilized to predict
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outputs by different types of Artificial Neural Networks (ANNs) like Back-Propagation Neu-

ral Network (BPNN) or Genetic Algorithm tuned Neural Network (GANN). This isforward-

mapping. This type of input to output mapping is useful for modeling.However, for all

practical purposes and process automation, thereverse-mappingis more significant, where

one is interested to know the required set of input parameters to get the desired outputs.

The energy density in electron beam welding is very high. This helps to get deep pen-

etration welds. It is desirable in such cases to get the maximum penetration with minimum

lateral heat transfer. Since the weld area has to be minimized and at the same time, the weld

penetration has to be maximized, a constrained optimization tool is required.

Artificial Neural Network (ANN) is one of the soft computing tools, where the network

is trained to learn, as a human does, by examples. The examples or instances of learning may

not be always of the same type and often are too large in number. It will be quite humanly,

in such cases, to assimilate the like instances based on someconcepts of similarity. This is

calledclusteringand is an important concept ofdata-mining. Clusters formed are, generally,

either compact or distinct. But, there is always a need to have clusters, which are both com-

pact and distinct at a time. These clusters, as are often in greater than three dimensions, are

difficult to visualize. However, with the help of Self Organizing Maps (SOM) these higher

dimensional data may be visualized in lower dimension (in either 2D or 3D) to get a feel of

how compact and distinct the clusters are. In case of Radial Basis Function Neural Networks

(RBFNN), too, the number of hidden neurons is, at times, determined by the number of clus-

ters the data get divided into. The clusters, which are both distinct and compact will definitely

have an edge over the other clusters, which are either compact or distinct, when utilized in

the RBFNNs.

1.2 Literature Review

If two plates were to be welded together, it would be a welder’s delight to see those two got

joined in a single pass. Happier, still, he would have been, if the welded structure passed

through the mechanical tests. To make this happen, the welder definitely has to know the

inter-relationship of various machine parameters with thedepth of penetration of welds, width

of the weld crown, that is, the geometry of fusion zone of the weld. All these depend on the

peak temperature that is achieved and the way heat travels indifferent directions and simul-

taneously the way cooling takes place in the welded parts. A proper understanding of the

development of weld pool shape in EBW had always been a difficult task. Due to inherent

complexity of the process, direct experimental investigations are only a few, as they are ex-

pensive to carry out. Petrov et al. [10] filmed the formation of the shape and size of the weld

pool along with the keyhole, with a charged-coupled device camera, during an experimental
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investigation. They noticed, during such experiments, that with the increase in welding speed,

the pool width decreased.

Analytical Approaches
There have been many theoretical approaches to study the effect of various physical phenom-

ena on weld-pool shape. Modeling the formation and solidification of weld-pool had been

always a challenging task, as there are too many physical phenomena to be considered.

The first pioneering work in this direction was done by Rosenthal [11] during early

forties. The author, assumed the heat source to be a point of infinite intensity, which was

highly unrealistic. In the year1965, Hashimoto and Matsuda [12] propounded a formula,

which related the depth of penetration, beam parameters andmaterial characteristics. Here,

Hashimoto assumed the electron beam to have a square cross-section at a constant power

density. It was supposed that there was no interaction between the electron beam and metal

vapor in the capillary, and that the fused peripheral zone was at the melting temperature. It

was further considered that heat dissipation to the atmosphere was isotropic and that no heat

was transported by convection within the fused peripheral zone. Though the last considera-

tion was improper, nevertheless, the most difficult task in this model was to measure the focal

spot diameter.

Klemens [13] considered energy balance and energy loss mechanisms to predict the

penetration of the electron beam. He assumed that the penetration of the beam was mostly

governed by conduction heat transfer. The cross-section ofthe electron beam was supposed

to be sufficiently narrow with a very high energy content. Themodel predicted the bead pen-

etration in both static as well as moving states of the beam. During EBW, the shape of the

moving molten pool of metal is generally seen to be elliptical. Miyazaki and Giedt [14] not

only explained the reason why the pool was elliptical but also derived a relationship between

the weld power and weld penetration by assuming an elliptical heat source.

When Miyazaki and Giedt established the reasons for the weldpool to look elliptical,

from the top view along the line of travel, they had considered the heat source to be uni-

formly concentrated. Eager and Tsai [15] gave information regarding the shape of the weld

pool from the solution of a traveling distributed heat source. For this purpose, they assumed

the heat source to be Gaussian type and that it moved on a semi-infinite plate.

It was shown earlier by Swift-Hook and Gick [16], that deep fusion by an electron

beam was better represented as a line source. Vijayan and Rohatgi [17], also assumed the

heat source to be linear, and described the physical nature of transient fusion and deep pen-

etration by an electron beam in semi-infinite metal targets.They studied both the formation

of transient fusion zone and also the formation of transientkey-hole. In their model, they

had supposed that the melting started, at a point, beneath the surface of the workpiece and

then, the melt penetrated deeper into the workpiece. It was also supposed, in the model, that

the line-heat source not only penetrated deep into the workpiece but also spread across the
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surface due to conduction. Due to this, workpiece also melted laterally. The model developed

gave a good description of both transient as well as steady state fusion. The model helped to

distinguish between the melting point isothermal boundaryand fusion boundary of high ther-

mal conductors in general. The model further justified the spreading of fusion layer laterally

by thermal conduction, thereby, the weld-profiles were predicted.

A more realistic model was developed by Elmer et al. [18] Their model agreed with

the point source solution predicted by Rosenthal. Both the point-source and the distributed-

source models were based on the assumption that the heating effect was limited to the surface

of the workpiece. The authors compared the geometric shapesof the EB weld pools with

already established, distributed source, point source, and line source heat-conduction mod-

els. They showed that each model could represent certain EB welding regimes and that none

of them could represent the entire paradigm. The authors showed that the weld pool shape

depended on average energy absorbed per unit area on the surface of the work-piece and the

ratio of the beam power to beam area. For energy densities greater than the critical value, the

welds could be simulated both by point-source and line-source. This critical energy density

which separated the different heating modes was found to be material dependent. In case

of ASS 304, this was10 J.mm−2. Finally, the authors could develop an empirical relation-

ships between penetration depth and EB welding parameters for the distributed, point and

line source heating modes. In their model, the weld depth could be predicted, only if the weld

width was known. Since the weld width could not be knowna priori, they substituted that

with the focal spot diameter. The greatest problem associated with this model was that any

error in the measurement of the focal spot diameter of the electron beam, would have resulted

in an erroneous relationship between welding parameters and weld depth.

Koleva et al. [19] established a correlation between weld-depth, weld-width with op-

erating parameters like welding velocity, beam power and position of beam focus from the

sample surface. In their model the authors considered a steady state model involving a lin-

ear, uniformly distributed heat source, in a coordinate system, that moved with respect to the

sample coordinate system.

All the analytical models, discussed above, were based on the shape of the source, dis-

tribution of the energy of the source and the effect of the boundary conditions on the heat

transmission from the source. Couëdel et al. [20] studied the sensitivity of the thermal field

to the source size and the effects of boundary condition. Thetype of heat source consid-

ered in their study were both line source and Gaussian distributed type. In actual practice,

before welding of massive sized plates, generally, the working welding parameters are tried

out on smaller plates to check the full penetration. There, the width of weldment on narrow,

trial-plates are seen to widen due to the over-heating. The developed analytical heat transfer

model [20, 21], made it possible to estimate critical conditions of weld-bead widening. The

model was equally capable to predict both the full as well as partial penetration welds. The

2D analytical solutions used vibrated and non-vibrated Gaussian cylindrical or line models
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of heat source. However, this model did not consider latent heat, convection heat transfer and

other properties of the welded metal that were independent of temperature.

Ho [22] developed an analytical model to predict the fusion zone of an electron beam

weld with a Gaussian profile of the beam, whose focal point waslocated either above or below

the surface to be welded. The shape of the key hole cavity was assumed to be a paraboloid

of revolution. The coordinate system of the moving frame forthis model was assumed to

be parabolic. The effects of beam focusing characteristics, such as location of beam focus

relative to workpiece surface, spot size at the focus, and beam-convergence angle on fusion

zone were investigated. The predicted depths of fusion-zone varied with the position of fo-

cus location and focal spot size. The penetration increasedand reached maximum, when the

position was found to be slightly below the top surface of thework piece, and then decreased

with further descent. The penetration was found to increasewith low focal spot diameter.

The transverse sections of the fusion zones, as predicted bythe model, were conical with a

spherical cap on the top, for deep penetration, and were similar to a paraboloid of revolution

in case of shallow penetration.

Rai et al. [23] developed a 3D numerical model of heat transfer and fluid flow in a key-

hole mode of the EBW. The model took into account the variation of wall temperature with

depth and effect of Marangoni convection on keyhole walls. Convection was the dominant

mechanism of heat transfer in the weld pool and gradient of surface tension played an impor-

tant role in the fluid flow. The effect of Lorentz force was found to be insignificant compared

to that of Marangoni force in their model. The welding parameters, such as beam radius,

input power and welding speed were seen to have significant contributions on the weld pool

geometry.

There had been a few attempts [24, 25], where a correlation for joining materials under

different operating conditions, in case of laser welding, was tried out with some dimension-

less numbers. To establish this, Peclet(Pe) and Marangoni(Ma) numbers were utilized. It

was shown that for the materials with high Prandtl(Pr) number, bothPe andMa were high,

heat was transported primarily by convection, and the resulting weld pools were shallow and

wide. However, for a low Prandtl number, the resulting poolswere deep and narrow. These

type of work, however, have not been reported for EBW.

The developed models reported above have the following shortcomings:

1. All the analytical models discussed above are dependent on the physical characteristics

of the target materials to be welded. The correct values of different physical parameters

at elevated temperatures are difficult to measure.

2. In some of the models, the diameter of beam spot was also considered, whose measure-

ment requires a special attachment to be fitted to the experimental set-up.

8



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Soft Computing-based Approaches
It has been shown above that mathematical models can be utilized to solve problems using

differential equations depicting the actual physical phenomena. Since welding is a process

comprising of a number of complicated natural phenomena, all of which may not be fully

understood, it may not be always possible to develop an appropriate differential equation of

the said process. In such situations, models are made from the outcomes of experiments per-

formed as per some statistical designs and then analyzed by regression methods to predict the

required output. The regression equations can be either linear or non-linear. Yang and Chan-

del [26], and Yang et al. [27] performed both linear as well asnon-linear regression analysis

to model submerged arc welding process. Non-linear regression equations are generally used

to model welding phenomena but it was observed by Yang et al. [27] during modeling of

submerged arc welding process that linear regression equations were equally suitable. The

above statistical regression analysis yielded more or lesssatisfactory results, while predicting

the response from the process parameters. It is to be mentioned that the statistical methods

are mainly global in nature, that is, the usual practice is toestablish a single working relation-

ship between the inputs and an output for the entire domain ofinterest, as a result of which,

it might be possible to predict the results accurately at theanchor points only (that is, the

points used to carry out the regression analysis). However,there might be some significant

deviations in prediction at the intermediate points. To overcome this problem, Ganjigatti et al.

[28] developed a new methodology to model the input-output relationships by carrying out

regression analysis cluster-wise, which took care of the forecasting of intermediate points, as

well.

Welding is a very complicated phenomenon and its variables generally have highly

non-linear relationships with one another. Non-linearitypresent to this extent cannot be very

well-defined by a fixed order regression equation. To overcome this, some investigators tried

to model the input-output relationships using neural networks. Nagesh and Datta [29] used

a back-propagation neural network to predict the bead geometries of mild steel electrodes

deposited on cast iron plates. De et al. [30] used an ANN to predict the quality of welding

in pulsed current Gas Metal Arc Welding (GMAW) process. Kim et al. [31] showed that

neural network-based model could give better prediction ofthe bead-height than the empiri-

cally developed equations could do. In a similar fashion, itwas shown by Lee and Um [32]

that neural network could predict the bead-geometries better than the empirical relationships

developed by the regression analysis did. Ping et al. [33] modified the structure of a con-

ventional feed-forward multi-layer perceptron network with a single output instead of the

multi-outputs. This type of network was named as Self Adaptive Offset Network (SAON).

The authors proved that SAON could work better than the conventional networks.

Several attempts were also made by various researchers to optimize the weld-bead ge-

ometry. Tay and Butler [34] used a radial basis function to approximate non-linear dynamics

of the welding process stochastically, in order to optimizethe basic welding parameters.
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RBFNNs are generally trained using either back-propagation algorithm or genetic algorithm.

If the nature of error surface is unimodal, BPNN may outperform GANN, whereas for a com-

plicated and multi-modal error surface the latter may perform better than the former [35, 36].

Benyounis et al. [37] used Response Surface Methodology (RSM) to predict weld profile in

laser welded medium carbon steel. Central Composite Design(CCD) is one of the most im-

portant experimental designs used in process optimizationstudies. It is a design used in RSM

to build a second order quadratic model. Gunaraj and Murugan[38, 39] performed experi-

ments with submerged arc welding of stainless steel pipes based on CCD with four factors,

each of them set at its five levels to predict bead-geometry parameters.

Taguchi [40] developed a method of conducting experiments based on orthogonal ar-

ray, which gave a much reducedvariancefor the experiment with optimal setting of control

parameters. This method showed the amalgamation of design of experiments with optimiza-

tion of control parameters to obtain the best results. Orthogonal arrays provided with a set

of well balanced (minimum) experiments and signal-to-noise ratios served as the objective

functions for optimization. Taguchi method was utilized byTarng and Yang [41] to ana-

lyze the effect of each welding process parameter on the weld-bead geometry. Based on the

concept of signal-to-noise ratio and analysis of variance,the set of optimal welding process

parameters was obtained and verified. Tarng et al. [42] used aGrey relational analysis to in-

vestigate multiple performance characteristics in the Taguchi method for the optimization of

submerged arc welding process. It was shown in the study thatthe use of the above approach

greatly simplifies the optimization procedure for determining the optimal welding parameters

with multiple performance characteristics in the submerged arc welding process. Gunaraj

and Murugan [43] minimized weld volume for the submerged arcwelding process using an

optimization module that was available in Matlab.

Genetic Algorithm (GA), introduced by J. H. Holland [44], isa population-based search

and optimization tool. The GA works equally good in either continuous or discrete search

space. It is a heuristic technique inspired by the natural biological evolutionary process com-

prising of selection, crossover, mutation etc. Vasudevan et al. [45] used a GA to achieve the

target bead geometry in Tungsten Inert Gas (TIG) welding by optimizing the process param-

eters.

In a GA, when the search space is large and the objective functions are too complicated,

its computational time increases drastically and it is difficult to get solution in real-time. To

overcome this difficulty, Kumar and Debroy [46], and Mishra and Debroy [47] showed that

multiple sets of welding variables capable of producing thetarget weld geometry could be de-

termined in a realistic time frame by coupling a real-coded GA with a neural network model

for gas metal arc fillet welding.

As the welding process is inherently non-linear the regression equations can predict

effectively in a very narrow region of the variables. If the search space is large, the model

may lose its effectively. Kim et al. [48] used a GA and response surface methodology simul-
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taneously to find a set of welding process variables that could produce the desired weld-bead

geometry in Gas Metal Arc Welding (GMAW). As a GA was used for initial optimization,

the presence of some bad data in the search space, did not affect the model. The response

surface methodology used the near-optimal values as a reference point to obtain a model of

the welding process and determined optimal values of the process variables.

Correia et al. [49] adopted a similar approach, where a GA wasused as a tool to de-

cide near-optimal settings of a GMAW process. The search forthe near-optimal settings was

carried out step by step with the help of a GA by predicting thenext experiment based on the

previous, and without using the knowledge of the modeling equations between the inputs and

outputs of the GMAW process. The GA was able to locate near-optimal conditions, with a

relatively small number of experiments.

In a GA, equal number of search points are generated in every iteration. Thus, the com-

putational complexity remains till the GA converges. Kim etal. [50] developed an approach

similar to the GA, known as Controlled Random Search (CRS), which performed the search

based upon a set of initial search points but in the subsequent iteration, the search would nar-

row down to lesser number of search points.

Clustering
Here, we try to bring similar points together and group them accordingly. This process of

grouping like data points is known as clustering. It is one ofthe most important tools for data

mining. Thus, clustering of the data based on the principle of similarity makes a sense. Sim-

ilar data (decided using the concept of distances among them) are grouped into one cluster

and dissimilar data may belong to different clusters. The boundaries of the clusters may be

either rigidly defined or vaguely defined, and accordingly, the clusters are called hard clus-

ters or fuzzy clusters respectively. Amongst different types of clustering techniques, one of

the most popular one is Fuzzy C-Means (FCM) clustering algorithm. This was proposed

by by Dunn [51] and implemented by Bezdek [52]. It is one of themost popular fuzzy

clustering algorithms. It is an un-supervised way of data clustering, where noise (if any)

may also get clustered. To prevent this problem, a semi-supervised learning was preferred

instead of un-supervised learning. To tackle this, Zigkolis and Laskaris [53] developed a

conditionalFCM (CFCM) algorithm. In this algorithm, a dissimilarity measure (expressed

in terms of euclidean distance) was minimized for the data points in the pre-defined clusters.

There are, however, different instances, where euclidean distance was replaced by exponen-

tial function [54], weighted linear regression distance [55], weighted euclidean distance [56],

Mahalanobis distance [57]. It is seen that there had been many variants of the basic FCM

algorithm. Quadratic terms or entropy terms were added to the objective function of the basic

FCM to cater to specific needs. Ichihashi et al. [58] proposeda generalized FCMclustering

method, which generalized the basic objective function of FCM, so that by changing the co-

efficients of objective functions eitherquadratic function-based FCM orentropy term-based

FCM could be attained.
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The effect of dimension, however, could not be removed by allthese algorithms. An-

other distance-based approach was proposed by Zhang et al. [59], which could reduce the

effect of dimensions. Han et al. [60] utilized Bayesian likelihood fitness function in place

of euclidean distance. The algorithm was named as Modified Fuzzy C- Means (MFCM).

Application of MFCM resulted into viable solutions for various problems of nonlinear blind

channel equalization.

In spite of its wide popularity and applications, FCM algorithm has the following inher-

ent demerits:i) clustering results in FCM are un-satisfactory for uneven sample distribution,

ii) its solutions often get trapped into a local minima,iii) its solutions depend upon the initial

values of the FCM parameters selected. To overcome these limitations, a novel fuzzy clus-

tering algorithm based onChaos Optimization(FCCO) was proposed by Li et al. [61]. This

algorithm combines mutative scale chaos optimization strategy and gradient method. Wang

and Fei [62] had come up with an algorithm calledMultiscale FCM(MsFCM) to scan MR

images. Another problem with the FCM algorithm lies in the fact that it cannot handle data,

where the boundaries between the clusters were non-linear.Song et al. [63] proposed a Fuzzy

C-Means algorithm with aDivergence-based Kernel(FCMDK). The FCMDK worked based

on the FCM algorithm and divergence-based kernel method. Inthis method, data were trans-

formed from the input space of higher dimension to feature space of lower dimension before

applying the clustering techniques. This helped to solve complex non-linear problems.

In the field of image analysis also, FCM algorithm could classify most of the noise-free

real-images with an uncertain and complex data distribution. However, as FCM algorithm

does not incorporate spatial information, it fails to segment image corrupted by noise and

other imaging artifacts. Oh et al. [64] used a weight determined based on the entropy ob-

tained from the neighboring pixels in the FCM algorithm, andthe number of optimal cluster

was determined utilizing the intra-cluster distance in thecoded image based on the clustered

pixels for each color component. Kang et al. [65] developedAdaptive Weighted Averaging

FCM (FCM-AWA) algorithm to tackle this type of problem.

It is a known fact that the time of convergence of a fuzzy clustering algorithm is too

high, as the cluster centers are iteratively determined. Yao et al. [66] proposed a novel ap-

proach, where the algorithm automatically detected the number of clusters and their centers.

This algorithm was named asEntropy-Based Fuzzy Clustering(EFC).

Palanisamy and Selvan [67] developed an entropy-based fuzzy clustering method to

identify relevant subspaces in the functional workspace. Aheuristic method based on the

Silhouette criterion was used to find the number of clusters.Hence, the fuzzy entropy reflects

more information on the actual distribution of patterns in the subspaces.
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1.3 Gaps in the Literature

After reviewing the available literature, the following shortfalls are detected:

• There have been instances where different soft computing techniques have been uti-

lized to predict the bead-geometries. Some attempts have also been made to minimize

the weld-bead volume. However, in order to maximize weld strength, the penetration

should be maximized provided the microstructure of the weldand heat affected zone

remain the same. No such attempt has been reported, where this type of constrained

optimization problem has been solved.

• The shapes of weldment have been predicted using various analytical approaches. How-

ever, there have been only a few attempts for the same using the principle of soft com-

puting. Moreover, no study has been reported to predict complete bead profile of elec-

tron beam welding.

• Clustering techniques available in the literature make clusters of the data-set that are

either compact or distinct in nature. However, clusters areto be compact and distinct

too. No such clustering technique has been reported, which can fulfill both the require-

ments.

• Literature review shows various clustering techniques with the help of which the num-

ber of hidden neurons of a radial basis function neural network (RBFNN) can be de-

termined. It is to be noted that the performance of RBFNN may be dependent on the

number and nature of clusters made by the algorithm. Not muchstudy has been re-

ported in which optional clusters have been obtained along with other parameters of

the RBFNN to improve its performance.

1.4 Aims and Objective

After looking into the gaps in the available literature, theaims and objective of the present

thesis have been set as follows:

1. Optimization of Welding Parameters to Minimize Weldment Area but to Maxi-
mize Penetration: When two pieces are joined together, the process is said to besuc-

cessful if it can be done across their entire thickness. The efficiency of energy expended

in welding will be maximized, if the entire energy can be utilized to get full penetration
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with a minimal energy dissipating across. The resulting weld-profile should have max-

imum penetration but minimum width, resulting into a minimum weldment area. As

the shape of weld-profile in case of EBW is dagger-like, it is difficult to determine the

area of the weldment. As the weld-profile is a function of various welding parameters,

they need to be optimized keeping the above constraints in mind. To achieve such a

constrained optimization, the following steps have been identified:

Step 1: Bead-on-plate EB welding on the concerned material will be performed. Ex-

periments will have to be conducted according to a design of experiments, say Central

Composite Design (CCD) to study the effects of inputs on the outputs.

Step 2: As output of the experiment, the weld-profile geometries will be measured

along with its micro-hardness values. The weld-profile willbe assumed to be made up

of three3rd order curves. The end points of the curves will be visually identified and

their coordinates will be noted. Each of the responses (outputs) will be modeled as a

function of the input independently, using statistical regression analysis.

Step 3: The area of weld-profile will be determined after obtaining the coefficients of

the curves. The area under the curve can be minimized, while maximizing the penetra-

tion using a GA with aPenaltyapproach.

2. Bead-Profile Prediction: The outputs of the experiment, that is, the coordinates of the

end points of the fragmented curves can be utilized to train Neural Networks. The error

in prediction may be minimized using:

(a) back-propagation algorithm,

(b) genetic algorithms.

The trained networks may then be utilized to predict the bead-profiles for some test

cases.

3. Clustering of Input-Output Data: An attempt will be made to group a huge data set

of multi-dimensional information into some clusters, in such a way that the clusters

become both compact as well as distinct. Existing clustering techniques yield either

compact or distinct clusters. A clustering algorithm will be developed, which will give

both compact and distinct clusters.

4. Forward and Reverse Modeling using a Radial Basis Function Neural Network:
In forward modeling, outputs will be expressed as the functions of input variables;

whereas the reverse is attempted in reverse modeling. Both the forward as well as

reverse modelings will be carried out using RBFNNs to establish input-output relation-

ships of EBW process conducted on two different materials. The number of hidden

neurons will be decided based on the the number of clusters made on the data-set using

some clustering algorithms. Besides two conventional fuzzy clustering algorithms, one
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newly developed algorithm will be utilized to cluster the input-output data of the said

process.

1.5 Contributions Made by the Scholar

The scholar has made the following contributions in the present thesis:

• BOP welding experiments were carried out on ASS-304 plates and Al-1100 plates us-

ing a 24 kW Electron beam welder at Bhabha Atomic Research Center, Mumbai, India.

• A GA with a penalty approach was successfully implemented tosolve constrained op-

timization problem of minimizing the weldment area after keeping a maximum weld-

bead penetration.

• The dagger-like shapes of the weldment were successfully predicted for various weld-

ing parameters using BPNN and GANN.

• A modified clustering technique was established from two existing techniques of the

same, which could yield both compact as well as distinct clusters.

• Both forward and reverse modelings were successfully performed using RBFNNs for

ASS-304 and Al-1100 data.

1.6 Layout of the Thesis

This thesis contains eight chapters. The contents of Chapters 2 through8 are stated below in

brief.

• Chapter 2 : It introduces the tools and techniques used in the present thesis.

• Chapter 3 : It deals with a detailed description of the experimental set-up, the scheme

behind scheduling the experiment, the process of data collection.

• Chapter 4 : This chapter concentrates on the detailed statistical regressional analysis

on the collected data.

• Chapter 5 : This chapter focuses on the techniques used to optimize the bead parame-

ters and for prediction of weld-bead profiles.
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• Chapter 6 : It deals with clustering of input-output data-sets of the said welding pro-

cess.

• Chapter 7 : It concentrates on forward and reverse mappings of EBW process using

RBFNNs.

• Chapter 8 : Some concluding remarks are made in this chapter and the scope for future

work has been indicated.

1.7 Summary

This chapter starts with an introduction to electron beam welding process. A thorough litera-

ture review is then carried out. The shortfalls of the available literature have been identified.

The aims and objective of the present thesis have been stated, followed by the contributions

of the author and layout of the thesis.
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