Chapter 1

Introduction

This chapter starts with an introduction to Electron BeanldiMg (EBW) process and its

applications in various fields. A review of the availabletéture regarding EBW shows the
type and extent of work done earlier, and the unexploredsdeftithereafter. The chapter
then focuses on the application and utility of soft compgiiim modeling of EBW process.

After highlighting the aims and objectives of the preseisesrch work, the scholar claims
the contributions made by him in this study. The final sectbthis chapter lays down the

layout of the thesis.

1.1 Introduction to Electron Beam Welding

Electron beam welding is a fusion welding process. Here httea required to fuse metal
is obtained, when a concentrated beam of high velocity meststrikes the surfaces to be
joined. The kinetic energy of the electrons changes to takemergy, and thereby, the pieces
to be joined melt and finally join upon solidification.

Electron beams can produce high quality welds, free froneatsflike porosity and
contamination at very high speeds. The fusion zone and lilegted zone are extremely
narrow. The weld distortion problem, compared to other wgjghrocesses, is considerably
less, as the input energy is concentrated in a very narroe. 2dighly reactive materials like
titanium, zirconium, etc. may be welded, without any contetion by this process, as the
welding is performed at a very high degree of vacuum. Weldceneds as thin a.025 mm
to as thick ad00 mm steel can be easily welded in a single pass by this process.

The electron beam is usually generated from a triode systabhtomprises of a heated
filament (cathode), a bias cup and an anode. The electrdes,ba&ing generated, are sub-



jected to a huge potential difference called acceleratotgngial [1]. The accelerated elec-
trons are then focused by an electrostatic lens. The beamalsarbe made to oscillate in
a circular motion by means of an alternating current whosguency may be varied up to
20,000 Hz. Electron beam welding is influenced by a large rermolb parameters. This
include material to be welded, type of EBW device and diffiénsorking parameters. The
subsequent paragraphs discuss the history of EBW, EBWeteéuipments and information
related to the welding of ferrous, non-ferrous and dissinmhetals using electron beams.

1.1.1 A Brief History of Electron Beam Welding

Electron was discovered by J.J. Thompson in the year as aarh897. Fifty years later,
in the year 1948, K.H.Steigerwald noticed that a huge heatgeaerated, when high speed
electrons impinged on a metallic target. During his workhat Suddeutsche Laboratory, he
realized that high intensity electron beams, generatethglexperiments with electron mi-
croscopy, could melt the anodes. Almost ten years latemgiNovember 1957, Dr. J. A.
Stohr of the French Atomic Commission made public the firstibn beam welding unit
made at Scaleys laboratories. It could weld Zircoloy reactimponents very well. After
1960, more radical advances took place as non-vacuum wgelelthinique was first achieved
by Heraeus. By the mid of 60s, a closed-circuit TV could alsaubed for viewing the weld-
ing process.

It is also said that by mid 1950s [2], completely independert unrelated to the above
activities, Wyman of the Hanford Atomic Products Operatodrthe General Electric Com-
pany initiated work in this field too. Amongst others who adnited to the development of
electron beam welding were Briola, Adams and Olshanskyh&isky’s work in 1958 ap-
peared to be the earliest Soviet reference.

During early 1960s, the field of work of electron beam weldmgrance was mostly in
the area of welding of fuel elements for atomic industry, velas in the United States, during
the same period, the research was carried out to weld heagegaf aluminum, stainless
steels and refractory metals [3]. In 1963 [4], an electroanbevelding gun was developed,
which could weld in atmospheric conditions. The quality aley in atmospheric electron
beam welding, was at par with those welded in vacuum. Theuracelectron beam weld-
ing process had the greatest limitations regarding worklramber size for welding of large
sized components. The other limitation was the workingatiseé below the gun. Welding
of ship hulls, missile cases, pressure tanks, hydraulimguand cable sheathing were few
immediate potential applications of the newly developeacpss. In July of 1966, a new
breed of electron beam welding equipment called CV2 wasldped by Sciaky Electric
Welding Machines ltd. [5] having two chambers. One was the Gbhamber and the other
was the Work Chamber. The gun chamber was maintained at a pressure than the work



chamber. Such soft vacuum machines are being built till. ratether way of tackling larger

component was a concept of mobile EBW gun [6]. A mobile gun deasloped at Clover,

in France, in 1973. Hamilton Standard division [7] of the tgdiAircraft Corporation con-

structed an electron beam welding machine, which autonthtegipeline joining process.
EBW was not only utilized in the industries but also effeeljvused in space exploration. A
battery powered 2 kW electron beam welder developed by Wgsbuse Electric Company
[8] could be used for repairing job in space.

By 1974, digital computers were used in designing electeambmachines. This gave
an insight into the detailed working of a gun rather than tir@hd-miss methods of design-
ing. A computer aided designed 75 kW machine [9] could weld 20n thick steel and over
300 mm thick aluminum plates.

1.1.2 Electron Beam Welding and Soft Computing

In order to successfully weld with electron beam there areynpmrameters (machine and
material) which need to be properly controlled. A few of thare:

e level of vacuum in the gun and work chambers,
e current required to heat the emitter to eject sufficient ¢jtyaaf electrons,

e accelerating voltage between the emitter and the hollovd@anehich accelerates the
electrons towards the target,

e current in the focusing coil required to focus the electrongo the target,
e stand-off distance between the gun and the target,

¢ type of material to be welded,

o thickness of the materials,

e speed of welding.

Thus, it can be seen that a welder has to have enough expertsder to successfully
weld. To select proper inputs of the above mentioned paemseither the welder has to
have a good intuition or a past experience of welding on thetenal. One step ahead, the
welder also may be interested to know different mechanicdlraetallurgical properties of
the welded material. Thus, there always exists, a reldtiprisetween the inputs to a process
and the desired outputs. This is knowrfaswvard mapping



For all research purposes, a proper understanding of tieég@nships help to math-
ematically model the process. This is possible, when we cacigely understand all the
physical phenomena involved in a particular process. Tpégsical phenomena are then
converted into differential equations which are then sdbwéh boundary conditions. In case
of electron beam welding, there are so many variables ieebtlaat often it becomes highly
challenging to account for all the phenomena with correcinolary conditions. Here comes
the role of soft computing. In soft computing, we are not @ned about the intricacies of
the physical phenomena. Here, all these phenomena aredlpied, as if, they were in a
black box. Soft computing comprises of different tools whiry to imitate the way human
learns. Though we try to prove our intelligence, by tryindo®precise by performing rig-
orous computations, our natural instincts are just the sppoOver the centuries, man has
learned from

experience,

generalized learning rules,

recognition of patterns,

heuristics.

These learning methods may not give rise to very accuratdtsdsut we can always counter
accuracy with cost of evaluation.

Ever since its invention electron beam has been used mosilgit highly reactive and
refractory materials. These materials have strategid@ipins and thus, detailed techniques
of welding with electron beam are mostly classified. A dasalb@eeds to be generated, which
will comprise of different working parameters and matepiadperties as inputs and mechan-
ical and metallurgical properties as outputs. To generath a database, which contains the
end and mid values of all the parameters, the experimenistbde performed in accordance
with the philosophy of design of experiments. Central CosmgaDesign (CCD) is one such
tool in design of experiments, which is generally utilizadsuch situations.

When two pieces are welded together, the mechanical stramgkt metallurgical prop-
erties are found to depend upon the weld-bead profile. Sothe efeld-bead profile features,
which are the outputs of an experiment, are like Bead-Patietr (BP), Bead-Width (BW),
Bead-Height (BH) etc. To get a desired output, one has toropsi the inputs by selecting
a combination of values for various parameters within tepecified ranges. It may be seen
that some of the inputs may be retrograde for an output. Hewyexhen there are more than
one outputs, one of the outputs may be retrograde to anoffiese are, then, treated as
constrained optimization problem and, may be, effectigelyed using a Genetic Algorithm
(GA) with a Penalty approach. The optimized input paransatan be then utilized to predict
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outputs by different types of Artificial Neural Networks (A) like Back-Propagation Neu-
ral Network (BPNN) or Genetic Algorithm tuned Neural Netw@GANN). This isforward-
mapping This type of input to output mapping is useful for modelingowever, for all
practical purposes and process automationyelierse-mappings more significant, where
one is interested to know the required set of input paramébeget the desired outputs.

The energy density in electron beam welding is very highsTalps to get deep pen-
etration welds. It is desirable in such cases to get the maximpenetration with minimum
lateral heat transfer. Since the weld area has to be minthaird at the same time, the weld
penetration has to be maximized, a constrained optimizabiol is required.

Artificial Neural Network (ANN) is one of the soft computingdls, where the network
is trained to learn, as a human does, by examples. The exaplestances of learning may
not be always of the same type and often are too large in nunitbeill be quite humanly,
in such cases, to assimilate the like instances based oncmmeepts of similarity. This is
calledclusteringand is an important concept data-mining Clusters formed are, generally,
either compact or distinct. But, there is always a need te lchysters, which are both com-
pact and distinct at a time. These clusters, as are ofteremt@rthan three dimensions, are
difficult to visualize. However, with the help of Self Orgaimg Maps (SOM) these higher
dimensional data may be visualized in lower dimension (inexi2D or 3D) to get a feel of
how compact and distinct the clusters are. In case of RadisisB-unction Neural Networks
(RBFNN), too, the number of hidden neurons is, at times,rdeteed by the number of clus-
ters the data get divided into. The clusters, which are bistindt and compact will definitely
have an edge over the other clusters, which are either cdropastinct, when utilized in
the RBFNNSs.

1.2 Literature Review

If two plates were to be welded together, it would be a weld€light to see those two got
joined in a single pass. Happier, still, he would have bekthe welded structure passed
through the mechanical tests. To make this happen, the wa&fmitely has to know the

inter-relationship of various machine parameters withtdyath of penetration of welds, width
of the weld crown, that is, the geometry of fusion zone of tleddw All these depend on the
peak temperature that is achieved and the way heat travdifeérent directions and simul-

taneously the way cooling takes place in the welded partsrofpgy understanding of the
development of weld pool shape in EBW had always been a diftiask. Due to inherent

complexity of the process, direct experimental invesiayet are only a few, as they are ex-
pensive to carry out. Petrov et al. [10] filmed the formatidthe shape and size of the weld
pool along with the keyhole, with a charged-coupled devaraera, during an experimental



investigation. They noticed, during such experimentg,\ilih the increase in welding speed,
the pool width decreased.

Analytical Approaches

There have been many theoretical approaches to study #a effvarious physical phenom-
ena on weld-pool shape. Modeling the formation and sol@lific of weld-pool had been
always a challenging task, as there are too many physicalgphena to be considered.

The first pioneering work in this direction was done by Rokehf11] during early
forties. The author, assumed the heat source to be a poinfioité intensity, which was
highly unrealistic. In the year965, Hashimoto and Matsuda [12] propounded a formula,
which related the depth of penetration, beam parametersnaiterial characteristics. Here,
Hashimoto assumed the electron beam to have a square eqigsisat a constant power
density. It was supposed that there was no interaction lest\wee electron beam and metal
vapor in the capillary, and that the fused peripheral zong atdhe melting temperature. It
was further considered that heat dissipation to the atmeysphias isotropic and that no heat
was transported by convection within the fused periphevakz Though the last considera-
tion was improper, nevertheless, the most difficult taskis tnodel was to measure the focal
spot diameter.

Klemens [13] considered energy balance and energy lossaniths to predict the
penetration of the electron beam. He assumed that the péoatof the beam was mostly
governed by conduction heat transfer. The cross-sectitimeogélectron beam was supposed
to be sufficiently narrow with a very high energy content. Tinedel predicted the bead pen-
etration in both static as well as moving states of the beaoring EBW, the shape of the
moving molten pool of metal is generally seen to be elligtiddiyazaki and Giedt [14] not
only explained the reason why the pool was elliptical bub aerived a relationship between
the weld power and weld penetration by assuming an elligtieat source.

When Miyazaki and Giedt established the reasons for the p@idi to look elliptical,
from the top view along the line of travel, they had considettee heat source to be uni-
formly concentrated. Eager and Tsai [15] gave informategarding the shape of the weld
pool from the solution of a traveling distributed heat s@ur€or this purpose, they assumed
the heat source to be Gaussian type and that it moved on as&mte plate.

It was shown earlier by Swift-Hook and Gick [16], that deegifun by an electron
beam was better represented as a line source. Vijayan aratd®¢h7], also assumed the
heat source to be linear, and described the physical naturensient fusion and deep pen-
etration by an electron beam in semi-infinite metal targ€tsey studied both the formation
of transient fusion zone and also the formation of transkeythole. In their model, they
had supposed that the melting started, at a point, beneatsuttiace of the workpiece and
then, the melt penetrated deeper into the workpiece. It \gassaipposed, in the model, that
the line-heat source not only penetrated deep into the vierkgbut also spread across the



surface due to conduction. Due to this, workpiece also méditerally. The model developed
gave a good description of both transient as well as steadly &tsion. The model helped to
distinguish between the melting point isothermal bounday fusion boundary of high ther-
mal conductors in general. The model further justified threaping of fusion layer laterally
by thermal conduction, thereby, the weld-profiles were joted.

A more realistic model was developed by Elmer et al. [18] Thebdel agreed with
the point source solution predicted by Rosenthal. Both thetgsource and the distributed-
source models were based on the assumption that the heti¢icgeas limited to the surface
of the workpiece. The authors compared the geometric shafpiee EB weld pools with
already established, distributed source, point sourag lime source heat-conduction mod-
els. They showed that each model could represent certaindtdirg regimes and that none
of them could represent the entire paradigm. The authonseshthat the weld pool shape
depended on average energy absorbed per unit area on theesofthe work-piece and the
ratio of the beam power to beam area. For energy densitiasegrthan the critical value, the
welds could be simulated both by point-source and linegaurhis critical energy density
which separated the different heating modes was found to dterral dependent. In case
of ASS 304, this was0 J.mm=2. Finally, the authors could develop an empirical relation-
ships between penetration depth and EB welding parameiethd distributed, point and
line source heating modes. In their model, the weld depthddoeipredicted, only if the weld
width was known. Since the weld width could not be knoavpriori, they substituted that
with the focal spot diameter. The greatest problem asstiatth this model was that any
error in the measurement of the focal spot diameter of thetrele beam, would have resulted
in an erroneous relationship between welding parametetrsvald depth.

Koleva et al. [19] established a correlation between walpth, weld-width with op-
erating parameters like welding velocity, beam power angltipm of beam focus from the
sample surface. In their model the authors considered dysttate model involving a lin-
ear, uniformly distributed heat source, in a coordinatéesysthat moved with respect to the
sample coordinate system.

All the analytical models, discussed above, were basedestthpe of the source, dis-
tribution of the energy of the source and the effect of thenolawmy conditions on the heat
transmission from the source. Couédel et al. [20] studiedsensitivity of the thermal field
to the source size and the effects of boundary condition. type of heat source consid-
ered in their study were both line source and Gaussian ldisél type. In actual practice,
before welding of massive sized plates, generally, the ingrivelding parameters are tried
out on smaller plates to check the full penetration. Thédre width of weldment on narrow,
trial-plates are seen to widen due to the over-heating. Bleldped analytical heat transfer
model [20, 21], made it possible to estimate critical caodi of weld-bead widening. The
model was equally capable to predict both the full as wellasigd penetration welds. The
2D analytical solutions used vibrated and non-vibratedsS@m cylindrical or line models



of heat source. However, this model did not consider lateat,iconvection heat transfer and
other properties of the welded metal that were independdetaperature.

Ho [22] developed an analytical model to predict the fusionezof an electron beam
weld with a Gaussian profile of the beam, whose focal pointla@eted either above or below
the surface to be welded. The shape of the key hole cavity sssm@ed to be a paraboloid
of revolution. The coordinate system of the moving frametfos model was assumed to
be parabolic. The effects of beam focusing characterjstiesh as location of beam focus
relative to workpiece surface, spot size at the focus, aathbeonvergence angle on fusion
zone were investigated. The predicted depths of fusiomzanied with the position of fo-
cus location and focal spot size. The penetration increasddeached maximum, when the
position was found to be slightly below the top surface oftloek piece, and then decreased
with further descent. The penetration was found to increatie low focal spot diameter.
The transverse sections of the fusion zones, as predictéoetiymodel, were conical with a
spherical cap on the top, for deep penetration, and werdssitoia paraboloid of revolution
in case of shallow penetration.

Rai et al. [23] developed a 3D numerical model of heat traregfe fluid flow in a key-
hole mode of the EBW. The model took into account the vamatibwall temperature with
depth and effect of Marangoni convection on keyhole walleny@ction was the dominant
mechanism of heat transfer in the weld pool and gradientidase tension played an impor-
tant role in the fluid flow. The effect of Lorentz force was fouo be insignificant compared
to that of Marangoni force in their model. The welding partéeng such as beam radius,
input power and welding speed were seen to have significamtilbations on the weld pool
geometry.

There had been a few attempts [24, 25], where a correlatignifuing materials under
different operating conditions, in case of laser weldingswried out with some dimension-
less numbers. To establish this, Pe¢lee) and Marangon{}a) numbers were utilized. It
was shown that for the materials with high Prari@tt) number, bothPe and M a were high,
heat was transported primarily by convection, and the tiegveld pools were shallow and
wide. However, for a low Prandtl number, the resulting pawtse deep and narrow. These
type of work, however, have not been reported for EBW.

The developed models reported above have the followingsthmings:

1. All the analytical models discussed above are dependatethisophysical characteristics
of the target materials to be welded. The correct valuesffdrdnt physical parameters
at elevated temperatures are difficult to measure.

2. In some of the models, the diameter of beam spot was alsidsyed, whose measure-
ment requires a special attachment to be fitted to the expatahset-up.



Soft Computing-based Approaches

It has been shown above that mathematical models can beedtio solve problems using
differential equations depicting the actual physical giveana. Since welding is a process
comprising of a number of complicated natural phenomenafathich may not be fully
understood, it may not be always possible to develop an pppte differential equation of
the said process. In such situations, models are made fremutitcomes of experiments per-
formed as per some statistical designs and then analyzesyjbgssion methods to predict the
required output. The regression equations can be eithearlior non-linear. Yang and Chan-
del [26], and Yang et al. [27] performed both linear as welhas-linear regression analysis
to model submerged arc welding process. Non-linear reigresgjuations are generally used
to model welding phenomena but it was observed by Yang et2al] during modeling of
submerged arc welding process that linear regressioniegeatvere equally suitable. The
above statistical regression analysis yielded more oslagsfactory results, while predicting
the response from the process parameters. It is to be medtibat the statistical methods
are mainly global in nature, that is, the usual practice establish a single working relation-
ship between the inputs and an output for the entire domaimefest, as a result of which,
it might be possible to predict the results accurately atathehor points only (that is, the
points used to carry out the regression analysis). Howévere might be some significant
deviations in prediction at the intermediate points. Torowme this problem, Ganjigatti et al.
[28] developed a new methodology to model the input-outplationships by carrying out
regression analysis cluster-wise, which took care of thecfasting of intermediate points, as
well.

Welding is a very complicated phenomenon and its variabéeeglly have highly
non-linear relationships with one another. Non-linegpitgsent to this extent cannot be very
well-defined by a fixed order regression equation. To oveecthis, some investigators tried
to model the input-output relationships using neural nektaoNagesh and Datta [29] used
a back-propagation neural network to predict the bead gemaef mild steel electrodes
deposited on cast iron plates. De et al. [30] used an ANN tdigréhe quality of welding
in pulsed current Gas Metal Arc Welding (GMAW) process. Kitmae [31] showed that
neural network-based model could give better predictiotmefoead-height than the empiri-
cally developed equations could do. In a similar fashiomas shown by Lee and Um [32]
that neural network could predict the bead-geometriegbttan the empirical relationships
developed by the regression analysis did. Ping et al. [33]ified the structure of a con-
ventional feed-forward multi-layer perceptron networkiwa single output instead of the
multi-outputs. This type of network was named as Self Adep@ffset Network (SAON).
The authors proved that SAON could work better than the autiveal networks.

Several attempts were also made by various researchersintzgpthe weld-bead ge-
ometry. Tay and Butler [34] used a radial basis function gorapimate non-linear dynamics
of the welding process stochastically, in order to optintize basic welding parameters.



RBFNNSs are generally trained using either back-propagatigorithm or genetic algorithm.
If the nature of error surface is unimodal, BPNN may outpenfGANN, whereas for a com-
plicated and multi-modal error surface the latter may penfbetter than the former [35, 36].
Benyounis et al. [37] used Response Surface MethodologiR& predict weld profile in
laser welded medium carbon steel. Central Composite D€SIGD) is one of the most im-
portant experimental designs used in process optimizatiates. It is a design used in RSM
to build a second order quadratic model. Gunaraj and Mur{@@&n39] performed experi-
ments with submerged arc welding of stainless steel pipssdan CCD with four factors,
each of them set at its five levels to predict bead-geometanpeters.

Taguchi [40] developed a method of conducting experimeaset on orthogonal ar-
ray, which gave a much reducegdriancefor the experiment with optimal setting of control
parameters. This method showed the amalgamation of dekaxperiments with optimiza-
tion of control parameters to obtain the best results. @dhal arrays provided with a set
of well balanced (minimum) experiments and signal-to-aaetios served as the objective
functions for optimization. Taguchi method was utilized Tgrng and Yang [41] to ana-
lyze the effect of each welding process parameter on the-bedd geometry. Based on the
concept of signal-to-noise ratio and analysis of variatioe set of optimal welding process
parameters was obtained and verified. Tarng et al. [42] us&ewrelational analysis to in-
vestigate multiple performance characteristics in theu€agmethod for the optimization of
submerged arc welding process. It was shown in the studyrbatse of the above approach
greatly simplifies the optimization procedure for deternmgthe optimal welding parameters
with multiple performance characteristics in the submeérgec welding process. Gunaraj
and Murugan [43] minimized weld volume for the submergedvestding process using an
optimization module that was available in Matlab.

Genetic Algorithm (GA), introduced by J. H. Holland [44] apopulation-based search
and optimization tool. The GA works equally good in eithentouous or discrete search
space. Itis a heuristic technique inspired by the natudbbical evolutionary process com-
prising of selection, crossover, mutation etc. Vasudevah. ¢45] used a GA to achieve the
target bead geometry in Tungsten Inert Gas (TIG) weldinggdiinozing the process param-
eters.

In a GA, when the search space is large and the objectiveifunscire too complicated,
its computational time increases drastically and it is clitfi to get solution in real-time. To
overcome this difficulty, Kumar and Debroy [46], and MishraléDebroy [47] showed that
multiple sets of welding variables capable of producingé#nget weld geometry could be de-
termined in a realistic time frame by coupling a real-cod&dwdth a neural network model
for gas metal arc fillet welding.

As the welding process is inherently non-linear the regoasequations can predict
effectively in a very narrow region of the variables. If treasch space is large, the model
may lose its effectively. Kim et al. [48] used a GA and resgosisrface methodology simul-
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taneously to find a set of welding process variables thaidcordduce the desired weld-bead
geometry in Gas Metal Arc Welding (GMAW). As a GA was used fatial optimization,
the presence of some bad data in the search space, did nutthfemodel. The response
surface methodology used the near-optimal values as &nefepoint to obtain a model of
the welding process and determined optimal values of theggovariables.

Correia et al. [49] adopted a similar approach, where a GAwgasl as a tool to de-
cide near-optimal settings of a GMAW process. The searcthfonear-optimal settings was
carried out step by step with the help of a GA by predictingrteet experiment based on the
previous, and without using the knowledge of the modelingagigns between the inputs and
outputs of the GMAW process. The GA was able to locate netirap conditions, with a
relatively small number of experiments.

In a GA, equal number of search points are generated in etgation. Thus, the com-
putational complexity remains till the GA converges. Kimakt[50] developed an approach
similar to the GA, known as Controlled Random Search (CR8)¢cwvperformed the search
based upon a set of initial search points but in the subsedeestion, the search would nar-
row down to lesser number of search points.

Clustering

Here, we try to bring similar points together and group thexwoadingly. This process of
grouping like data points is known as clustering. It is onghefmost important tools for data
mining. Thus, clustering of the data based on the princip®milarity makes a sense. Sim-
ilar data (decided using the concept of distances among)taesgrouped into one cluster
and dissimilar data may belong to different clusters. Thendlaries of the clusters may be
either rigidly defined or vaguely defined, and accordindtg tlusters are called hard clus-
ters or fuzzy clusters respectively. Amongst differentetypf clustering techniques, one of
the most popular one is Fuzzy C-Means (FCM) clustering élgor This was proposed
by by Dunn [51] and implemented by Bezdek [52]. It is one of thest popular fuzzy
clustering algorithms. It is an un-supervised way of datsstering, where noise (if any)
may also get clustered. To prevent this problem, a semirgigeel learning was preferred
instead of un-supervised learning. To tackle this, Zigkalnd Laskaris [53] developed a
conditionalFCM (CFCM) algorithm. In this algorithm, a dissimilarity measuexpressed
in terms of euclidean distance) was minimized for the datatpdn the pre-defined clusters.
There are, however, different instances, where euclidesarnte was replaced by exponen-
tial function [54], weighted linear regression distancg][5veighted euclidean distance [56],
Mahalanobis distance [57]. It is seen that there had beery wemmants of the basic FCM
algorithm. Quadratic terms or entropy terms were addedgobijective function of the basic
FCM to cater to specific needs. Ichihashi et al. [58] propasgeneralized FCMlustering
method, which generalized the basic objective function@#: so that by changing the co-
efficients of objective functions eithguadratic functioAdbased FCM oentropy termbased
FCM could be attained.
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The effect of dimension, however, could not be removed byhake algorithms. An-
other distance-based approach was proposed by Zhang &94J.which could reduce the
effect of dimensions. Han et al. [60] utilized Bayesian litkeod fitness function in place
of euclidean distance. The algorithm was named as ModifiexyrC- Means (MFCM).
Application of MFCM resulted into viable solutions for vaus problems of nonlinear blind
channel equalization.

In spite of its wide popularity and applications, FCM alglonn has the following inher-
ent demeritsi) clustering results in FCM are un-satisfactory for unevena distribution,
i) its solutions often get trapped into a local minim@, its solutions depend upon the initial
values of the FCM parameters selected. To overcome thegatlons, a novel fuzzy clus-
tering algorithm based oGhaos OptimizatiofFCCO) was proposed by Li et al. [61]. This
algorithm combines mutative scale chaos optimizatiortesgsaand gradient method. Wang
and Fei [62] had come up with an algorithm callddltiscale FCM(MsFCM) to scan MR
images. Another problem with the FCM algorithm lies in thetfénat it cannot handle data,
where the boundaries between the clusters were non-lieag et al. [63] proposed a Fuzzy
C-Means algorithm with ®ivergence-based Kern@CMDK). The FCMDK worked based
on the FCM algorithm and divergence-based kernel methathisrmethod, data were trans-
formed from the input space of higher dimension to featuexzsmwf lower dimension before
applying the clustering techniques. This helped to solveglex non-linear problems.

In the field of image analysis also, FCM algorithm could dlgswost of the noise-free
real-images with an uncertain and complex data distributidowever, as FCM algorithm
does not incorporate spatial information, it fails to segtrimage corrupted by noise and
other imaging artifacts. Oh et al. [64] used a weight deteadibased on the entropy ob-
tained from the neighboring pixels in the FCM algorithm, &nel number of optimal cluster
was determined utilizing the intra-cluster distance indbded image based on the clustered
pixels for each color component. Kang et al. [65] developddptive Weighted Averaging
FCM (FCM-AWA) algorithm to tackle this type of problem.

It is a known fact that the time of convergence of a fuzzy duasg algorithm is too
high, as the cluster centers are iteratively determinea. eteal. [66] proposed a novel ap-
proach, where the algorithm automatically detected thebmirof clusters and their centers.
This algorithm was named &ntropy-Based Fuzzy ClusteriggFC).

Palanisamy and Selvan [67] developed an entropy-based ftlmgtering method to
identify relevant subspaces in the functional workspacehedristic method based on the
Silhouette criterion was used to find the number of clustdesice, the fuzzy entropy reflects
more information on the actual distribution of patternshie subspaces.
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1.3 Gaps inthe Literature

After reviewing the available literature, the followingastfalls are detected:

e There have been instances where different soft computcignigues have been uti-
lized to predict the bead-geometries. Some attempts hasebakn made to minimize
the weld-bead volume. However, in order to maximize weldrgith, the penetration
should be maximized provided the microstructure of the veeld heat affected zone
remain the same. No such attempt has been reported, whsrytlei of constrained
optimization problem has been solved.

e The shapes of weldment have been predicted using varioldiaabapproaches. How-
ever, there have been only a few attempts for the same usenithciple of soft com-
puting. Moreover, no study has been reported to predict éetmpead profile of elec-
tron beam welding.

¢ Clustering techniques available in the literature makstels of the data-set that are
either compact or distinct in nature. However, clusterstaige compact and distinct
too. No such clustering technique has been reported, whicliufill both the require-
ments.

e Literature review shows various clustering techniques wie help of which the num-
ber of hidden neurons of a radial basis function neural n&¢WRBFNN) can be de-
termined. It is to be noted that the performance of RBFNN magépendent on the
number and nature of clusters made by the algorithm. Not nstthy has been re-
ported in which optional clusters have been obtained alomly ether parameters of
the RBFNN to improve its performance.

1.4 Aims and Objective

After looking into the gaps in the available literature, #isns and objective of the present
thesis have been set as follows:

1. Optimization of Welding Parameters to Minimize Weldment Area but to Maxi-
mize Penetration: When two pieces are joined together, the process is said$ade
cessful if it can be done across their entire thickness. Tioeency of energy expended
in welding will be maximized, if the entire energy can beingét to get full penetration
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with a minimal energy dissipating across. The resultingdw@bfile should have max-
imum penetration but minimum width, resulting into a minimuveldment area. As
the shape of weld-profile in case of EBW is dagger-like, itifBailt to determine the
area of the weldment. As the weld-profile is a function of @as welding parameters,
they need to be optimized keeping the above constraints ma.mlo achieve such a
constrained optimization, the following steps have beentified:

Step 1: Bead-on-plate EB welding on the concerned material will eégymed. Ex-
periments will have to be conducted according to a desigxpé@ments, say Central
Composite Design (CCD) to study the effects of inputs on thputs.

Step 2: As output of the experiment, the weld-profile geometried td measured
along with its micro-hardness values. The weld-profile dlassumed to be made up
of three3™ order curves. The end points of the curves will be visualgniified and
their coordinates will be noted. Each of the responses (sixpvill be modeled as a
function of the input independently, using statisticalresgion analysis.

Step 3: The area of weld-profile will be determined after obtainihg toefficients of
the curves. The area under the curve can be minimized, wlalemizing the penetra-
tion using a GA with éPenaltyapproach.

. Bead-Profile Prediction: The outputs of the experiment, that is, the coordinateseof th
end points of the fragmented curves can be utilized to traarhl Networks. The error
in prediction may be minimized using:

(a) back-propagation algorithm,

(b) genetic algorithms.

The trained networks may then be utilized to predict the hwadiles for some test
cases.

. Clustering of Input-Output Data: An attempt will be made to group a huge data set
of multi-dimensional information into some clusters, ircBwa way that the clusters
become both compact as well as distinct. Existing clusget@chniques yield either
compact or distinct clusters. A clustering algorithm wil Beveloped, which will give
both compact and distinct clusters.

. Forward and Reverse Modeling using a Radial Basis Function Bural Network:

In forward modeling, outputs will be expressed as the fumdiof input variables;

whereas the reverse is attempted in reverse modeling. Betliotward as well as

reverse modelings will be carried out using RBFNNSs to eghlhput-output relation-

ships of EBW process conducted on two different materialse iumber of hidden

neurons will be decided based on the the number of clustede mrathe data-set using
some clustering algorithms. Besides two conventionalfuwhzstering algorithms, one
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newly developed algorithm will be utilized to cluster th@ut-output data of the said
process.

1.5 Contributions Made by the Scholar

The scholar has made the following contributions in the gmeghesis:

e BOP welding experiments were carried out on ASS-304 platdsfd-1100 plates us-
ing a 24 kW Electron beam welder at Bhabha Atomic ResearckeGéviumbai, India.

¢ A GA with a penalty approach was successfully implementesbtee constrained op-
timization problem of minimizing the weldment area afteemg a maximum weld-
bead penetration.

e The dagger-like shapes of the weldment were successfidjigied for various weld-
ing parameters using BPNN and GANN.

¢ A modified clustering technique was established from twetexy techniques of the
same, which could yield both compact as well as distincttehgs

e Both forward and reverse modelings were successfully pedd using RBFNNSs for
ASS-304 and Al-1100 data.

1.6 Layout of the Thesis

This thesis contains eight chapters. The contents of Creptaroughs are stated below in
brief.

Chapter 2 : It introduces the tools and techniques used in the presesisth

Chapter 3 : It deals with a detailed description of the experimentaigetthe scheme
behind scheduling the experiment, the process of datactiolie

Chapter 4 : This chapter concentrates on the detailed statisticaéssgynal analysis
on the collected data.

Chapter 5 : This chapter focuses on the techniques used to optimize=i liarame-
ters and for prediction of weld-bead profiles.
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e Chapter 6 : It deals with clustering of input-output data-sets of thiel seelding pro-
cess.

e Chapter 7 : It concentrates on forward and reverse mappings of EBW geoaeing
RBFNNSs.

e Chapter 8 : Some concluding remarks are made in this chapter and the $oofuture
work has been indicated.

1.7 Summary

This chapter starts with an introduction to electron bearainvg process. A thorough litera-
ture review is then carried out. The shortfalls of the alddditerature have been identified.
The aims and objective of the present thesis have been staliedved by the contributions

of the author and layout of the thesis.
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