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Abstract 
 

The work presented in this dissertation describes the vibration, buckling and dynamic 

instability behaviour of stiffened shell panels (isotropic and laminated composite) 

with/without cutouts under uniform and various non-uniform in-plane edge loadings.  

 

The eight-noded isoparametric degenerated shell element and a compatible three-noded 

curved beam element are used to model the shell panels and the stiffeners respectively. 

As the usual formulation of degenerated beam element is found to overestimate the 

torsional rigidity, an attempt has been made to reformulate it in an efficient manner. 

Moreover the new formulation for the beam element requires five degrees of freedom per 

node as that of shell element. In the present investigation the analysis for free vibration, 

buckling(static stability) and dynamic stability of the isotropic and laminated composite 

stiffened shell panels with and/or without cutout are implemented by a computer program 

written in Fortran-90. The elastic stiffness, mass and geometric stiffness matrices of the 

elements are derived with the help of suitable interpolation functions (shape functions) 

within the element and integrating various expressions over the element volume by Gauss 

quadrature numerical technique. As the stress field is non-uniform, due to arbitrary nature 

of applied in-plane load, boundary conditions, stiffeners, and cutout in the structure, pre-

buckling stress analysis is carried out using finite element method to determine the 

stresses. These stresses at the Gauss points are used to formulate the geometric stiffness 

matrix. The elastic stiffness, mass and geometric stiffness matrices are computed for all 

the shell elements and stiffener elements of the entire structure. The elemental matrices 

are assembled together to form the corresponding global matrices. The skyline storage 

algorithm is used to keep big size matrices in single array. 

 

Qualitative results are presented to show the effects of geometry of shell panels, aspect 

ratio, lamination scheme, stiffening scheme, static and dynamic load factors, non-uniform 

loading type, load band width, ply stacking scheme in the stiffener and boundary 

condition on the stability boundary. The effects of cutout on vibration, buckling and 
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                                                                                                                      Abstract ii 

instability regions are also presented. All the parameters are seen to have significant 

effects on the stability behaviour of the isotropic and laminated composite stiffened shell 

panels.  

 

Thesis organization: The entire thesis is organized into Six chapters. 

 

Chapter-1 includes the general introduction and importance of the present studies. The 

general method of solving static and dynamic stability of stiffened composite/isotropic 

shell panels with and without cutout has been briefly addressed in this chapter. 

 

The review of related literature conforming to the scope of the study has been presented 

in Chapter-2. The various work done previously relating to stiffened plate and shells are 

briefly described in this chapter. The objective and scope of the present investigations are 

also presented here. 

 

Chapter-3 presents the finite element formulation, the governing equations and the 

method of solution of the problem under consideration. The analysis is focused mainly on 

the determination of the primary instability region, which is important in practical use. 

 

The brief descriptions of the problems taken for the analysis are presented in Chapter-4. 

The description about the geometry of the stiffened panels, loading type, boundary 

conditions and material properties are also included in this chapter. 

 

The detailed results and discussion on vibration, static stability (buckling) and dynamic 

stability characteristics of the isotropic and laminated composite stiffened shell panels 

with and without cutout subjected to uniform and non-uniform in-plane loading along the 

edges are presented in Chapter-5. The results are compared with the experimental and 

analytical values wherever possible and the discrepancies, if any, have been discussed. A 

good number of new problems are solved and the results are discussed to study the effects 
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Abstract iii

of various parameters on buckling, vibration and dynamic stability characteristics of 

isotropic and laminated composite stiffened shell panels with and without cutouts.   

 

The important conclusions drawn from the theoretical findings in the present 

investigation are listed in Chapter-6. The possible scope of extension of the present study 

has been appended to the concluding remarks. A list of references cited in the text is 

given after the end of this chapter. The details about the solution techniques and 

description of the computer program are enclosed in the Appendix. 

 

Key words: Dynamic stability, vibration, buckling, finite element method, laminate 

composite stiffened shells, degenerated shell element, curved beam element, non-uniform 

in-pane loading and cutouts.    
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Chapter-1 

Introduction 
 

The uses of shell panels are common in many activities of aerospace, mechanical, civil 

and marine engineering structures. These structures experience in-plane forces in many 

situations. The presence of such loads significantly affects the free vibration 

characteristics of the structures. The buckling phenomenon may be considered as a 

particular case of free vibration problem with in-plane load, where as the load approaches 

towards its critical value of buckling, the frequency of vibration tends to zero. When the 

in-plane load becomes harmonic, it may lead to the condition of parametric resonance. It 

is found that certain combinations of the frequency of pulsating in-plane force and the 

natural frequencies of transverse vibration produce dynamic instability where the 

amplitude of the transverse vibration increases without bound. This phenomenon is 

entirely different from the usual resonance of forced vibration. In forced vibration when 

the frequency of the transverse forcing system matches with the natural frequency of the 

structure, resonance occurs. Thus the resonance phenomenon in forced vibration problem 

is relatively simple since the structure loses stability at constant frequencies of the 

transverse loads. On the other hand the instability in case of parametric resonance occurs 

over a range of frequencies of the in-plane force rather than a single value. Again 

parametric resonance of a structure may occur at load level much less than the static 

buckling load while the static instability of the structure sets in at the static buckling load 

values. Thus a structural component designed to withstand static buckling load may easily 

fail in an environment having periodic in-plane loading. So a designer ought to consider 

the parametric resonance aspect while dealing a structure subjected to dynamic loading 

atmosphere. 

 

The use of composite material is steadily increasing in the present days due to its high 

strength/stiffness-to-weight ratio and these can be tailored through the variation of fiber 

orientation and stacking sequence to obtain an efficient design.  In addition to that, the 

specific strength/stiffness of a panel can be enhanced by the use of a suitable stiffened 
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                                       Introduction 2 

structural form. These benefits have been exploited in the study of stiffened composite 

shell panel structure considered in the present investigation.  

 

In lightweight metal construction such as aircraft, it has been observed that the in-plane 

loads are of considerable magnitude. These types of structures when stiffened can safely 

carry the loads even if the skin buckles. With more use of such structures buckling and 

dynamic instability analysis have gathered more importance. Moreover the in-plane loads 

are non-uniform in nature in many cases. Even if the applied stresses are uniform the 

stress distribution inside the panels becomes non-uniform due to the presence of stiffeners 

and different boundary conditions. The development of non-uniform patch loading can be 

understood from the discussion presented in the book by Bruhn [19].  Cases of practical 

interest arise when the in-plane stresses are caused by patch, triangular, point or any 

arbitrary forces acting along the boundary. Again the geometrical discontinuities like 

cutouts are inevitable in the aerospace, civil, mechanical and marine structures. In 

aerospace structures cutouts are commonly found as access ports for mechanical and 

electrical systems, or simply to reduce weight. Cutouts are sometimes provided for 

ventilation and to alter the resonant frequency of the structures. In addition, the designers 

often need to incorporate cutouts or openings to serve as doors and windows. In all these 

situations where the stress field is non-uniform, which may be either due to the non-

uniform or discrete edge load, or due to the presence of different stiffening systems and 

boundary conditions, or due to the presence of discontinuities in the stiffened panels, the 

analysis for vibration, buckling and dynamic instability becomes quite complex. In such 

cases not only the stress field is non-uniform, the nature of the stresses may also be 

different in different regions.  It is quite cumbersome and tedious to work out any closed 

form solutions to the aforesaid problems, though not impossible. Under these 

circumstances, one has to resort to some numerical techniques for the solution of these 

problems.  

 

With the emergence of the digital computers, with their enormous computing speed and 

core memory capacity, the outlook of the structural analysts is being changed and helped 
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Introduction 3

in the evolution of various numerical methods such as the finite element, boundary 

element, finite strip, method of multiple scales.  For treating arbitrary loading and 

boundary conditions, the finite element is known to be one of the suitable numerical 

methods because of its versatility. These numerical tools allow the researchers to model 

the structure in a more realistic manner with simpler mathematical forms. 

 

The method of solution of dynamic stability class of problems discussed above involves 

first reducing the equations of motion to a system of Mathieu-Hill equations having 

periodic coefficients and the parametric resonance characteristics are studied from the 

solution of equations. Analytical solutions are available only for certain geometry, 

loading and boundary conditions. In general structural problem, the governing Mathieu-

Hill equations lead to an infinite set of equations with unknown coefficients, which need 

to be truncated finite for finite degrees of freedom. The solution of dynamic stability of 

structures involves the determination of the eigenvalues corresponding to the instability 

regions by analytical methods or by numerical approach. 

 

In order to model a shell panel without any significant approximation related to the 

representation of arbitrary shell geometry, structural deformation and other associated 

aspects, the isoparametric 3D degenerated shell element [1,160,119] having eight nodes is 

used. Though the concept of 3D degenerated shell element was initially proposed for 

isotropic shell [1] but it has been subsequently extended to the fiber reinforced laminated 

panels [106]. The present formulation differs from Panda and Natarajan [106] in the 

treatment of mapping in the thickness direction. Panda and Natarajan [106] have mapped 

the individual layers whereas the entire laminate is mapped in the present formulation. 

For the stiffeners, a compatible three-noded isoparametric curved beam element is used. 

The beam element is always placed along the edge of shell elements and this is 

intentionally not placed within the shell element in order to avoid the problem of stress 

jump within the shell element.  
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                                       Introduction 4 

The basic concept underlying in the formulation of degenerated shell element [1]  has 

been extended to derive beam/stiffener elements having any arbitrary curve geometry 

suitable for use in two or three-dimensional problems [35,13]. Again the formulation for 

isotropic beam [35,13] has been upgraded for laminated beam by Liao and Reddy [71] 

where the stiffener layers are stacked parallel to those of the shell (parallel stacking 

scheme). Unfortunately the 3D degenerated beam element based on the above 

formulation [35,13,71] has some problem in torsional mode since it overestimates 

torsonal rigidity [35]. The problem becomes more severe in case of stiffeners having 

narrow cross-section like blade stiffener, which is quite common in composite 

construction. Keeping this aspect in view, the stiffener element is reformulated where the 

above mentioned problem has been eliminated by using torsion correction factor. In order 

to achieve that the stiffener bending in the plane of the shell surface is neglected. This 

should not affect the solution accuracy since deformation of the stiffener in that plane will 

be very small due to high in-plane rigidity of the shell skin. Moreover, the new 

formulation has the advantage that it requires five degrees of freedom per node while it is 

six in case of existing formulations [35,13,71]. Actually the stiffener element will directly 

share the five nodal unknowns of the shell element. The beam element considered has a 

rectangular section where provision has been kept for parallel (Fig.1.1a) as well as 

perpendicular stacking schemes (Fig. 1.1b).  

 

 

  

           

 

 

 

 Fig. 1.1a Parallel stacking schemes  Fig. 1.1b Perpendicular stacking schemes 

It is clear from the above discussion that the process of investigating the different aspects 

of dynamic stability of laminated composite and isotropic stiffened shell panel structure is 

on, and, hence, a study of the dynamic stability behaviour of such structures is a problem 
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of current interest. The problem involves different complicated effects such as geometry, 

boundary conditions, anisotropy and structures with discontinuity and non-uniform in-

plane stress distribution. The above-discussed aspects need attention and thus constitute a 

problem of current interest. 

 

In the present investigation the analysis for vibration, buckling (static stability) and 

dynamic stability of the isotropic and laminated composite stiffened shell panels with 

and/or without cutout are implemented by a computer program written in Fortran-90. An 

attempt has been made to make the program as general as possible to carryout any type of 

analysis within the scope of the present investigation. The compiler used is Microsoft 

Developer Studio.    

 

A thorough review of early works done in this field is an important requirement to arrive 

at the objective and scope of the present investigation. The detail review of literature 

along with discussions is presented below. 
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Chapter-2 

Review of Literatures 
Introduction 
 
The vast use of conventional metals, its alloys, and the ever-increasing demand of 

composite materials in plate and shell panel type of structure, have become the subject of 

research for many years. Though the investigation is mainly focused on dynamic stability 

of laminated composite and isotropic stiffened shell panels with/without cutouts, some 

relevant researches on vibration with and without in-plane load and buckling of un-

stiffened/stiffened panels are also studied for the sake of its relevance. Some of the 

pertinent studies done recently are elaborately reviewed and critically discussed to 

identify the lacunae in the existing literature. The review part is mainly divided in two 

parts as literatures without cutout as Part-I and literatures with cutout as Part-II.   

 

Part-I (Without cutout) 

 

The studies are grouped in four sections as 

 

Vibration and buckling of un-stiffened plates and shells 

Vibration and buckling of stiffened plates and shells 

Dynamic stability of un-stiffened plates and shells 

Dynamic stability of stiffened plates and shells 

 

In each section the considerations for various aspects of analysis are been taken care for 

both isotropic/composite materials and uniform/non-uniform loading cases. 
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Vibration and buckling of un-stiffened plates and shells 

 

Due to their importance in structural mechanics, large numbers of references are available 

in the published literature dealing with vibration and static buckling behaviour of plates 

and shells subjected to uniform in-plane stresses. 

 

The literature in vibration and buckling analysis of un-stiffened plates and shells are vast, 

hence the review is limited to most recent ones and relevant to the present investigation. 

Various methods used for vibration analysis such as Ritz technique, Levy’s solution, 

finite difference method, finite element method, Galerkin method, differential quadrature 

method and method using boundary characteristics orthogonal polynomial (BCOP) has 

been reviewed extensively by Leissa [69,70] and Liew et al. [78] and Bhat et al. [15]. The 

pioneering works of Anderson et al. [6] and Leissa [68] for free vibration of rectangular 

plate are few of them. 

 

The free vibration of thick rectangular plate is studied for 21 sets of different boundary 

conditions considering shear deformation by Liew et al. [75] using Rayleigh-Ritz method. 

The transverse vibration of thick rectangular plates subjected to in-plane loads, under 9 

sets of boundary conditions is studied by Liew et al. [76] using Mindlin’s first order shear 

deformation theory. 

 

The buckling of plate subjected to localized edge loading is investigated for few cases by 

Khan and Walker [47]. The free vibration and buckling of rectangular plates are studied 

for oppositely directed concentrated force by Leissa and Ayoub [63]. Recently Deolasi 

and Datta [31] investigated the buckling and vibration of plates for non-uniform 

compressive and tensile loading.  

 

A brief history of development of various shell theories is presented in the work of Qatu 

[116] and Liew et al. [77]. Vibration of singly curved shell is studied by Webster [157] 

and Petyt et al. [111]. Vibration of doubly curved shells is studied by Leissa and Kadi 
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[65]. The free vibration analysis of conoidal shells is investigated by Chakravorty et al. 

[21]. Vibration of simply supported cylindrical shell under uniform initial stresses has 

been studied by Armenakas [9] analytically using thin shell theory. The effect of non-

uniform initial stresses is considered by Yang and Kim [158] using FEM based on 

Kirchhoff and Love assumption. The elastic stability of cylindrical shell under uniform 

axial compression has been studied over the years and recently by Sheinman and Simitses 

[132], Matsunga [82] and other researchers.  

 

One can also find many published references regarding the vibration and buckling of 

composite plates and shells. Bert and Chen [14], Kabir [44] and many other researchers 

have investigated the free vibration characteristics of laminated plates using the Yang-

Norris-Stavsky theory incorporating first shear deformation theory. The free vibration 

analysis of laminated plated are also studied by Tessler et al. [150] and Khdier and Reddy 

[49] using higher order shear deformation theory. Chakravorty et al. [22,23] have 

analyzed the free and forced vibration of laminated shell. Reddy [120] has developed an 

exact solution method for the bending analysis and vibration behaviour of moderately 

thick laminated shells. Chandrashekhara [24] has shown and analyzed the results of free 

vibration of doubly curved shells. Kumar et al. [53] have analyzed the tension buckling 

and dynamic stability behaviour of composite doubly curved panel subjected to partial 

edge loadings. Buckling and dynamic behaviour of laminated composite structures have 

been analyzed by Moita et al. [89]. They have presented the results of buckling of 

cylindrical shell with axial compression. Vibration and stability analysis of cross-ply and 

angle-ply laminated plates have been carried out using a global higher order plate theory 

by Matsunaga [83,84]. Recently free vibration analysis of completely free symmetric 

cross-ply rectangular plates is reported by Gorman and Ding [37]. The buckling of thick 

rectangular composite plates with partial edge load is investigated by Sundarresan et al.  

[149]. The buckling of uniaxially loaded cross-ply cylindrical shell is studied by Khdeir et 

al. [50] and Nosier and Reddy [104]. The buckling of doubly curved panels under 

uniform loading is studied by Librescu et al. [74], Carrera [20], Khdeir and Reddy [48], 

Sheinman and Reichman [131] and Kim [51].   
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Vibration and buckling of stiffened plates and shells:  

 

A good deal of references is also available in the literature on stability and vibration of 

stiffened plates. The bending, stability and vibration of stiffened plates are well 

documented in the book by Troitsky [156]. Aksu [2] has presented a variational principle 

in conjunction with the finite difference method for the free vibration analysis of uni-

directionally and crossed stiffened plates. Shastry and Rao [129] have analyzed the free 

vibration of stiffened plate. Mukherjee and Mukhopadhayay [92] have investigated the 

free vibration of eccentrically stiffened plates. The finite element analysis of eccentrically 

stiffened plates in free vibration is presented by Harik and Guo [39]. Sheikh and 

Mukhopadhayay [130] applied finite strip method to finite element methods and analyzed 

rectangular, skew and annular shape plate with concentric and eccentric stiffeners. The 

buckling of stiffened plates is investigated by many researchers with uniform loadings. 

Recently Srivastava et al. [143,144] have investigated the buckling and vibration 

behaviour of isotropic stiffened plates considering uniform and non-uniform loading 

using finite element method. 

 

The vibration characteristics of stiffened cylindrical shell are analyzed by Stanley and 

Ganesan [148]. The free vibration of a thin cylindrical shell with discrete stiffeners is 

analyzed by Mead and Bardell [85,86] using wave propagation method. Recently Nayak 

and Bandyopadhyay [99,100] have reported the results for the free vibration of stiffened 

shallow shells and design aids of conoidal shells using finite element method. Samanta 

and Mukhopadhayay [127] have presented the free vibration analysis of stiffened shells 

using FEM. Vibration of initially stressed stiffened circular cylinders and panels is 

investigated by Patnaik and Sankaran [109]. Mustafa and Ali [95,96] have predicted the 

natural frequency of stiffened cylindrical shells and orthogonally stiffened curved panels 

using FEM.  

 

With the advancement of the use of composite materials research is being carried 

regarding the vibration and buckling of composite plates and shells by many 
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investigators. Recently the buckling behaviour of stiffened laminated plates is 

investigated by Guo et al. [38] using layer wise theory. Kumar and Mukhopadhyay [54] 

have developed a new finite element for buckling of laminated stiffened plates. Analysis 

for buckling and vibrations of composite stiffened shells and plates is made by Rikards et 

al. [121] using finite element method. Tripathy and Rao [155] have optimized the lay up 

of the stiffened composite cylindrical panels for maximum buckling load. The local 

buckling behaviour of discretely stiffened composite plates and cylindrical shells are 

investigated by Kassenge and Reddy [45]. Recently, Nayak and Bandyopadhyay [101] 

have reported the results for free vibration analysis of laminated stiffened shells using 

finite element method. In this analysis the stiffened shell element is obtained by 

combination of nine-noded doubly curved isoparametric thin shallow shell element with 

three-noded curved isoparametric beam element. Prusty and Satsangi [114] have given 

the results of transient dynamic analysis of laminated composite shell using finite element 

method.  

 

Dynamic stability of un-stiffened plates and shells:  

 

The first observation of parametric resonance is attributed to Faraday in 1831 and the first 

mathematical explanation of the phenomenon is given by Rayleigh in 1883. As per 

Bolotin [17] the first analysis of parametric resonance of a pinned perfect column is 

presented by Beliaev. The dynamic instability of plates under periodic in-plane force is 

first studied by Einaudi in the year 1936. An extensive bibliography of earlier works on 

these problems is given in review papers of Evan-Iwanowski [34], Ibrahim [43] and 

Simitses [134]. Hutt and Salam [42] first used the finite element method for the dynamic 

instability analysis of plates. Deolasi and Datta [31] and Sahu and Datta [126] studied the 

dynamic instability of plates and doubly curved panels with non-uniform edge loadings. 

Many references are also available in the literature regarding the dynamic instability of 

composite plates and shells with uniform loadings. The dynamic instability of composite 

laminates using a higher order theory is investigated by Chattopadhayay and Radu [26]. 

The dynamic instability analysis of a laminated composite circular cylindrical shell is 
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presented by Ganapathi and Balamurugan [36]. The dynamic stability analysis of 

laminated cylindrical shells subjected to periodic axial loads is presented by Lam and Ng 

[56]. The dynamic instability of layered anisotropic circular cylindrical shells is 

investigated by Argento and Scott [7,8].    

 

Dynamic stability of stiffened plates and shells: 

 

The works on dynamic stability analysis of stiffened plates and shells are very few in the 

literature. Thomas and Abbas [151] have presented the vibration characteristics, buckling 

behaviour and dynamic stability of stiffened plates using finite element method. They 

have considered the effect of number of stiffeners and depth of stiffeners on frequencies 

of vibration, static buckling load and regions of dynamic instability. In this work they 

have presented the dynamic stability analysis of eccentrically stiffened plates for the first 

time. The parametric resonance of simply supported stiffened rectangular plates subjected 

to in-plane sinusoidal dynamic forces is investigated by Duffield and Willems [33]. They 

developed an analytical model for the stiffened plates with stiffeners, which are treated as 

discrete elements. They had shown that the location and size of the stiffeners have a 

significant effect on the boundaries of the parametric instability regions in comparison to 

the flat unstiffened plates. They had also performed experiments for the verification of the 

theoretical results for stiffened plates with a single centrally located stiffener transverse to 

the in-plane periodic force acting on two opposite edges. This is the only literature 

available regarding the experiments on dynamic instability of stiffened plates. Merrit and 

Willems [88] investigated the dynamic instability for skew stiffened isotropic plates. In 

this study the uniformly distributed load has been treated with simply supported boundary 

condition. The dynamic stability of radially stiffened annular plates with radial stiffener 

subjected to in-plane force is investigated by Mermertas and Belek [87]. In this study a 

sector and a beam finite element method is used. The instability regions are determined 

for a wide range of excitation frequency with different boundary conditions using 

Bolotin’s method. Inner and outer edges of the plates are subjected to equal in-plane 

forces. Recently, Srivastava et al. [141,142] have investigated the dynamic instability of 
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isotropic stiffened plates with uniform and non-uniform edge loadings by finite element 

method. They have shown the effect of stiffener location, number of stiffeners, aspect 

ratio on the dynamic instability region of stiffened plates. Liao and Cheng [72,73] have 

given some results for dynamic instability of stiffened composite plates and shells with 

uniform in-plane forces using finite element method. They have studied only one example 

of stiffened shell panel having cylindrical geometry. 

 

Part-II (With cutout) 

 

Cutouts are inevitable in the aerospace, civil, mechanical and marine structures mainly for 

practical considerations. Thus the vibration and dynamic stability of structures with 

cutout are of great technical importance to understand the systems with in-plane 

compressive edge loadings. Despite the practical importance of the structural parts 

consisting of laminated composite stiffened shell panels, the number of technical papers 

and reports dealing with the subjects is limited due to the complexity involved in the 

analysis.  

 

The discussions were made in the same sequence as that of Part-I in an unified manner. A 

finite element analysis of a clamped thin plate with different cutout sizes along with 

experiment was carried out by Monahan et al. [90]. Ritchie and Rhodes [122] have 

investigated theoretically and experimentally the behaviour of simply supported 

uniformly compressed rectangular plates with central holes, using a combination of 

Rayleigh-Ritz and finite element methods. The dynamic characteristics of rectangular 

plates with one and two cutouts using a finite difference formulation, based on variational 

principles were obtained by Aksu and Ali [3], along with experimental verification.  

There are other references [12,30,52,62,110,112,133] available in the literature on static 

stability and free vibration of plates with cutout, some of them deals with tension 

buckling cases. Recently Huang and Sakiyama [41], Lee et al. [59,60], Mundkar et al. 

[94] considered the effect of shear deformation to study the stability and vibration 

characteristics of plates having different shapes and sizes of cutouts. Kaushal and Bhat 
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[46] made a comparative study of vibration behaviour with cutout using finite element 

and Raleigh-Ritz methods. Ali and Atwal [5] reported the results of natural frequencies of 

simply supported rectangular plate with rectangular cutouts using Rayleigh-Ritz method. 

Paramasivam [107] used a finite difference approach in analyzing the effects of openings 

on fundamental frequencies of plates with simply supported and clamped boundary 

conditions. Sivasubramanian et al. [138] also studied free vibration of curved panels with 

cutouts. Avalosa and Laurab [10] performed a series of numerical experiments on 

vibrating simply supported rectangular plates with two rectangular holes with free edges. 

The buckling behavior of an elastoplastic cylindrical shell with a cutout under pure 

bending was investigated analytically and experimentally by Yeh et al. [159].  

 

Lee and Lim [58] have presented the natural frequencies of isotropic and orthotropic 

plates with rectangular cutouts subjected to in-plane forces using Raleigh’s method. 

Srivatsa and Murthy [139] have studied the critical buckling loads of laminated fiber 

reinforced plastic thin square panels with cutout using FEM, based on classical 

lamination theory. Lin and Kuo [80] also studied buckling of rectangular composite 

laminates with circular holes under in-plane static loading. Sivakumar et al. [136] have 

analyzed free vibration analysis of composite plates in the presence of cutouts undergoing 

large amplitude oscillations using FE approach. The buckling and post buckling of 

composite plates with cutouts are studied by Nemeth [102,103] elaborately and the results 

were compared with earlier works including experiment. Bailey and wood [11] studied 

stability of square CFRP panel with various cutout geometries by using ANSYS and 

experiment. Toda [154] investigated analytically and experimentally the effects of 

circular cutouts on resonant frequencies of thin cylindrical shells using Raleigh-Ritz 

approximations. Rossi [123] has dealt with the transverse vibrations of thin orthotropic 

rectangular plates with rectangular cutouts with fixed boundary conditions. The buckling 

behavior of compression loaded quasi-isotropic curved panels with a circular cutout is 

studied by Hilburger et al. [40] by nonlinear finite element method. Rajamani and 

Prabhakaran [117,118] have investigated the dynamic response of thin square, simply 

supported and clamped laminates with circular or square cutouts using finite element 
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method. The results for free vibration of composite rectangular plates with rectangular 

cutout have been reported by Lee et al. [57] using Raleigh’s method. The effects of 

cutouts on the natural frequencies of curved panels have been treated sparsely in the 

literature.  

 

In regard to stiffened shell panels: Sivasubramanian et al. [137] have also reported the 

results for free vibration of longitudinally stiffened curved panels with cutouts by finite 

element method. Alagusundaramoorthy et al. [4] had carried out the experimental 

investigations for collapse on eighteen stiffened steel plates having initial imperfections 

under uniaxial compression with simply supported boundary conditions on both loading 

and unloading edges. Lam and Hung [55] applied the orthogonal polynomial and 

partitioning method to study the vibration of plates with stiffened opening. They have 

reported the results for natural frequency of fully clamped plates with stiffened opening. 

Paramshivam and Sridhar Rao [108] have given the results for free vibration of square 

plate with stiffened square openings. Recently, Srivastava et al. [146] have studied the 

effect of square cutouts on transverse vibration of stiffened plates with the in-plane 

uniform edge loading at plate boundary by finite element method. 

 

The study of dynamic stability behaviour of stiffened/unstiffened shell panels with 

openings is relatively new. The earlier works available are very few. Datta [30] 

investigated experimentally the dynamic instability of tensioned sheet with central 

opening. A comprehensive review and analysis of the buckling, vibration and parametric 

instability problems of plates with different types of cutouts were made by Prabhakara 

and Datta [112]. Recently, Sahu and Datta [124,125] have investigated the effect of 

dynamic instability characteristics on doubly curved panels considering with square with 

global compression effect. Srivastava et al. [145,147] have studied the effect of square 

cutouts and stiffening scheme on dynamic instability of isotropic stiffened plates with the 

in-plane uniform and non-uniform edge loading at plate boundary using finite element 

method. 

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Review of Literatures 15 

Aim and scope of the present research work 

 

A review of literature on the problems concerning the vibration, static and dynamic 

stability of structural elements reveals a considerable interest shown by the researchers in 

the past and present on various classes of free vibration, static and dynamic stability 

problems. However, many areas of practical importance of the subject remain unexplored 

or inadequately represented. In the case of isotropic/composite stiffened shell panels the 

literature available is mainly concerned with free vibration analysis. To the best of the 

author’s knowledge the static stability analysis of isotropic/composite doubly curved 

stiffened shell panels with uniform/non-uniform edge loadings are not available in the 

literature. In regard to dynamic stability analysis, the few earlier works are mainly on 

isotropic stiffened plates. The author could not find any available work on the dynamic 

instability analysis of doubly curved stiffened shell panels with uniform/non-uniform 

edge loadings. The study of dynamic stability of laminated composite stiffened shell 

panels with cutout subjected to uniform and/or non-uniform in-plane loading at the 

boundary is new and can be studied extensively. The vast use of stiffened shell-type 

structures in many engineering activities compelled the author to have extensive study on 

static and dynamic instability analysis of isotropic and laminated composite stiffened 

shell panels with/without cutout subjected to uniform and non-uniform in-plane loading 

along the edges. 

 

The aim of the present investigation is to study the buckling, vibration and dynamic 

stability behaviour of laminated composite and isotropic stiffened shell panels with and 

without cutout subjected to uniform and non-uniform loads, including partial and 

concentrated edge loadings, using finite element method. The effects of various 

parameters like number of stiffeners, lamination scheme, orientation of stiffeners, staking 

scheme in stiffeners, geometry of panels, eccentricity of stiffeners, size of stiffeners, 

loading type, width of the patch loading, position of the concentrated load, cutout size and 

boundary conditions are considered on the dynamic stability analysis of the stiffened shell 

panels. The stiffened shell panel problems identified for the present investigations are, 
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1. Stiffened shell panels without cutout under uniform loading 

 

(Part-I) Laminated composite stiffened shell panels 

• Vibration 

• Buckling 

• Dynamic stability 

 

(Part-II) Isotropic stiffened shell panels 

• Buckling 

• Dynamic stability 

 

2. Laminated composite stiffened shell panels without cutout under non-uniform 

loading 

 

• Loading Type-I – Localized edge loading from one end of two opposite side. 

• Loading Type-II – Localized edge loading from the center of two opposite side. 

• Loading Type-III – Localized edge loading from both ends of two opposite side. 

• Loading Type-IV – Concentrated edge loading of two opposite side.  

 

Each part is studied in three sections as Buckling, Vibration and Dynamic stability. 

 

3. Laminated composite stiffened shell panels with square cutout under 

uniform/non-uniform loading 

 

• Loading Type-I – Localized edge loading from one end of two opposite side. 

• Loading Type-II – Localized edge loading from the center of two opposite side. 

• Loading Type-III – Localized edge loading from both ends of two opposite side. 

• Loading Type-IV – Concentrated edge loading of two opposite side.  

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Review of Literatures 17 

In this case also each part is studied in three sections as Buckling, Vibration and Dynamic 

stability. The details of loading type and geometry of the panels are shown in Chapter-4. 

 

There is a vast scope of the present research work. The effect of tensile loading, follower 

force, geometric and material non-linearity, combination resonance, different sizes of 

cutout (circular, elliptical) etc. can considered for the dynamic stability analysis of 

laminated composite stiffened shell panels as the scope for future research. 
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Mathematical Formulation 
 

3.1 The Basic Problem  

 

This chapter presents the mathematical formulation for vibration, static and dynamic 

instability analysis of laminated composite stiffened shell panels of various geometry 

with/without cutout. The basic problem is a laminated doubly curved shell panel having 

laminated stiffener subjected to various non-uniform in-plane harmonic edge loadings. The 

flat, cylindrical, spherical and hyperbolic hyperboloid panels are obtained from the doubly 

curved shell panel as special cases by taking suitable radii of curvatures. The boundary 

conditions are incorporated in the most general way to cater the need of curved boundary and 

laminated composite cases. 

 

3.2 Proposed Analysis 

 

The governing equations for the dynamic instability of laminated composite doubly curved 

stiffened shell panels subjected to in-plane harmonic edge loading are developed. The 

presence of non-uniform external in-plane loads, boundary conditions, stiffeners and cutouts 

in the panel induce a non-uniform stress field in the structures. This necessitates the 

determination of the stress field as a prerequisite to the solution of the problems like 

vibration, buckling and dynamic stability behaviour of laminated composite stiffened shell 

panels. As the thickness of the structure is relatively smaller, the determination of stress field 

reduces to the solution of a plane stress problem in the panel skin and stiffeners (where the 

thickness and breath are small compared to length). The stiffened shell panels are modeled 

and the governing equations are solved by finite element method.    
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3.3 Finite Element Formulation 

 

It has been mentioned in the previous section that the laminated composite stiffened shell 

panel structure is modeled by finite element technique. In order to have a better 

representation, the shell skin and stiffeners are mode led as discrete/separate elements. The 

formulation of these elements is presented below. 

 

3.3.1 Assumptions of the Analysis 

 

The following assumptions are made in the present analysis, 

 

1. The material in the stiffened shell panel skin and stiffeners obey Hooke’s law.   

2. The bending deformations follows Mindlin’s hypothesis; the normal to the panel 

middle surface before bending remains straight, but not necessarily normal to the 

middle surface after bending. 

3. The transverse normal stresses are neglected.    

4. The thickness of the shell panel skin and stiffeners remain constant during 

deformation. 

 

3.3.2 Shell Element 

 

The formulation of the shell element is based on the basic concept of Ahmed et al. [1], where 

the three-dimensional solid element used to model the shell is degenerated with the help of 

certain extractions obtained from the consideration that one of the dimension across the shell 

thickness is sufficiently small compared to other dimensions. The element has a quadrilateral 

shape having eight nodes as shown in Fig. 3.1 where the external top and bottom surfaces of 

the element are curved with linear variation across the shell thickness. Thus the geometry of 

an element can be described by the coordinates of a set of points taken at the top and bottom 
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surfaces where the line joining a pair of points (itop and ibottom) is along the thickness 

direction. The detail for the representation of element geometry is given below. The detail 

derivation of this element for isotropic case is available in the literature [1,159, 119].  

 

Geometry of the element 

 

The element geometry can be nicely represented by the natural coordinate system ( - -ζ ) 

where the curvilinear coordinates ( - ) are in the shell mid-surface while ζ  is linear 

coordinate in the thickness direction. According to the isoparametric formulation, these 

ξ η

ξ η
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Fig.3.1a Eight-noded quadrilateral degenerated shell element 

in curvilinear co-ordinates.  

 

z, w 
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2v , -θx  

 

 

 

 Fig.3.1b Global Cartesian co-ordinate (x, y and z) and nodal 
vector system at any node i.
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coordinates ( , η  andζ ) will vary from -1 to +1 on the respective faces of the element. With 

these, the relationship between the global Cartesian coordinates (x, y and z) of any point of 

the shell element with the curvilinear coordinates may be expressed as 

ξ

 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫+ −⎪ ⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∑ ∑
1 1

2 2

i i

i i i i

i itop bottom

x x x
y N y N y
z z z

ζ ζ
 (1) 

where  are the quadratic serendipity shape functions in ( ,  plane of the two-

dimensional element. For 8-noded element, they are given in Table 3.1. 
iN )ξ η

Table 3.1 Shape functions for quadratic element (8 – noded element) 
 

Locations of nodes Expressions 
Corner nodes 

0 0 0 0
1 (1 )(1 )( 1)
4iN ξ η ξ η= + + + −  

2
0

1 (1 )(1 )
2iN ξ η= − +Midside nodes 0iξ =At    

2
0

1 (1 )(1 )
2iN ξ η= + −At    0iη =

 
  0 0&i iξ ξ ξ η η η= =

 
Eqn. (1) may be rewritten in terms of mid-surface nodal coordinates with the help of the 

nodal vector (  ,a vector connecting top and bottom points at node i,  with length equal to 

the thickness h
3iV

 of the shell element ) along the thickness direction as  i

 

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎪ ⎪⎩ ⎭

∑ ∑
3

3

3

2

xii

i i i yi

i zi

Vx x
y N y N V
z z V

ζ ⎪  (2) 

 

where 
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{ } 1 1
2 2

i i i

i i i i

i i itop bottom

x x x
X y y y

z z z

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

  (3) 

 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪= = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭

3

3 3

3

xi i i

i yi i i

i itop bottomzi

V x x
V V y y

z zV

 (4) 

 
The general expression for the Jacobian matrix may be expressed as 
 

[ ]

⎥
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⎤

⎢
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⎢
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∂
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∂
∂

∂
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∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

ζζζ

ηηη

ξξξ

zyx

zyx

zyx

J     (5) 

 
With the help of eqn. (2), eqn. (5) can be written as 
 

[ ]

3 3

3 3

3 3

2 2

2 2
1 1 1
2 2 2

i i i
i xi i yi i zi

i i i
i xi i yi i zi
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ξ ξ ξ

ζ ζ
η η η
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⎢ ⎥∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝⎢ ⎥
⎢ ⎥
⎢ ⎥
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∑ ∑ ∑
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∑ ∑ ∑

3

3

3

2

2
V

ζ

ζ

⎤⎞+ ⎟
⎠
⎞
⎟
⎠

      (6) 

 
It is now desired to find out the normal vector at node i. Let the vector be defined as 3iV . This 

vector is determined as the gradient of the surface from the equation of the surface. Then it is 
necessary to get two orthogonal vectors at the node i, such that all three vectors ,  and 3iV 1iV
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2iV  are mutually perpendicular to one another.As ξ and η may not be orthogonal and their 

directions may vary from point to point, the following scheme is adopted to get the pair of 
orthogonal tangent vectors  will always lie in x-z plane.  and  where iV1 iV2 3iV

 
  1 3i iV j V= ×   (7) 

 
 (8)   iii VVV 132 ×=

 
where j is unit vector in the y direction  
 

Now these vectors ,  and iV1 iV2 iV3  may be normalized to get the corresponding unit 

vectors iv1 iv2 iv3,  and  as 
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iv3  and thickness hNow eqn. (2) may be rewritten with the nodal unit normal vector  as  i
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⎧ ⎫ ⎧ ⎫ ⎧ ⎫
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   (12) 

 
In a similar manner, eqn. (6) may also be rewritten as 
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Displacement field 

 

The displacement field may be defined in terms of three displacements components (u , vi i and 

w ) and two rotational components (θ  and θ ) at the mid-surface nodes (Fig. 3.1) as follows i xi yi

[ ]{ }
i i i

xii
i i i i i D

yii i
i i i

u u l lh
v N v N m m N
w w n n= =

⎧ ⎫ ⎧ ⎫ ⎡ ⎤
⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪= − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎢ ⎥ ⎩ ⎭

⎩ ⎭ ⎩ ⎭ ⎣ ⎦

∑ ∑
1 28 8

1 2
1 1

1 2
2

θς
δ

θ
  (14)

   

where  is the thickness of the shell at the nodal point i, the displacements components (uih i, 

v  and wi i) are taken along Cartesian coordinate system (x, y and z) and the rotational 

components (θ  and θ ) are taken about  and .  iv2 iv1xi yi

{ } 1 1 1 1 1 2 2 8... ... T
x y yu v w u vδ θ θ⎡= ⎣ θ ⎤

⎦  (15) 
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Strain-displacement relation 

 
The components of strains and stresses at a surface having a specific value of ζ  are taken 

along the local orthogonal axes system. The local axes system is defined as (x′, y′ and z′) 
which is similar to that at the mid-surface corresponding to ,  andiV1 iV2 iV3 . It is assumed that 

the normal stress and strain components in the thickness direction are sufficiently small and 
these taken to be zero. The displacement component along x′, y′ and z′ are ,  and ′u ′ ′wv  
respectively. So the strain components may be defined as 

′

′

′ ′

′ ′

′ ′

′∂⎧
⎪ ′∂
⎪ ′∂⎪
⎪ ′∂
⎪′∂⎧ ⎫ ∂⎪⎪ ⎪′∂ ⎪

′
′∂⎪ ⎪ ⎪′∂ ′∂⎪ ⎪⎧ ⎫ ⎪⎪ ⎪′∂ ′⎪ ⎪ ∂⎪⎪ ⎪⎪ ⎪ ⎪′ ′ ′∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪′ += = =⎨ ⎬ ⎨ ⎬ ⎨′ ′ ′∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪

′ ′ ′⎪ ⎪ ⎪ ⎪∂ ∂ ∂
+⎪ ⎪ ⎪ ⎪⎩ ⎭ ′ ′ ′∂ ∂ ∂⎪ ⎪

′∂′ ′⎪ ⎪∂ ∂
+⎪ ⎪ ′∂′ ′∂ ∂⎩ ⎭

′∂
′∂
′∂
′∂⎩

{ } [ ]

x

y

x y

y z

x z

u
x
u
y

u u
x z
v v
y x

u v v
H

y x y
v w v
z y z

wu w
xz x
w
y
w
z

ε
ε
γε
γ
γ

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎬
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎭

 (16) 

 

where, 
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1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0[ ]
0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥  (17) 

 
Then again three mutually perpendicular vectors at any point are necessary to be determined. 
These are required to transfer the local strain components in global coordinate. These three 
vectors can be established by shape function interpolation from nodal values as 
 

= ∑1 1i iV Nς V  ,       = ∑2 i iV Nς 2V         and         = ∑3 3i iV Nς V     (18) 

 

1V ς 2V ςin which proper ,  and values of the point are to be supplied. These vectors ,  and ηξ ζ

3V ς  are normalized to get the corresponding unit vectors ,  and  as 1v ς 2v ς 3v ς

 

⎧ ⎫
⎪ ⎪

= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

1
1

1
1

1

l
V

v
V

n

ζ
ς

ζ
ς

ζ

  1m ζ  (19) 

 

⎧ ⎫
⎪ ⎪

= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

2
2

2
2

2

l
V

v
V

n

ζ
ς

ζ
ς

ζ

  2m ζ  (20) 

 

⎧ ⎫
⎪ ⎪

= = ⎨ ⎬
⎪ ⎪
⎩ ⎭

3
3

3
3

3

l
V

v
V

n

ζ
ς

ζ
ς

ζ

  3m ζ  (21) 
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Now the local strain components can be expressed in terms of those in global coordinate 
system as follows.  
 
 

[ ] [ ]T

u v w u v w
x x x x x x
u v w u v w
y y y y y y

u v wu v w
z z zz z z

α

′ ′ ′∂ ∂ ∂⎡ ⎤ ∂ ∂ ∂

α

⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥ ⎢ ⎥′ ′ ′ ∂ ∂ ∂∂ ∂ ∂⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥′ ′ ′ ∂ ∂ ∂⎣ ⎦∂ ∂ ∂⎣ ⎦

  (22) 

 
 

]αwhere the matrix  [  can be formed with the unit local vectors ,  and 1v ζ 2v ζ 3v ζ  as defined 

in eqns. (19) - (21) and the matrix may be presented as  
 
 

1 2 3

1 2 3 1 2 3

1 2 3

[ ]
l l l

v v v m m m
n n n

ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ

α

⎡ ⎤
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 (23)  

 
 
With the help of eqn. (22) and (23), the local strain vector as expressed eqn. (16) may be 
rewritten as 
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{ } [ ] [ ] [ ]

u u
x x
u u
y y
u u
z z
v v
x x

vv
H H T

yy
vv
zz
ww
xx
ww
yy
ww
zz

ε

′∂⎧ ⎫ ∂⎧ ⎫
⎪ ⎪ ⎪ ⎪′∂ ∂⎪ ⎪ ⎪ ⎪′∂ ∂⎪ ⎪ ⎪ ⎪
⎪ ⎪′∂ ⎪ ⎪∂
⎪ ⎪ ⎪ ⎪′∂ ∂⎪ ⎪ ⎪ ⎪
⎪ ⎪′∂ ∂⎪ ⎪
⎪ ⎪ ⎪ ⎪′∂ ∂⎪ ⎪ ⎪ ⎪′∂ ∂⎪ ⎪ ⎪ ⎪
⎪ ⎪′ ∂∂ ⎪ ⎪⎪ ⎪ ⎪′ = =⎨ ⎬ ⎨′ ∂∂⎪ ⎪ ⎪

∂′⎪ ⎪ ⎪∂
⎪ ⎪ ⎪ ∂′∂⎪ ⎪ ⎪

∂′∂⎪ ⎪ ⎪
⎪ ⎪ ⎪ ∂′∂
⎪ ⎪ ⎪∂′∂⎪ ⎪ ⎪

∂⎪ ⎪ ⎪′∂
⎪ ⎪ ⎪∂′∂⎪ ⎪ ⎪

⎪ ∂⎩ ⎭⎪ ⎪′∂⎩ ⎭

⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

  (24) 
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{ } [ ] [ ] [ ] [ ] [ ]

uu
x

uu
y

uu
z

vv
x

vv
H T H T

y
v v
z
w w
x
w w
y
w w
z

ξ

η

ζ

ξ

ε
η

ζ

ξ

η

ζ

Γ

∂⎧ ⎫∂⎧ ⎫ ⎪ ⎪∂⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ∂⎪ ⎪∂⎪ ⎪ ⎪ ⎪∂⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ∂⎪ ⎪∂⎪ ⎪ ⎪ ⎪∂∂⎪ ⎪ ⎪ ⎪∂⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂∂⎪ ⎪ ⎪ ⎪∂∂⎪ ⎪⎪ ⎪ ⎪ ⎪′ = =⎨ ⎬ ⎨ ⎬∂∂⎪ ⎪ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪∂

⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪
∂ ∂⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪∂

⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪
⎪ ⎪∂⎩ ⎭

⎪
⎪ ⎪∂⎩ ⎭

 (25) 

 

 

where  

1 1 1

2 2 2

3 3 3

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

T T

T T

T T

l m n

T l m n

l m n

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

α α α

α α α

α α α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T

T

T

  (26)

  
 
and the matrix  [  can be formed with the Jacobian matrix [J] as expressed in eqn. (13) and 

the matrix  [  may be presented as  

]Γ

]Γ
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1

1

1

[ ] 0 0

[ ] 0 [ ] 0

0 0 [ ]

J

J

J

Γ

−

−

−

⎡ ⎤
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥  (27) 

and  
 

[ ] [ ] { }

∂⎧ ⎫
⎪ ⎪∂
⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂
⎪ ⎪
∂⎪ ⎪ ⎧ ⎫⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂⎪ ⎪ ⎪ ⎪⎪ ⎪∂ ⎪ ⎪⎪ ⎪∂ ⎪ ⎪⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪∂
⎪ ⎪ ⎪ ⎪∂⎪ ⎪ ⎪ ⎪
∂⎪ ⎪ ⎪ ⎪

⎪ ⎪⎩ ⎭⎪ ⎪∂⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂
⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎩ ⎭

1

1

1

1

1

8

...

...

x

y

y

u

u

u u
v

v
w

v
L L

v

w

w

w

ξ

η

ζ

ξ
θ

δθη

ζ

θ
ξ

η

ζ
   (28)

  
 
The matrix [  can be determined easily from eqn. (14) [119]. Finally the strain vector (25) 

can be expressed in terms of nodal displacement vector 

]L

{ }δ  as 

 
{ } [ ][ ][ ][ ]{ } [ ]{ }′ = H T L Bε δΓ = δ   (29) 
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Stress-strain relation 

The fiber reinforced laminated composite shell skin consists of a number of orthotropic 

layers having different orientations. For such a layer, the stress-strain relationship in the 

material axis system may be given by 

 

s

s

Q Q

Q Q

G

G

G

⎡ ⎤⎧ ⎫ ⎧
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪

⎪ ⎪ ⎪⎢

⎫
⎪
⎪
⎪=⎨ ⎬ ⎨ ⎬⎢

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

11 12
1 1

12 222 2

1212 12

23 2323

31 3131

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

σ ε
σ ε
τ
τ γβ
τ γβ

⎥
⎥ γ  Or { } { }[ ]Qσ ε=  (30) 

 

= =
− −
21 1 12 2

12
12 21 12 211 1
E E

Q
ν ν
ν ν ν ν

=
−

1
11

12 211
E

Q
ν ν

=
−

2
22

12 211
E

Q
ν ν sβwhere , ,  and  is the 

shear correction factor and it is taken as 5/6. 

 

  Though material axes 1-2 lie in x - ′ y′  plane but it is oriented at an angle θ  while axis 3 is 

directed along z . With a simple coordinate transformation, the stress-strain relationship may 

be expressed in the local axis system (x

′

′ ′′-y -z ) as follows. 

 

{ } { }[ ]Dσ′ ′= ε′    (31) 

 

where   [ ] [ ] [ ] [ ]T
eD T Q T′ = e  and the transformation matrix [Te] can be expressed as 
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[ ]

2 2

2 2

2 2

cos sin sin cos 0 0

sin cos sin cos 0 0

2 sin cos 2 sin cos sin cos 0 0

0 0 0 cos s

0 0 0 sin

eT

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ

θ θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (32) 

in

cos

3.3.2.1 Elastic stiffness matrix 

 

Once the matrices [B] and [D] are obtained, the elastic stiffness matrix of an element can be 

derived easily and it is expressed as  

 

[ ] [ ] [ ][ ] [ ] [ ][ ]∫∫ ′=′= ςηξ dddJBDBdxdydzBDBk TT
e  (33) 

 

 is the determinant of the Jacobian matrix [ ]JJwhere , which can be obtained with the help 

of equation (12) taking derivatives of x, y and z with respect to ξ ,  and ζ .  η

 

The integration in equation (33) is carried out numerically following Gauss quadrature 

integration technique where two-point integration scheme has been adopted. The scheme is 

applied to all the layers in an element and their contributions are added together as follows. 

[ ] [ ] [ ][ ] kjikjikji

nl

l i j k
l

T
kjie wwwJBDBk ),,(),,(),,(

1

2

1

2

1

2

1

ςηξςηξςηξ∑∑∑∑
= = = =

′=   (34) 

where nl is the number of layers in an element, [ ]lD′  is the rigidity matrix [ as expressed in 

equation (31) of the lth layer, and w

]D′

, w  and wi j k are the weight parameters. This technique is 

adopted in all the subsequent cases where integration is required to be carried out. 
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3.3.2.2 Mass matrix  

 

The consistent mass matrix has been adopted in the present study. Following the usual 

techniques, it can be derived with the help of equation (14) and is expressed as  

 

[ ] [ ] [ ] [ ] [ ]T T
e D D D Dm N N dxdydz N N J d d dρ ρ= =∫ ∫ ξ η ζ   (35) 

where ρ is the material density. 

3.3.2.3 Geometric stiffness matrix 

 

The geometric stiffness matrix may be obtained from the strain energy U  due to initial 

stress and it is expressed in terms of initial stress vector 

σ

{ }′σ  and nonlinear strain vector 

{ }′nε  in the local axis system ( -y -zx ′ ′′ ) as 

 

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′ ′ ′∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤= + +⎣ ⎦ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

+ +
′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
′ ′∂ ∂
′ ′∂ ∂

2 2 2

2 2 2

1
2 x y x y y z z x

u v w
x x x

u v w
y y y
u u v v w wU
x y x y x y
u u v v w w
y z y z y z
u u
z x

σ σ σ τ τ τ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪′ ′ ′ ′∂ ∂ ∂ ∂⎪ ⎪+ +
⎪ ⎪′ ′ ′ ′∂ ∂ ∂ ∂⎩ ⎭

∫ dv

v v w w
z x z x

  

 

Or 

  (36) { } { }′ ′= ∫ T
nUσ σ ε dv
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The above equation may be rewritten as 

 

{ } [ ]{ }= ∫
1
2

T
g gUσ ε τ ε dv  (37) 

where 

 

{ }
T

g
u u u v v v w w w
x y z x y z x y z

ε
′ ′ ′ ′ ′ ′ ′ ′ ′⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= ⎢ ⎥′ ′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
  (38) 

and  

[ ]
1

1

1

[ ] 0 0
0 [ ] 0
0 0 [ ]

τ
τ τ

τ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (39) 

 

The sub matrix 1τ⎡ ⎤⎣ ⎦  within the initial stress matrix [ ]τ  in the above equation is  

 

1[ ]

0

σ τ τ

τ τ σ τ

τ τ

⎡ ⎤′ ′ ′
⎢ ⎥

′ ′ ′=⎢ ⎥
⎢ ⎥

′ ′⎢ ⎥⎣ ⎦

x xy xz

xy y yz

xz yz

 (40)    

 

 Now the strain vector { }gε  in equation (38) may be expressed in terms of nodal 

displacement vector with the help of equation (2) as 

 

{ } { }⎡ ⎤= ⎣ ⎦g gBε δ  (41)  

 

With the help of above equation, the strain energy U  in equation (37) may be written as σ
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{ } { }⎡ ⎤= ⎣ ⎦
1
2

T
gU kσ δ δ  (42) 

 

where [k ] is the geometric stiffness matrix and it may be expressed as  g

 

⎡ ⎤ = =⎣ ⎦ ∫ ∫[ ] [ ][ ] [ ] [ ][ ]T T
g G G G Gk B B dv B B J d dτ τ dξ η ζ  (43) 

 

3.3.3 Stiffener Element 

 

 

bs 

ds 

e 

3
2

1 

η 

ζ 
ξ 

Reference axis (Shell 
element nodal line) 

Fig.3.2 Degenerated curved beam element 

 

 

 

 

 

 

 

 

 

 

 

The derivation of the stiffener element (Fig.3.2) is based on the basic concept used to derive 

the shell element. In this case the stiffener element modeled with three dimensional solid 

element is degenerated with the help of certain extractions obtained from the consideration 

that the dimension across stiffener depth as well as breadth is small compared to that along 

the length. The stiffener element follows an edge of a shell element where the parameters of 

three nodes lying on that shell element edge are used to express the geometry and 
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deformation of the stiffener utilizing compatibility between shell and stiffeners. It helps to 

eliminate the involvement of additional degrees of freedom for the modeling of stiffeners. 

The stiffener element having any arbitrary curved geometry is mapped into a regular domain 

in ξ-η-ζ co-ordinate system where all these coordinates vary from –1 to +1. Again ξ is taken 

along the stiffener axis while η and ζ are taken along the width and depth directions 

respectively. It has been found that the vectors iv1 iv2 iv3,  and  are quite useful for the 

representation of geometry and deformation of the shell element. For the stiffener element a 

similar set of vectors s
iv1

s
iv2

s
iv3,  and  are used and these may be obtained from those of the 

shell element ( iv1 iv2 iv3,  and ) as  

 

33 vv s =ss
s vvv θθ sincos 211 += ss

s vvv θθ cossin 212 +−= ,  and   (44) 

 

sθs
iv1

s
iv2

s
iv1iv1 iv2where ( - ) is oriented at an angle of  with respect to ( - ) and  follows the 

stiffener axis.  

 

  With these vectors, the co-ordinate at any point within the stiffener may be expressed in 

terms of co-ordinates (x , y , zi i i) of those three nodes of the corresponding shell element edge 

as  

 

s s
i ii
s ss s

si i si i si i
i i is si i i

l lx x
dy N y N e m N m

z z n n
= = =

b
⎧ ⎫ ⎧⎧ ⎫ ⎧ ⎫ ⎫
⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎛ ⎞ ⎛ ⎞= + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

⎪ ⎪

⎪ ⎪ ⎪⎩ ⎭ ⎩

∑ ∑ ∑
3 2

3 3 3

3
1 1 1

3 2

2 2
ζ

⎪⎭

2
η  (45) 

 

where b  is stiffener width, ds s is its depth and e is the eccentricity (distance of the stiffener 

axis from the shell mid surface). The expressions of the quadratic shape functions  along 

ξ are as follows.  

siN
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( )1 1 / 2sN ξ ξ= − ( )3 1 / 2sN ξ ξ= +2
2 1sN ξ= −, ,  

 

Now considering the deformation of the stiffener element, the present formulation differs 

from the usual one [13,35,71] where six degrees of freedom are generally taken to represent 

the biaxial bending apart from torsion and axial deformation. In the present study the bending 

of the stiffener in the tangential plane of the shell is not considered. This has helped to 

eliminate the involvement the sixth degrees of freedom  like that of shell element. 

Moreover the usual formulation [13,35,71] overestimates the torsional rigidity and it cannot 

be corrected simply with some correction factor since it got mixed with other terms. The 

present formulation facilitates to treat it nicely where a torsion correction factor is introduced 

for parallel as well as perpendicular stacking schemes. Actually this is the primary object for 

the reformulation of the stiffener element. Based on this the displacement components at any 

point within the stiffener may be expressed as  

zθ

 

[ ] [ ]{ }
i i i xis

si vi i si i i Ds s
yii i

i i i

u u l l
dv N T v N e m m N

w w n n= =

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎢ ⎥⎪ ⎪ ⎪ ⎪= − + =⎨ ⎬⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎢ ⎥⎝ ⎠ ⎪ ⎪⎩ ⎭⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎣ ⎦

∑ ∑
1 23 3

1 2
1 1

1 2
2

θζ δθ  (46) 

where { }  and l1 1 1 1 1 2 2 3....... .......
T

s x yu v w u vδ θ θ⎡ ⎤= ⎣ ⎦yθ , m and n1 1 1 are the 

direction cosine of the vectors s
iv1

s
iv2

s
iv3,  and  with respect to the global co-ordinates (x, y 

and z), the matrix [T s
iv2] is used to make the component of translational displacement along vi  

at shell mid-plane zero since the bending of the stiffener in the tangential plane of the shell is 

not considered. Its effect should be insignificant since bending deformation in this mode will 

be very small due to high in-plane rigidity of the shell skin. Moreover the flexural rigidity of 

stiffener in this mode is usually found to be small. 

 

  The matrix [T s
iv1

s
iv2] used in the above equation may be expressed with the help of ,  as vi
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[ ]
1 3 1 1

1 3 2 2

1 3 3 3 3

0

0

0

1

2

s s s s s
i i i i i
s s s s s

vi i i i i i
s s s s s
i i i i

l l l m n

T m m l m n

n n l m n

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢=
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣ i

⎤
⎥
⎥
⎥
⎥⎦

 (47) 

 

Similar to shell element, the stress and strain components at any point within the stiffener 

element are taken in a local axis system (x ′ z ′y′ s
iv1

s
iv2

s
iv3- - ) corresponding to ,  and . The 

relationship between them may be expressed as  

 

{ } [ ]{ }
1

5

6

0 0

0 0 or

0 0

σ ε
τ β γ σ
τ γβ

′ ′

′ ′ ′ ′

′ ′ ′ ′

⎡ ⎤⎧ ⎫ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ε′ ′ ′=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

mx x

x z s m x z s

x y x yt m

Q

Q

Q

= D  (48) 

 

where  is the shear correction factor, which is taken as 5/6. The torsion correction factor 

 and other rigidity parameters in the rigidity matrix 

sβ

[ ]′sDtβ  are presented below for two 

different types of stacking arrangements of the stiffener as shown in Fig. 3.3. For both the 

arrangements, the stress-strain relationship of a lamina in its axis system ( - r - s) may be 

written as  

′x

′ ′

′

′ ′

⎡ ⎤
⎢ ⎥⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥⎣ ⎦

11 12 16

21 22 26

61 62 66

55 54

45 44

0 0

0 0

0 0

0 0 0

0 0 0

x x

r r

x r x r

x s x s

rs rs

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

σ ε
σ ε
τ
τ γ
τ γ

′⎥ γ  (49) 
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where the rigidity matrix in the above equation is identical to [ ]′D  of the shell element 

obtained in equation (31) without the shear correction factor because the shear correction 

factor is included in eqn.(48). 

 z′

x′

  bs 

nth ply 

1st ply 

ds 

r

s

bs 
s 

ds 

r

1st ply 

nth ply y′
 

 

   

  

 

 

 

Fig. 3.3a Ply arrangement I (parallel)   Fig. 3.3b Ply arrangement II (perpendicular) 

 

The rigidity parameters [ ]′sD  of equation (48) may be obtained from equation (49), utilizing 

the conditions (  = 0) and (  = 0). For ply arrangement I, the rigidity parameters will be rσ rsτ

 

− −
= + +

− −
61 26 21 66 61 22 21 62

1 11 12 16
22 66 62 26 26 62 66 22

m

Q Q Q Q Q Q Q Q
Q Q Q Q

Q Q Q Q Q Q Q Q
 

 

= − 45
5 55 54

44
m

Q
Q Q Q

Q
=6 6m and 6Q Q  

 

For ply arrangement II, the rigidity parameters are as follows.  

 

− −
= + +

− −
61 26 21 66 61 22 21 62

1 11 12 16
22 66 62 26 26 62 66 22

m

Q Q Q Q Q Q Q Q
Q Q Q Q

Q Q Q Q Q Q Q Q
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= − 45
556 54

44
m

Q
Q
Q

=5 66mQ Q  and  Q Q  

 

  The torsion correction factor  for these two cases may be written as  tβ

 

( )

( )

2
5 1

1

3 3
6 1

1

3
β

+
=

+
=

−
=

−

∑

∑

nls
i

s m i
i

t nls
i
m i i

i

kb Q s s

Q s s

i

Ply arrangement I:   

 

( )

( ) ( ) ( )

+
=

+
=

−
=
⎡ ⎤+ − −⎣ ⎦

∑

∑

3 3
5 1

1

3 3
6 1

1

12

/2 /2

nls
i

s m i i
i

t nls
i

s m
i

kd Q s s

d h h Q s s
βPly arrangement II:   

i i

 

where nls is the number of layers of the stiffener rib and k is the factor to get torsion constant 

of an isotropic beam having rectangular section, which is a function of b /ds s ratio of the 

rectangular section [153].  

 

Now equations (44) – (48) may be used to derive the elastic stiffness matrix [ ]esk , mass 

matrix  and geometric stiffness matrix [ esm ] gsk⎡ ⎤⎣ ⎦  of a stiffener element following the 

procedure used for shell element and these matrices may be expressed as follows. 

 

[ ] [ ] [ ][ ] [ ] [ ][ ]T T
es s s s s s sk B D B dx dy dz B D B J d d dξ η ζ′ ′= =∫ ∫   (50)

   

[ ] [ ] [ ] [ ] [ ]T T
es Ds Ds Ds Dsm N N dxdydz N N J d dρ ρ= =∫ ∫ dξ η ζ  (51) 
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[ ] [ ][ ] [ ] [ ][ ]T T
gs Gs Gs Gs Gsk B B dxdydz B B J d dτ τ⎡ ⎤ = =⎣ ⎦ ∫ ∫ dξ η ζ  (52) 

 

[ ]sB [ ]GsB  and [ ]GB are analogous to [ ]Bwhere  and  respectively. The initial stress 

matrix [ 1τ⎡ ⎤⎣ ⎦]τ  looks identical to that of shell (39) but its sub matrix  for stiffener element is. 

1

0 0

[ ] 0 0 0

0 0 0

σ
τ

⎡ ⎤′
⎢ ⎥
=⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

x

⎥   (53) 

 

The elastic stiffness matrix, mass matrix and geometric stiffness matrix are computed for all 

the shell elements and stiffener elements of the entire structure and these matrices are 

accordingly assembled together to form the corresponding global matrices [ ]K , [ ]M  and 

 where the skyline storage algorithm is used to keep these big size matrices in single 

array.  

[ GK ]

 

3.4 Governing Equations 

 

With the stiffness matrix [ ]K , mass matrix [ ]M  and geometric stiffness matrix of the 

structure obtained in the previous section, the equation of motion of the structure can be 

written as 

[ GK ]

 

[ ]{ } { } { }
..
[ [ ] [ ]] 0GM q K P K q+ − =   (54)                                     
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This is a general equation and it can be reduced as a special case to get the governing 

equations for buckling, vibration and dynamic stability problems as follows. 

 

3.4.1 Buckling 

 

{ } { }[ [ ] [ ] ] 0cr GK P K q− =   (55)  

 

where Pcr is the critical load of buckling. 

 

3.4.2 Vibration 

 

{ } { } { }2[ [ ] [ ] ] [ ] 0GK P K q M qω− − =   (56)  

 

where ω is the vibration frequency of the structure subjected to in-plane load and it becomes 

the natural frequency of vibration if P is made zero.  

 

3.4.3 Dynamic stability 

 

Equation (54) can also be used to solve the dynamic stability problem. Let the in-plane load 

P be periodic and may be expressed as 

 

tPPtP ts Ω+= cos)(    (57)

  

where  is the frequency of excitation  is the static component of P and  is the 

amplitude of its dynamic component, which may be expressed in terms of static buckling 

load  as follows. 

sP tPΩ

crP
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crtcrs PPPP βα == ,    (58) 

 

αwhere and β  may be defined as static and dynamic load factors respectively. Now 

equation (54) can be written as 

 

[ ]{ } [ ] [ ] [ ] { }..
cos 0cr G cr GM q K P K P K t qα β Ω⎡+ − − =⎣

⎤
⎦   (59) 

 

The above equation represents a system of second order differential equation with periodic 

coefficient, which is basically the Mathieu-Hill equation. The boundaries of dynamic 

instability regions can be found by the periodic solutions having period of T and 2T, where T 

= 2π/Ω. The range of primary instability region with period of 2T is of practical importance 

[17] where the solution can be achieved by expressing {q} in the form of the trigonometric 

series as 

 

{ } { } { }
1,3,5

sin cos
2 2k k

k

k t k tq a bΩ∞

=

⎡= +⎢⎣ ⎦∑ Ω ⎤
⎥   (60) 

 

After substitution of the above equation in equation (55) and taking the first term of the 

series, the quantities associated with sin Ωt/2 and cos Ωt/2 are separated out and processed 

accordingly to eliminate the time dependent component and it leads to  

 

[ ] [ ] [ ] [ ] { }cr G cr G abK P K P K M q
⎡ ⎤

− + −⎢ ⎥
⎣ ⎦

21 0
2 4

α β Ω
=   (61)  

 

where { }abq  is either { }ka  or { }kb  depending on the use of plus or minus of the dynamic in-

plane load component respectively. It is basically an eigenvalue problem and it can be solved 
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for known value of α, β and . The two frequencies corresponding to plus and minus will 

indicate the boundaries of the dynamic instability region. 

crP

 

3.5 Method of Solution 

 

In the present investigation the analysis for vibration, buckling (static stability) and dynamic 

stability of the isotropic and laminated composite stiffened shell panels with and/or without 

cutout are implemented by a computer program written in Fortran-90. An attempt has been 

made to make the program as general as possible to carryout any type of analysis within the 

scope of the present investigation. The details of the computer program and the method of 

solution are explained in the Appendix. The equations are solved using the technique 

proposed by Corr and Jennings [28] where the matrices [K], [M] and [KG] are stored in single 

array according to skyline storage algorithm. In all the cases, the stiffness matrix [K] is 

factorized according to Cholesky’s decomposition technique. With this, the solution for 

displacement is simply obtained by its forward elimination and backward substitution 

techniques. These displacements components are used to find out the stress field. These 

stresses are used to calculate the geometric stiffness matrices. The solution of eqns. (55), (56) 

and (61) go through a number of operations [28]. Moreover it requires a number of iterations 

to get the solution since these equations come under the category of eigenvalue problem. In 

such cases, the solution of eigen vector and eigen value is more than one where the different 

solutions correspond to different modes of vibration or different modes of buckling. The 

mode which gives lowest value of the eigen value is quite important and it is known as 

fundamental mode. In vibration analysis, it is required to get the solution for first few lower 

modes from practical purpose while the solution of fundamental mode is usually required in 

buckling and dynamic stability analysis.  
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Chapter-4 

Problem Description 

 
4.1 Introduction 

 

The descriptions of the problem considered in the present investigation as mentioned in the 

Chapter-2 are presented here. This chapter also includes the details about the geometry, 

loading type, material properties, boundary conditions and non-dimensionalisation of 

parameters.  

 

4.2 Geometry of the stiffened panels 

 

 

 

 

 

 

 

 

 

 

Ry 

Rx 

a 

b 

y z 

x 

 

Fig. 4.1 Geometry of a doubly curved stiffened shell panel 

 

It is a doubly curved laminated shell panel having laminated stiffeners with and without 

cutout. Figure 4.1 shows the panel with a central stiffener without cutout. The stiffeners can 

be provided in any positions along x and y direction. The radii of curvatures are taken in such 
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a manner to get some specific geometry such as flat plate (a/Rx = 0.0, b/Ry = 0.0), cylindrical 

shell panel (a/Rx = 0.0, b/Ry = 0.5), spherical shell panel (a/Rx = 0.5, b/Ry = 0.5) and 

hyperbolic hyperboloid (a/Rx = -0.5, b/Ry = 0.5). All the panels are shown in Fig 4.2. The 

stiffeners are attached at different positions of the panels during the analysis. In most of the 

cases the aspect ratio (a/b) is taken as 1. To get different value of a/b the dimension a is 

changed keeping b as constant. The load is applied along x-direction throughout the analysis. 

 

      

                   

 

                 (a) Flat panel                                     (b) Cylindrical shell panel 

 

 

               

 

 

                    (c) Spherical shell panel                 (d) Hyperbolic hyperboloid shell panel 

 

Fig. 4.2 Geometry of different shell panels 

 

4.3 Non-uniform loading type 

 

The different non-uniform loading types considered in the analysis are as shown in Fig 4.3. 

The panels become uniformly loaded when the non-uniform load bandwidth ratio (c/b) in 

Type-I and Type-II becomes 1.0 and in Type-III becomes 0.5. 
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Loading Type-I – Localized edge loading from one end of two opposite side. 

Loading Type-II – Localized edge loading from the center of two opposite side. 

Loading Type-III – Localized edge loading from both ends of two opposite side. 

Loading Type-IV – Concentrated edge loading of two opposite side.  

 

 

a 

b

c 
σ σ 

a 

b 

c
σ σ 

c 

b 

c 
0.5σ 0.5σ 

a 

0.5σ 0.5σ 

a 

b 

c

P P 

Type-I 

Type-IV Type-III 

Type-II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Different non-uniform loading type (plan view) 

 

4.4 Boundary conditions 

 

The numerical results are presented for isotropic and laminated composite stiffened shell 

panels with different combination of boundary conditions with various geometry of the 

stiffened shell panels. In the discussions, letter S, C and F denotes a stiffened shell panels 
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with the edge as simply supported, clamped and free edges respectively. Any notation like 

SCFS indicates that Side-1 is simply supported, Side-2 is clamped, Side-3 is free and Side-4 

is simply supported (Fig 4.4). Side-1 and Side-2 are at y = 0 and y = b respectively. Similarly 

Side-3 and Side-4 are at x = - a/2 and x = a/2 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Detail of the edges of the shell panels 

 

The restraints imposed for different boundary conditions are, 

 

S-Simply Supported - (For Side-1 and Side-2), u = w = θx = 1 and v = θy = 0 

                                 - (For Side-3 and Side-4), v = w = θy = 1 and u = θx = 0 

C-Clamped- (For all sides) u = v = w = θx = θy = 1 

F-Free - (For all sides) u = v = w = θx = θy = 0. 

‘1’ means movement not allowed 

‘0’ means movement allowed 

For the comparison of results, the boundary conditions considered are as reported in the 

respective studies in the literature.  

Side-2

Side-1 Ry 

Rx 

a 

Side-3 b 

Side-4
y z 

x 
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4.5 Material properties 

 

In the present study both isotropic and composite materials are considered with the following 

properties, but all the results are presented in non-dimensional form. The composite material 

properties (M2) are the properties of a typical graphite/epoxy laminate [14]. The material 

properties of the panel skin and stiffeners are same. For the comparison of results, the 

material properties considered are as reported in the respective studies in the literature. 

Isotropic (M1) – E11/E22 =1.0, E11=E22=E, G12 = G13 = G23 = G= E/2(1+ν) and ν = 0.3 

 

Composite (M2) - E11/E22=40.0, G12 = G13 = 0.6E22, G23 = 0.5E22 and ν12 = 0.25 

 

4.6 Non-dimensionalisation of parameters 

 

Most of the model parameters and results are presented in non-dimensional form to make 

them independent of panel size, thickness, material properties etc for the convenience of the 

analysis. The non-dimensionalisation of different parameter like natural frequency of 

vibration, buckling load and excitation frequency of load in dynamic stability analysis is 

taken as shown in the Table 4.1 in line with references [68,125,141].  

 

Table 4.1 Non-dimensionalisation of parameters 

 

Non-dimensional values Non-dimensional parameters 

Isotropic Composite 

Natural frequency of vibration (ϖ ) 2 /b hω ρ D 2 2
22/b Eω ρ h  

Buckling load ( crP ) /crP b D  3
22/crP b E h  

Excitation frequency (Ω ) 2 /b hρΩ D 2 2
22/b EρΩ h  
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Where,
3

212(1 )
EhD

υ
=

−
 

             h = Thickness of the panel 

             ρ = Material density 

 

4.7 Problems of stiffened shell panel identified for the present investigation 

 

As discussed in Chapter-2 the different stiffened shell panel problems identified for present 

investigation as follow, 

 

1. Stiffened shell panels without cutout under uniform loading 

2. Laminated composite stiffened shell panels without cutout under non-uniform loading 

3. Laminated composite stiffened shell panels with square cutout under uniform/non-

uniform loading 

 

1.   Stiffened shell panels without cutout under uniform loading 

 

In this problem both laminated composite and isotropic stiffened shell panels are considered 

with uniform edge loading. In both the stiffened panels the stress field is taken to be uniform, 

without solving the pre-bucking stress analysis. The detail description of both the panels is as 

follows. 
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(Part-I) Laminated composite stiffened shell panels 

 

 

 
 

Fig. 4.5 A doubly curved laminated shell panel with a central  

laminated stiffener (xst)b

 

 

The problem considered is a doubly curved laminated shell panel having laminated stiffeners 

subjected to uniform edge loading (c/b=1.0, loading Type-I) along x-direction. Figure 4.5 

shows the panel with a central stiffener. All four types of stiffened panels such as flat plate, 

cylindrical shell panel, spherical shell panel and hyperbolic hyperboloid panel as mentioned 

in Section 4.1 are considered for the analysis. The lamination scheme for the shell and the 

stiffener adopted is (0/90/0/90/---) in one case and (45/-45/45/-45/---) in the other case. The 

number of layers in the skin of shell panel and stiffener are taken to be same in all the cases. 

However this is varied from two to eight layers. For the stiffener, parallel stacking scheme is 

adopted except the case in which the effect of stacking scheme is considered. In many cases 

the depth to width ratio (ds/bs) of the stiffener is varied where the stiffener width is always 

taken as the shell thickness (h). Moreover the thickness ratio (a/h) and aspect ratio (a/b) 

h 

ds

bs

90(or –45)

90(or –45) 
Ry 

Rx 

a 

b 

y z 

x 

0(or 45) 

0(or 45) 

Stiffener, horizontal 
stacking with two layers 
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taken are 100 and 1 respectively in all the cases. The stiffener is placed at the inner surface of 

the shell panel except the case in which the effect of eccentricity is considered. In all the 

cases the four sides of the shell panel are taken to be simply supported and the material 

properties used for shell panel as well as stiffener is M2 as described in Section 4.5. 

 

(Part-II)Isotropic stiffened shell panels 

 

 
Fig. 4.6 A doubly curved shell panel with two orthogonal stiffeners 

 

It is a doubly curved stiffened shell panel subjected to uniform edge loading along x-

direction. Figure 4.6 shows the panel with two orthogonal stiffeners. The radii of curvatures 

are taken in a manner so as to get different geometry such as flat plate, cylindrical shell 

panel, spherical shell panel and hyperbolic hyperboloid as mentioned in section 4.2 In many 

cases the depth to width ratio (ds/bs) of the stiffener is varied where the stiffener width (bs) is 

always taken as twice the shell thickness (2h). The thickness ratio (a/h) and aspect ratio (a/b) 

are taken as 100 and 1 respectively. The stiffeners are placed at the inner surface of the shell 

panel unless specified. Moreover three types of placement for the stiffeners are considered, 

those are x-orientation, y-orientation and orthogonal stiffeners. For all these three orientations 

the numbers of stiffeners taken are 1, 3, 5 and 7. The stiffener number one is placed along the 

Ry 

Rx 

a 

b 

y z 

x 
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center line and the other stiffeners are placed symmetrically on each nodal line from both 

side of the center line stiffener. This arrangement of placing the stiffeners is considered for 

all three orientations. The material properties of the shell skin and stiffeners are as M1 stated 

in section 4.5. The results obtained in the analyses are presented in non-dimensional form as 

section 4.6. 

 

2. Laminated composite stiffened shell panels without cutout under non-uniform 

loading 

 

In this problem the laminated composite shell panels are considered with non-uniform edge 

loading. The pre-bucking stress analysis is carried out and these stresses are used to 

determine the geometric stiffness matrix. The detail description of the panel is as given 

below, 

 

The problem considered here is a doubly curved laminated shell panel having laminated 

stiffeners subjected to non-uniform edge loading (Fig.4.3) along x-direction. Figure 4.7 

shows the panel with two orthogonal stiffeners with loading Type-I. The radii of curvatures 

are taken in a similar manner to get the specific geometry of flat plate, cylindrical shell panel, 

spherical shell panel and hyperbolic hyperboloid panel as mentioned in section 4.2. The 

lamination scheme for the shell and the stiffener adopted is (0/90/0/90/---) in one case and 

(45/-45/45/-45/---) in the other case. The number of layers in the skin of shell panel and 

stiffener are taken to be same in all the cases. However this is varied from two to eight layers. 

For the stiffener, parallel stacking scheme is adopted unless it is not mentioned specifically.  

The stiffener width (bs) is always taken as twice the shell thickness (2h). Moreover the 

thickness ratio (a/h) and aspect ratio (a/b) taken are 100 and 1 respectively in all the cases if 

otherwise not stated. The stiffeners are placed at the inner surface of the shell panels unless 

specified. Two types of placement for the stiffeners are considered, those are x-direction and 

orthogonal (x and y direction) stiffeners. For these two orientations the numbers of stiffeners 
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taken are 1, 3, 5 and 7. The stiffener number one is placed along the center line and the other 

stiffeners are placed symmetrically on each nodal line from both side of the center line 

stiffener. In all the cases the four sides of the shell panel are taken to be simply supported if 

otherwise not stated and the material properties used for shell panel as well as stiffener is M2 

as described in section 4.5. 

 

 

 

  
Fig.4.7 A doubly curved shell panel with two orthogonal stiffeners with loading Type-I 

 

 

3. Laminated composite stiffened shell panels with square cutout under uniform/non-

uniform loading 

 

In this problem the laminated composite shell panels with square cutout are considered with 

both uniform and non-uniform edge loading. Similar to the previous problem, the pre-

bucking stress analysis is carried out and these stresses are used to determine the geometric 

stiffness matrix. The detail description of the panel is as given below, 

c
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ca

 
 

Fig. 4.8 A doubly curved shell panel with stiffened square opening with a central x-

stiffener subjected to loading Type-I 

 
The problem considered is a doubly curved laminated shell panel with square cutout located 
at the center of the panel having laminated stiffeners subjected to non-uniform edge loading 
(Fig.4.3) along x-direction. The panels are attached with one stiffener along x-direction and 
also four stiffeners are attached to the four sides of the opening; length of each stiffener is 
equal to the size of the cutout. The cutout is square (ca/cb = 1) in all cases and located at the 
center of the panels. Figure 4.8 shows the panel with stiffened opening with a x-stiffener 
along the center line with loading Type-I. All four types of stiffened panels such as flat plate, 
cylindrical shell panel, spherical shell panel and hyperbolic hyperboloid panel as mentioned 
in Section 4.2 are considered for the analysis. The lamination scheme for the shell and the 
stiffener adopted is (45/-45/45/-45) if otherwise not stated. The number of layers in the skin 
of shell panel and stiffener are taken to be same in all the cases. For the stiffener, parallel 
stacking scheme is adopted unless it is not mentioned specifically. In all cases the depth to 
width ratio (ds/bs) of the stiffener is 4.0 and the stiffener width is always taken as twice the 
shell thickness (2h). Moreover the thickness ratio (a/h) and aspect ratio (a/b) taken are 100 
and 1 respectively in all the cases. The stiffener is placed at the inner surface of the shell 
panel unless specified. In all the cases the four sides of the shell panel are taken to be simply 

cb 

b 
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c

Ry 

Rx 

 

 

y z 

x Stiffened 
opening 
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supported (SSSS). The material properties used for shell panel as well as stiffener is M2 as 
described in section 4.5.  
 

The results of the problems considered are elaborated in Chapter-5 for different parameters. 
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 Chapter-5 

Results and Discussions 
 

5.1 Introduction 

 
In this chapter the results from the theoretical investigations dealing with static and dynamic 
stability of laminated composite and isotropic stiffened shell panels with and without cutout 
with various uniform and non-uniform in-plane edge loading are presented using finite 
element formulations given in Chapter-3. If the applied load is non-uniform at the edges or 
there are geometric discontinuities (cutout, cracks etc.) in the panel, the in plane stress 
distribution becomes non-uniform within the panel. The state of non-uniform stress 
distribution may have significant influence on the static and dynamic stability behaviour of 
the laminated stiffened shell panels. 

 
5.2 Stiffened shell panels without cutout under uniform loading 
 

The problem of laminated composite and isotropic stiffened shell panels without cutout with 

uniform loading (c/b = 1.0, loading Type-I) is investigated for buckling (static stability), 

vibration and dynamic stability characteristics in this section, for establishment of 

convergence and validity of the present analysis.  

 

5.2.1 Convergence and validation study 

 

The convergence and accuracy of the proposed method are first established by comparing the 

results of various problems with those of earlier investigators’ available in the literature. 
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(a)Free vibration of a simply supported stiffened plate 

 

  

h 

ds 

a

b

bs 
a = 0.6096m 
b = 0.4046m 
h = 0.00635m 
bs = 0.0127m 
E = 2.11×1011 N/m2

ρ = 7842.72 Kg/m3

ν = 0.3 

 

 

 

 

 

 

 

Fig.5.1 Simply supported rectangular stiffened plate 

 

Table 5.1 Natural frequencies (Hz) of simply supported rectangular stiffened plate 

 

Mode1 Mode2 

ds (m) ds (m) 

Reference 

0.0 0.0254 0.0508 0.0 0.0254 0.0508 

Present (2×2) 

Present (4×4) 

Present (6×6) 

Present (8×8) 

Present (10×10) 

Present (12×12) 

Present (14×14) 

197.750

137.525

136.901

136.846

136.857

136.855

136.854

381.348

270.400

263.784

262.932

262.765

262.718

262.702

703.148

305.941

291.624

290.413

290.181

290.110

290.082

1419.06

279.151

264.098

263.255

263.109

263.053

263.047

1949.09 

293.429 

279.250 

278.285 

278.102 

278.046 

278.023 

1572.55

348.586

325.867

323.185

322.692

322.552

322.500

Thomas and Abbas [151] 

Long [81] 

136.5 259.1 

267.1 

293.8 

273.8 

265.5 280.9 

280.3 

332.4 

331.8 
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The problem of simply supported stiffened plate as shown in Fig.5.1 is used to carry out the 

convergence study. The whole structure is modeled with different mesh sizes for the free 

vibration analysis. The details of the stiffened plate are given in the Fig.5.1. The results for 

first two natural frequencies are shown in the Table 5.1. It shows a rapid convergence with 

mesh refinement. Again a mesh size of 8×8 is found to be sufficient to attain the 

convergence. For the purpose of validation, the frequencies are compared with those of 

Thomas and Abbas [151] and Long [81].  The results are in good agreement. 

 

(b)Free vibration of a spherical shell panel of square base having two stiffeners along its 

two centerlines   

 
Fig. 5.2 Stiffened spherical shell panel having square base 

 

The stiffened spherical shell panel as shown in Fig.5.2 is also used to carry out the 

convergence study taking its four sides as simply supported (SSSS) as well as clamped 

(CCCC) conditions. The details of the shell and stiffeners are given in Fig. 5.2 where the 

stiffeners are taken to be symmetric with respect to the shell mid surface. Similar to the 

previous problem the structure is modeled with a number of mesh sizes to carry out the 

analysis. The first two natural frequencies for both the boundary conditions are plotted in Fig. 

5.3. It is observed that with mesh refinement the results are converging rapidly. Here also a  

R 

R 

a 

b 

0.101m

0.0508m0.099451m
0.0508m

Cross-section at the stiffener position 

a = b = 1.5698m, R= 2.54m, Thickness of the shell (h) = 0.099451m, 
ρ = 7732.24 Kg/m3, E =68.97×106N/m2, 
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mesh size of 8×8 is found to be sufficient to attain the convergence. To validate the results, 

the first five frequencies (mesh size 8×8) for the simply supported boundary condition are 

compared with the results of finite element solutions of Nayak and Bandopadhyay [100], 

Samanta and Mukhopadhyay [127] and Prusty [113] in Table 5.2. The results are found to be 

in good agreement.  

 

Table 5.2 Natural frequency (rad/sec) of simply supported spherical shell panel with 

two stiffeners along the two central lines 

 

 

Nayak and 

Bandopadhyay [100] 

Mode 

Number 

Present 

(8×8) 

El-8a

(8×8) 

El-9b

(8×8) 

Samanta and 

Mukhopadhyay  

[127] 

(8×8) 

Prusty [113] 

(16×16)  

1 

2 

3 

4 

5 

40.2300 

69.0282 

69.1158 

91.2984 

105.6800 

40.26 

70.98 

70.98 

96.06 

40.26 

70.97 

70.97 

96.06 

41.70 

74.11 

74.36 

99.18 

104.94 

40.81 

72.13 

72.13 

92.92 

105.69 

 

a Eight noded element, b Nine noded element 

 

(The mesh size is considered taking the full structure in all cases) 
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(The mesh size is considered taking the full structure) 

 

Fig. 5.3 Convergence for frequency of vibration with mesh size of a 

stiffened spherical shell panel having square base 

 

 

 

(c)Free vibration of a rectangular composite stiffened plate 

 

The laminated (0/90/0) rectangular plate with three unidirectional laminated (0/90/0) 

stiffeners as shown in Fig. 5.4 is analyzed taking simply supported boundary condition at the 

four sides. The detail of geometry and material properties are given in Fig. 5.4. In the 

analysis the whole structure is divided in 8×8 mesh. The frequencies for first five modes 

obtained in the present analysis are presented in Table 5.3 with some other finite element 

results reported by Prusty [113], Chao and Lee [25] and Chattopadhyay et al. [27].   The 

table shows that the results agreed well. 
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Table 5.3 Natural frequencies (Hz) of a simply supported stiffened composite plate 

 
 

References  Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 

65.216    98.643 168.36 231.96 255.64 Present (8×8) 

65.000    101.00  228.00 260.00 Chao and Lee [25] 
63.510    95.840 162.97 223.09 245.37 Prusty [113] 
63.000    95.000  225.00 250.00 Chattopadhyay et al. [27] 

 
 

 

Section at x-x

3.0 

6.0

x x

3.4

4@100 

300 
E11=9.71*109 N/m2

E22=3.25*109 N/m2

G12=G13=0.9025*109 

N/m2

G23=0.23*109 N/m2

ν12=0.29 
ρ =1347.0 Kg/m3

These properties are same for plate and stiffeners. All dimensions are in mm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Simply supported laminated plate with three unidirectional laminated stiffeners 

 

 (d) Free vibration of a composite stiffened spherical shell panel of square base 

 

The laminated spherical shell panel having two laminated central stiffeners (Fig. 5.5) placed 

inside the shell surface is analyzed taking stacking sequence for the shell and the stiffener as 
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0/90/0/90 in one case (I) and 45/-45/45/-45 in other case (II). The numbering of layers starts 

from bottom to top both in stiffener and panel skin. The analysis is carried out for three 

different values of curvature ratio (R/a) taking simply supported (SSSS) boundaries at the 

four edges. In the analysis the whole structure is divided in 8×8 mesh. The data used are a = 

b = 500mm, E 4 
11 = 25* E22, a/h = 50, E22 =1.0*10 N/mm2, G = G = 0.5*E12 13 22, G23=0.2*E22, 

ν12 = 0.25, ρ = 1.0*10-4 Kg/mm3. The fundamental frequencies obtained in the present 

analysis are presented with finite element solution of Prusty [113] in Table 5.4, which shows 

that the results are in good agreement. 

 

Cross-section at the stiffener position 

R 

R 

a 

b 

10mm

15mm 

Fig. 5.5 Laminated spherical shell panel with two central laminated stiffeners  

attached to the bottom surface 

 

Table 5.4 Natural frequencies (Hz) of a laminated composite spherical shell panel  

with two central laminated stiffeners attached to the bottom surface 

 

R/a = 5 R/a = 10 R/a= 100    Lamination References 
Case – I 1.415 1.239 1.183 Present (8×8)

1.410 1.238 1.183 Prusty [113] 
2.426 1.596 1.207        Case – II Present (8×8)
2.446 1.682 1.358  Prusty [113] 
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(e) Buckling of a rectangular plate with a central stiffener under uniaxial load 

 

The problem of the rectangular stiffened plate (Fig. 5.6) having simply supported boundary 

conditions at its four edges is investigated for different plate aspect ratio (a/b) and stiffener 

parameters (  where A/ , /sA bh EI bDδ γ= = s

b h

s- cross-sectional area of the stiffener, Is- 

moment of inertia of the stiffener). The simply supported boundary condition is as SSSS in 

section 4.1.3. The plate thickness ratio (a/h) and isotropic plate and stiffener material (ν) are 

taken as 100 and 0.3 respectively. The dimension a is varied keeping b as constant to get 

different values of aspect ratio (a/b). In the analysis the whole structure is divided in 8×8 

mesh. The non-dimensional critical buckling stress parameter  obtained 

in the present analysis is presented in Table 5.5 with the analytical solution of Timoshenko 

and Gere [152] and finite element solution of Mukhopadhyay [93]. The table shows that the 

agreement between the results is very good. As Timoshenko and Gere [152] have not 

considered the effect of stiffener eccentricity and torsional rigidity, these parameters are 

taken as zero in the present problem. 

2 2/( / )crk Dσ π=

 

Table 5.5 Buckling load parameter (k) for a simply supported rectangular stiffened 

plate under uniaxial compression 

 

γ  = 10, δ = 0.05 γ =5, δ=0.2 a/b 
Present Timoshenko 

and Gere  
Mukhopadhyay  

[93] 
Present Timoshenko 

and Gere 
Mukhopadhyay  

[93] (8×8) 
[152] [152] 

0.6 16.403 16.5  16.463 16.5  
0.8 16.686 16.8  12.729 13.0  
1.0 15.908 16.0 15.91 9.612 9.72 9.65 
2.0 10.110 10.2 10.16 6.244 6.24 6.24 
3.0 11.867 12.0 11.94 6.512 6.53 6.48 
4.0 10.135 10.2  6.264 6.24  
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b

a

 

Fig. 5.6 Simply supported stiffened rectangular plate under uniaxial compression 

 

(f) Buckling of a laminated cylindrical shell panel under axial compression  

 

The laminated (0/90/0/90/0) cylindrical shell panel of square base (a×a) simply supported 

along all four edges is analyzed taking curvature ratio R/a = 20 and thickness ratio a/h = 10, 

20, 30, 50 and 100. In the analysis the whole structure is divided in 8×8 mesh. The values of 

non-dimensional buckling load parameter 2
22/cr crN N a E h= 3  obtained in the present analysis 

are presented with those of Sciuva and Crrera [128] Table 5.6, which shows that the results 

agreed well. The material properties used are: E = 40E11 22, G = G = 0.5E12 13 22, G = 0.6E23 22 

and ν12 = 0.25. 

 

      Table 5.6 Non-dimensional buckling load parameter of a simply supported cross-ply 

cylindrical shell panel under axial compression 

 

a/h References 

10 20 30 50 100 

Present 

(8×8) 

23.964 31.792 33.981 35.395 36.845 

     

24.19 31.91 34.04 35.42 36.86 Sciuva and 

Crrera [128] 
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(g) Dynamic instability of un-stiffened simply supported square plate 

   

The problem of un-stiffened simply supported square plate (a×a) is also used to carry out the 

convergence study. The a/h ratio of the plate is 100. The plate is subjected to uniform loading 

in the two opposite edges. The whole structure is modeled with a number of mesh sizes to 

carry out the analysis. The non-dimensional ( 2 /a hρΩ = Ω D ) lower and upper bounding 

excitation frequencies of the dynamic instability zones are shown in Table 5.7 for two sets of 

α and β values for all the mesh sizes. It shows a rapid convergence with mesh refinement. 

Again a mesh size of 8×8 is found to be sufficient to attain the convergence and this is used 

for all the subsequent analyses. For validation, the results are compared with those of Hutt 

and Salam [42] and Srivastava et al. [142]. The results obtained in these studies (Hutt and 

Salam [42] and Srivastava et al. [142]) are found to be in good agreement compared to 

present results.  

Table 5.7 Non-dimensional bounding frequency (Ω ) for un-stiffened simply supported 

square plate 

Non-dimensional bounding frequency ( ) Ω
α = 0.0 and β = 0.8 α = 0.6 and β = 0.32  Analysis 

La Ub La Ub

Present (2×2) 50.82 77.27 32.22 49.11 
Present (4×4) 30.80 47.06 19.48 29.76 
Present (6×6) 30.58 46.71 19.34 29.54 
Present (8×8) 30.57 46.69 19.33 29.53 

Present (10×10) 30.56 46.69 19.33 29.53 
Present (12×12) 30.56 46.69 19.33 29.53 
Present (14×14) 30.56 46.69 19.33 29.53 
Present (16×16) 30.56 46.69 19.33 29.53 
Present (18×18) 30.56 46.69 19.33 29.53 

Hutt and Salam [42] 30.57 46.69 19.53 29.60 
Srivastava et al. [142] 30.57 46.71 19.33 29.54 

 

a Lower boundary of the instability zone 
b Upper boundary of the instability zone 
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(h) Dynamic instability of a laminated composite square plate simply supported at the four 

sides 

 

The simply supported laminated square plate (a×a), (standard case, Moorthy et al. [91]) with 

four layer, symmetric cross-ply (0/90/90/0) laminates under in-plane pulsating load along the 

direction of 0 degree laminate is analyzed for different values of dynamic load factor β taking 

static load factor α to be zero. The plate parameters are, a = 0.254m, a/h=25, ρ =2.7712×104 

Kg/m3 10, E22 =6.8982×10  N/m2, E11/E = 40.0, G = G =0.6E22 12 13 22, G = 0.5E23 22 and ν12 =0.25. 

In the analysis the whole structure is divided in 8×8 mesh. The values of bounding 

frequencies obtained in the present analysis are plotted with those of Moorthy et al. [91] in 

Fig. 5.7, which shows that the agreement between the results is very good. 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

 

 

Excitation frequency/fundamental frequency

D
yn

am
ic

 lo
ad

 fe
ct

or
(β

)

 Morthy et al.[91]
 Present

 
Fig. 5.7 Comparison of upper and lower bounding frequencies for a simply supported 

laminated composite square plate 
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(i) Dynamic instability of stiffened square plate simply supported at all the four sides 

 

= 0.0127m and dThe square plate (0.6m×0.6m×0.00633m) is attached with a stiffener (bs s = 

0.0222m) on the bottom surface along its one center line. The load is acting at the edges 

uniformly in the direction of the stiffener. All the sides are simply supported. The non-

dimensional excitation frequency ( 2 /a hρΩ = Ω D ) is obtained taking first mode buckling 

load of the stiffened plate. The static load factor (α) is kept as 0.2. In the analysis the whole 

structure is divided in 8×8 mesh. The results of upper and lower bounding frequencies for the 

dynamic instability region are compared with the results given in Fig.10 of Srivastava et al. 

[141] in Table 5.8 and it shows that the results are in good agreement. 

 

Table 5.8 Non-dimensional excitation frequency of square simply supported stiffened 

plate uniaxial compression 

 

Srivastava et al. [141]Present (8×8) β 

lΩ uΩ lΩ uΩ    

56.37 56.37 56.4956.49 0 

59.76 52.83 59.9152.85 0.2 

62.99 48.89 63.1548.94 0.4 

66.06 44.56 66.2244.68 0.6 

68.89 39.92 69.1639.96 0.8 

71.9834.61 1 

74.6828.26 1.2 
 

l u Lower boundary of the instability zone,  Upper boundary of the instability zone 
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5.2.2 Problems under investigation 

 

After obtaining the validity of the present analysis, the free vibration, buckling and dynamic 

instability analyses are carried out for laminated stiffened shell problem in Part-I and the 

buckling and dynamic instability analysis are carried out for an isotropic stiffened shell panel 

in Part-II. In both the cases different parameters are varied in a wide range to study the effect 

of these parameters on the behavior of the structure. 

 

(Part-I) Laminated composite stiffened shell panels 

 

The laminated composite stiffened shell panel problem without cutout is considered here. 

The numerical results are presented for the problem 1, part-I as described in 4.7, under 

varying parameters. 

 

 
 

Fig. 5.8 A doubly curved laminated shell panel with a central  

laminated stiffener (xst)b

 

 

h 

ds

bs

90(or –45)

90(or –45) 
Ry 

Rx 

a 

b 

y z 

x 

0(or 45) 

0(or 45) 

Stiffener, horizontal 
stacking with two layers 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

                                                                                                  Results and Discussions       70 

Numerical results 

 

The numerical results for the free vibration, buckling and dynamic instability analyses are 

presented for all four (flat plate, cylindrical shell panel, spherical shell panel and hyperbolic 

hyperboloid panel) laminated composite stiffened shell panels. The parameters like stiffener 

size, lamination scheme, stiffening scheme, stiffener eccentricity, stacking scheme in 

stiffener etc. are varied in a wide rage to study the effect of these parameters on the behavior 

of the structure. The detail is given below. In all the analysis the whole structure is divided in 

8×8 mesh as this mesh size (8×8) is found sufficient to attain convergence and for validation 

of results (5.2.1).  

 

(a) Free vibration studies 

 

/bThe free vibration analysis is carried out for 2, 4, 6 and 8 layer configurations taking (ds s) 

ratios of the stiffener as 2, 4, 6 and 8. The results obtained are presented in Table 5.9 and 

Table 5.10 for cross-ply and angle-ply stacking respectively. 

 

Table 5.9 Non-dimensional fundamental frequency of cross-ply laminated shell panel 

with cross-ply laminated stiffener 

 

d /bShell panel/ 
stiffener lamination 

Flat plate Cylindrical Spherical Hyperbolic s s
panel panel hyperboloid panel

(0/90) 2 17.276 35.960 74.401 16.814  1
4 28.686 35.928 77.189 28.690 
6 31.461 35.831 82.138 38.773 
8 31.358 35.464 86.019 44.199 

(0/90) 2 21.434 42.349 75.445 20.955  2
4 32.096 47.857 77.837 31.249 
6 42.422 51.492 82.538 41.730 
8 48.882 51.208 87.871 50.341 

(0/90) 2 22.042 42.656 75.617 21.569  3

Continuing in the next page
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4 
6 
8 

32.253 
42.605 
50.738 

47.952 
53.887 
53.590 

77.849 
82.397 
87.703 

31.394 
41.759 
50.493 

(0/90) 4 2 
4 
6 
8 

22.231 
32.220 
42.537 
50.782 

42.754 
47.929 
54.705 
54.404 

75.671 
77.817 
82.277 
87.551 

21.762 
31.362 
41.648 
50.416 

  

Table 5.10 Non-dimensional fundamental frequency of angle-ply laminated shell panel 

with angle-ply laminated stiffener 

 

Shell panel/ stiffener 

lamination 

ds/bs Flat plate Cylindrical

panel 

Spherical

panel 

Hyperbolic 

hyperboloid panel

(45/-45) 1 2 

4 

6 

8 

18.456 

19.973 

22.973 

26.972 

41.394 

41.351 

41.224 

40.992 

108.622 

106.707 

104.405 

102.137 

18.601 

19.864 

22.359 

25.697 

(45/-45) 2 2 

4 

6 

8 

24.221 

25.069 

27.303 

30.754 

57.729 

57.639 

57.442 

57.101 

123.078 

122.770 

122.130 

121.022 

23.788 

24.558 

26.544 

29.555 

(45/-45) 3 2 

4 

6 

8 

24.952 

25.743 

27.892 

31.265 

60.229 

60.132 

59.925 

59.569 

124.354 

124.017 

124.372 

122.274 

24.470 

25.188 

27.108 

30.065 

(45/-45) 4 2 

4 

6 

8 

25.196 

25.969 

28.091 

31.437 

61.080 

60.981 

60.771 

60.409 

124.795 

124.449 

124.801 

122.706 

24.698 

25.400 

27.298 

30.236 
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It is observed that the ply orientation has effect on vibration characteristics of the structure. 

The frequency of angle-ply orientation is found to be more compared to that of cross-ply 

scheme for cylindrical and spherical panels. But for flat and hyperbolic hyperboloid panels 

the frequency of angle-ply orientation is less compared to that of cross-ply scheme for ds/bs 

equals to 4,6 and 8. Again the frequency of cylindrical and spherical panels is always more 

than that of flat plate and this is due to the fact that the curvature introduces additional 

stiffening effect. This situation in hyperbolic hyperboloid is different since the curvatures in 

the two principal directions are opposite in nature. In case of cross-ply lamination scheme, 

the frequency is found to be always increasing with the increase of stiffener depth except 

(0/90)1in flat and cylindrical panel. In angle-ply stacking sequence the frequency is 

increasing with increase in stiffener depth for flat and hyperbolic hyperboloid panel, but in 

case of cylindrical and spherical panels the frequency is increasing with the increase in 

stiffener depth up to certain depth and after that the frequency is dropping down. With the 

increase in the number of layers the frequencies values are increasing in all the cases.   

 

(b)Buckling (Static stability) 

 

Similar to the vibration analysis presented above, the buckling analysis is carried out in this 

section and the results obtained in the form of non-dimensional buckling load parameters are 

presented in Table 5.11 and Table 5.12 for cross-ply and angle-ply stacking respectively. It is 

observed that the non-dimensional buckling loads of flat plate and hyperbolic hyperboloid 

panel for (45/-45)n and ds/bs = 2 is more compared to that of (0/90)n and ds/bs = 2. For 

cylindrical shell panel the buckling loads are more in case of angle-ply lamination compared 

to cross-ply lamination scheme. In spherical shell panel the non-dimensional buckling load 

for (45/-45)n is less compared to that of (0/90)n and ds/bs = 2, while it is more for other values 

of ds/bs ratios. With the increase in stiffener depth the buckling load increases up to certain 

value and decreases thereafter in case of cross-ply arrangement while it increases and does 

not drop down in case of angle-ply arrangement.  
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Table 5.11 Non-dimensional buckling load of cross-ply laminated shell panel with cross-

ply laminated stiffener 

 

Lamination 

(Shell 

panel/Stiffener) 

(ds/bs) 

ratio 

Flat plate Cylindrical

panel 

Spherical

panel 

Hyperbolic 

hyperboloid panel

(0/90) 1 2 

4 

6 

8 

30.242 

51.961 

51.999 

51.829 

87.249 

87.354 

87.234 

86.768 

139.001 

139.015 

138.648 

112.516 

28.357 

50.603 

50.641 

50.491 

(0/90) 2 2 

4 

6 

8 

46.547 

104.371 

119.865 

113.870 

154.154 

154.138 

153.712 

113.886 

226.849 

226.698 

212.964 

112.928 

44.047 

97.899 

116.826 

116.144 

(0/90) 3 2 

4 

6 

8 

49.226 

105.400 

132.316 

113.948 

166.470 

166.430 

165.951 

113.964 

242.790 

242.610 

213.123 

112.996 

46.669 

98.808 

129.052 

116.250 

(0/90) 4 2 

4 

6 

8 

50.073 

105.179 

136.680 

113.980 

170.717 

170.751 

170.250 

113.996 

248.360 

248.170 

213.185 

113.023 

47.505 

98.606 

133.357 

116.283 
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Table 5.12 Non-dimensional buckling load of angle-ply laminated shell panel with 

angle-ply laminated stiffener 

 

Lamination 

(Shell 

panel/Stiffener) 

(ds/bs) 

ratio 

Flat plate Cylindrical

panel 

Spherical

panel 

Hyperbolic 

hyperboloid panel 

(45/-45) 1 2 

4 

6 

8 

33.406 

39.887 

52.897 

72.565 

111.530 

126.283 

126.077 

125.328 

132.026 

175.215 

183.267 

182.087 

34.481 

39.385 

49.838 

65.668 

(45/-45) 2 2 

4 

6 

8 

59.383 

63.645 

75.501 

95.790 

196.003 

243.136 

296.434 

324.427 

212.475 

265.487 

327.062 

335.345 

56.766 

60.434 

70.494 

87.251 

(45/-45) 3 2 

4 

6 

8 

61.072 

65.414 

77.831 

99.466 

206.283 

254.039 

310.666 

348.480 

222.577 

275.656 

347.772 

360.197 

60.062 

63.568 

73.514 

90.273 

(45/-45) 4 2 

4 

6 

8 

63.190 

67.453 

79.813 

101.443 

209.863 

257.775 

315.470 

354.823 

226.097 

279.178 

354.877 

368.940 

61.183 

64.637 

74.543 

91.298 

 

(c) Dynamic stability  

 
After obtaining the free vibration and static buckling characteristics it is now pertinent to 

study the dynamic instability of stiffened shell panels. In all the dynamic stability analysis, 

the non-dimensional buckling load of the four layered cross-ply (0/90)2 stiffened flat plate 
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 stiffener (d /bwith (0/90) s s2 = 4) is taken as the reference load, so as to plot the instability 

zones. The effect of parameters like lamination scheme, eccentricity of stiffener and the 

stacking sequence are presented taking the case of spherical shell panel with a single stiffener 

(xst)b attached to the bottom edge. The stiffener depth to breadth ratio (d /bs s) is kept as 4 and 

the static load factor (α) is 0.2 in all cases. The dynamic load factor β varies from 0.0 to 1.5.  

 

i. Effect of lamination scheme 

 

The effect of lamination scheme on the excitation frequencies of stiffened spherical shell 

panel is presented in this section. The lamination schemes are (0/90)  and (45/-45)2 2. The plots 

of the dynamic instability region (DIR) are shown in the Fig.5.9.   

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

140 150 160 170 180 190 200 210 220 230 240 250

 

 

Non-dimensional excitation frequency

D
yn

am
ic

 lo
ad

 fa
ct

or
(β

)

Lamination scheme
 (45/-45)2
 (0/90)2

 
Fig. 5.9 Effect of lamination scheme on dynamic instability region on spherical shell 

 

It is observed that for (45/-45)2 lamination scheme the instability region shifts to the higher 

frequency zone in comparison to (0/90)2 lay up. The plot shows that the onset of instability 

appears early for cross-ply scheme for stiffened spherical shell panel, indicating that the 
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angle-ply lay up is more dynamically stable than the cross-ply scheme for the given stiffener 

configuration of the shell panel. 

 

ii.  Effect of geometry of the shells 

 

 The comparison of the dynamic instability regions for (45/-45)2 stiffened plate, cylindrical 

shell, spherical shell and hyperbolic hyperboloid shell are presented in this section. The plots 

are shown in the Fig. 5.10. 
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Fig. 5.10 Effect of geometry on dynamic instability regions 

 

It is observed that the DIR for the spherical shell is at the highest frequency zone and the 

width of the instability region is smaller in this case as compared to the other cases. The DIR 

gradually shifts to the lower frequency zone side for cylindrical shell, hyperbolic hyperboloid 

shell and plate respectively.  
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This behaviour indicates that for a given ply lay up and stiffener configuration, the spherical 

stiffened shell panel is dynamically more stable in comparison to the other panel geometries. 

  

iii.  Effect of eccentricity of the stiffener 

 

The eccentricity of the stiffener has its effect on the dynamic instability region of the 

stiffened shell. To illustrate this a (45/-45)2 stiffened spherical shell panel with stiffener with 

bottom and top eccentricity is analyzed. From the plot (Fig. 5.11), it is observed that the 

width of the instability region is higher for the eccentric top stiffener.  
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Fig. 5.11 Effect of eccentricity of the stiffener on dynamic instability region of spherical 

shell 
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iv.  Effect of stacking in stiffener 

 

The effect of the stacking of layers in the stiffener on dynamic instability region of the 

spherical stiffened shell panel is presented in this section (Fig.5.12). The stiffener is eccentric 

to bottom surface.  
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Fig. 5.12a Effect of stacking in stiffener on dynamic in stability region of the  

spherical shell panel for (45/-45)  lamination scheme in the stiffener 2
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  Fig.5.12b Same as Fig. 5.12a but for (0/90)2 lamination scheme in the stiffener 

 

In the vertical stacking the dynamic instability region shifts a little to the higher frequency 

zone side and the width of the instability regions are similar in the case of (45/-45) 

lamination scheme. But in the case of (0/90) lamination scheme the dynamic instability 

region shifts a little to the higher frequency zone side for horizontal stacking in the stiffener 

and here also the instability regions are almost same. This indicates that the stacking scheme 

of the stiffener has very little effect on the dynamic instability behaviour for the particular 

geometry and stiffener scheme of the spherical shell panel.  

 

v.  Effect of stiffener scheme 

 

To find out the effect of number of stiffeners on dynamic instability region a spherical shell 

with (45/-45)  panel skin and stiffeners 2  are taken. Four sets of stiffener are placed in both the 

directions. Set one is of one stiffener in both direction at position of y-stiffener at x = 0 and x-

stiffener at y = 0.5b. 
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Fig. 5.13 Stiffened spherical shell panel with three (xst)b and three (yst)b stiffeners 
 

 

Set two (Fig.5.13) is of three stiffeners in both direction at position of y-stiffeners at x = -

0.125a, 0 and 0.125a and x-stiffeners at y = 0.375b, 0.5b and 0.625b. Set three is of five 

stiffeners in both direction at position of y-stiffeners at x = -0.25a, -0.125a, 0, 0.125a and 

0.25a and x-stiffeners at y = 0.25b, 0.375b, 0.5b, 0.625b and 0.75b. Set four is of seven 

stiffeners in both direction at position of y-stiffeners at x = -0.375a, -0.25a, -0.125a, 0, 

0.125a, 0.25a and 0.375a and x-stiffeners at y = 0.125b, 0.25b, 0.375b, 0.5b, 0.625b, 0.75b 

and 0.875b. The dynamic instability regions are plotted in the Fig. 5.14. 

 

 

It is observed from Fig 5.14 that the dynamic instability zone for the stiffener arrangement of 

set two ((xst)b=3 and (yst)b=3) is at the higher frequency zone side. It indicates that this 

arrangement is dynamically more stable in comparison to the other stiffener schemes.     
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Fig.5.14 Effect of stiffener scheme on dynamic in stability region of the spherical shell 

panel 

 

 

(Part-II) Isotropic stiffened shell panels 

 

The isotropic stiffened shell panel problem without cutout is considered here. The numerical 

results are presented for the problem 1, part-II as described in 4.7, under varying parameters. 
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Fig. 5.15 A doubly curved shell panel with two orthogonal stiffeners 

 

Numerical results 

 

In this study the buckling and dynamic instability analyses are carried out for a stiffened shell 

problem where its different parameters are varied in a wide rage to study the effect of these 

parameters on the behavior of the structure. The detail is given below. In all the analysis the 

whole structure is divided in 8×8 mesh. 

 

(a) Buckling (Static stability) 

 

The buckling analysis of the shell panels is carried out in this section. The non-dimensional 

buckling load parameters are presented for stiffeners in x-orientation, y-orientation and 

orthogonal stiffeners in Table 5.13, Table 5.14 and Table 5.15 respectively considering ds/bs 

to be 2, 4, 6 and 8. In all the cases the number of stiffeners varied is 1, 3, 5 and 7. 
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Table 5.13 Non-dimensional buckling load of shell panel with x-orientation stiffeners 

 

Number of 

stiffeners 

(ds/bs) 

ratio 

Flat plate Cylindrical

panel 

Spherical

panel 

Hyperbolic 

hyperboloid panel 

1 2 

4 

6 

8 

119.168 

189.012 

195.585 

197.158 

347.952 

355.486 

357.387 

355.148 

435.232 

442.226 

443.259 

437.476 

103.468 

185.162 

191.386 

193.389 

3 2 

4 

6 

8 

198.872 

381.840 

388.482 

385.208 

397.412 

494.936 

497.371 

486.731 

585.987 

604.195 

603.536 

566.344 

176.364 

408.698 

416.009 

412.121 

5 2 

4 

6 

8 

238.069 

835.983 

956.216 

565.632 

395.207 

901.951 

956.254 

565.702 

1108.485

1197.502

955.062 

564.971 

218.262 

716.747 

958.448 

566.807 

7 2 

4 

6 

8 

252.220 

870.918 

954.445 

564.936 

404.863 

979.529 

954.699 

565.059 

1163.032

1648.037

953.595 

564.381 

233.211 

807.646 

956.642 

566.154 

 

It is observed from the table that in case of spherical panel the buckling load is highest 

compared to other panels. When the ratio ds/bs is increasing from 2 to 4 in spherical panel 

with single stiffener the buckling load is increasing, the rate of increase is around 1.5 percent, 

but with seven stiffeners the rate of increase is around 40.0 percent. Further increase in ds/bs 

ratio the buckling load is decreasing. Similar nature is observed in case of cylindrical panel. 

For flat plate and hyperbolic hyperboloid panel when the ratio ds/bs is increasing from 2 to 4 

with single stiffener the rate of increase in buckling load is around 60 percent and with seven 
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stiffeners the rate of increase is around 250 percent. When the number of stiffener is 

increasing from 1 to 3 with ds/bs = 4 the rate of increase in buckling load for spherical and 

cylindrical panel is around 37 percent, but for flat plate and hyperbolic hyperboloid panel the 

increase in buckling load is around 200 percent. It can be concluded from the analysis that it 

is better to increase the number of stiffener instead of increasing the size of stiffeners for 

resisting the buckling load. The non-dimensional buckling load parameters of the shell panels 

for y-orientation stiffeners are presented in Table 5.14.   

 

Table 5.14 Non-dimensional buckling load of shell panel with y-orientation stiffeners 

 

Number of 
stiffeners 

(ds/bs) 
ratio 

Flat plate Cylindrical
Panel 

Spherical
panel 

Hyperbolic 
hyperboloid panel 

1 2 
4 
6 
8 

67.036 
73.053 
77.535 
80.935 

335.981 
339.095 
340.404 
341.423 

351.404 
357.001 
361.155 
364.290 

145.187 
182.412 
188.150 
191.521 

3 2 
4 
6 
8 

95.191 
130.465 
140.736 
146.315 

344.839 
355.017 
368.332 
371.333 

361.672 
372.459 
393.586 
407.647 

267.030 
276.256 
279.521 
281.772 

5 2 
4 
6 
8 

143.779 
232.242 
270.647 
288.830 

356.441 
382.432 
411.652 
427.353 

373.294 
397.899 
424.865 
438.976 

322.779 
352.874 
381.951 
398.483 

7 2 
4 
6 
8 

177.561 
400.627 
677.818 
935.664 

368.708 
416.329 
552.996 
768.074 

387.251 
432.242 
557.022 
772.204 

333.180 
394.700 
545.555 
764.994 
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It is observed that in all the cases that the non-dimensional buckling load parameters are less 

compared to the non-dimensional buckling load parameters with x-orientation stiffener 

except for the case of seven stiffeners with ds/bs = 8. The results obtained in the form of non-

dimensional buckling load parameters are presented in Table 5.15 for the stiffened shell 

panels with orthogonal stiffeners. 

 

Table 5.15 Non-dimensional buckling load of shell panel with orthogonal stiffeners 

 

Number of 

stiffeners in 

both directions 

(ds/bs) 

ratio 

Flat plate Cylindrical

Panel 

Spherical

panel 

Hyperbolic 

hyperboloid panel 

1 2 

4 

6 

8 

191.247 

212.044 

220.679 

223.516 

352.793 

364.242 

367.993 

365.332 

450.624 

467.509 

472.806 

467.146 

188.175 

212.113 

223.083 

227.105 

3 2 

4 

6 

8 

383.995 

458.760 

469.355 

462.215 

523.113 

559.915 

564.470 

547.192 

671.022 

702.158 

702.563 

622.373 

402.247 

499.304 

511.229 

501.878 

5 2 

4 

6 

8 

516.371 

1253.092

1135.778

685.021 

735.254 

1281.195 

1150.735 

685.870 

1258.192

1392.868

1188.344

681.277 

497.756 

1257.805 

1143.978 

697.019 

7 2 

4 

6 

8 

547.602 

2060.793

1985.650

1053.639

745.516 

1874.418 

2003.551 

1062.681 

1297.399

2375.505

1960.270

1034.510

529.386 

1971.070 

2063.188 

1098.874 
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It is observed that in all the cases that the non-dimensional buckling load parameters are 

more compared to the non-dimensional buckling load parameters with x-orientation stiffener 

and y-orientation stiffener. The rate of increases of buckling load with seven stiffeners in 

both directions for spherical shell panel is about 45.0 percent compared to the buckling load 

with seven x-orientation stiffeners.  

 

(b) Dynamic stability 

 

The dynamic instability study of stiffened shell panels are presented in this section. In all the 

dynamic stability analysis, the non-dimensional buckling load of the spherical shell panel 

with single x-stiffener (ds/bs=2) is taken as the reference load, so as to plot the instability 

zones. The effect of parameters stiffener size, eccentricity of stiffener, stiffening scheme and 

number of stiffeners are presented for the stiffened shell panel The stiffener depth to breadth 

ratio (ds/bs) is kept as 4 and the static load factor (α) is 0.4 in all cases. The dynamic load 

factor β varies from 0.0 to 1.5.  

 

i.  Effect of orientation of the stiffener 

 

The effect of orientation of stiffeners (panel with x-stiffener, y-stiffener or cross-stiffener) is 

studied taking all the panels with five stiffeners (ds/bs = 4). The stiffeners are attached to the 

bottom surface of the panel. The variations of non-dimensional excitation frequencies with 

dynamic load factor (β) for stiffened spherical, cylindrical, hyperbolic hyperboloid and flat 

panel are shown in Fig 5.16a-d respectively.  
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Fig.5.16a Effect of stiffener orientation on dynamic instability region of spherical shell 

panel  
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Fig.5.16b As Fig 5.16a, but for cylindrical shell panel 
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Fig. 5.16c As Fig 5.16a, but for hyperbolic hyperboloid shell panel 
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Fig. 5.16d As Fig 5.16a, but for flat panel 
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It is observed in the case of stiffened spherical panel that the panel is dynamically more 

stable with x-stiffeners only. The dynamic instability region (DIR) with x-stiffeners is at 

higher frequency zone with smaller width. In the other panels the DIR with cross-stiffeners is 

at higher frequency zone with smaller width. All panels are dynamically less stable with y-

stiffeners.   

 

ii.  Effect of eccentricity of the stiffener 

 

The effect of eccentricity of stiffeners is studied taking stiffened spherical, cylindrical and 

hyperbolic hyperboloid panel with five x-stiffeners (d /bs s = 4). The variations of non-

dimensional excitation frequencies with dynamic load factor (β) for stiffened spherical, 

cylindrical and hyperbolic hyperboloid shell panels are shown in Fig 5.17a-c, respectively. It 

is observed that the dynamic instability region is at higher frequency zone for eccentric top 

stiffener in all the three cases.  
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Fig. 5.17a Effect of stiffener eccentricity on dynamic instability region of spherical shell 

panel 
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Fig. 5.17b As Fig. 5.17a, but for cylindrical shell panel 
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Fig. 5.17c As Fig 5.17a, but for hyperbolic hyperboloid shell panel 
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iii.  Effect of size of the stiffener 

  

The effect of size of stiffeners on dynamic instability region is presented in this section. The 

stiffened spherical panel with five x-stiffeners is used to carryout the analysis. The stiffener 

depth to breadth ratio (d /bs s) is taken as 2, 4, 6 and 8. The stiffeners are fixed to the bottom 

surface of the panel. It is observed from Fig 5.18 that the dynamic instability region is at 

higher frequency zone for ds/bs = 6. 
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Fig. 5.18 Effect of stiffener size on dynamic instability region of spherical shell panel 

 

iv.  Effect of number of stiffeners 

 

The number of the stiffeners has effect on the dynamic instability region of the stiffened shell 

panel. To illustrate this a stiffened spherical shell panel with x-stiffener and cross-stiffener 

arrangements are used in the analysis. The stiffeners depth to breadth ratio (d /bs s) is kept as 4 

and is attached to the bottom surface of the panels. 
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Fig. 5.19a Effect of stiffener scheme on dynamic in stability region of the spherical shell 

panel (x-stiffeners) 
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Fig. 5.19b Effect of stiffener scheme on dynamic in stability region of the spherical shell 

panel (cross-stiffeners) 
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It is observed from the Fig 5.19a that the stiffened spherical shell panel with 3,5 and 7 x-

stiffeners the dynamic instability zones is almost same. However the panel with single 

stiffener the instability zone shifts a little to the higher frequency zone but when dynamic 

load factor β is more than 0.9 the instability zone widens moving towards the lower 

frequency side. The dynamic instability zone for the panel without stiffener is at higher 

frequency zone compared to the stiffened panel but when β increases beyond 0.4, the 

instability zone starts widening entering to the lower frequency side. Similar behaviour is 

observed for the stiffened spherical panel with cross-stiffener arrangements Fig 5.19b. 

 

 

 
5.3 Laminated composite stiffened shell panels without cutout under non-

uniform loading 
 

The problem of laminated composite stiffened shell panels without cutout with four types of 

non-uniform loading (Type-I, Type-II, Type-III and Type-IV as Fig.4.3) is investigated for 

buckling (static stability), vibration and dynamic stability characteristics in this section. The 

convergence and accuracy of the proposed model is established again for non-uniform 

loading cases.  

  

5.3.1 Convergence and validation study 

 

The convergence and accuracy of the proposed method are established again by comparing 

the results of various problems with those of earlier investigators’ available in the literature. 
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(a)Buckling of isotropic plate with concentrated edge load  

 

The problem of un-stiffened simply supported plate (a×b) is also used to carry out the 

convergence study. The a/h ratio of the plate is 100. The plate is subjected to concentrated 

loading (Type-IV) in the two opposite edges with c/b=0.5. The whole structure is modeled 

with a number of mesh sizes to carry out the analysis. The first mode non-dimensional 

buckling loads ( * /cr crP P b D= ) are shown in Table 5.16 for three aspect ratios for all the 

mesh sizes. It shows a rapid convergence with mesh refinement. Again a mesh size of 10×10 

is found to be sufficient to attain the convergence. For validation, the results are compared 

with those of Leissa and Ayoub [63] and Brown [18]. The results obtained in these studies 

(Leissa and Ayoub [63] and Brown [18]) are found to be in good agreement compared to 

present results.  

 

 

Table 5.16 The non-dimensional buckling load for a plate centrally loaded by 

concentrated force (c/b=0.5), all sides simply supported with a/b=0.5, a/b=1.0 and 

a/b=2.0. 

                  

c/b=0.5 Mesh size 
a/b=0.5 a/b=1.0 a/b=2.0 
53.541 73.397 161.6482×2 
29.993 25.898 42.036 4×4 
29.561 25.645 29.790 6×6 
29.586 25.644 28.791 8×8 
29.603 25.647 28.656 10×10  
29.611 25.649 28.625 12×12  
29.614 25.649 28.616 14×14 
29.616 25.650 28.613 16×16 

Leissa and Ayoub [63] 30.090 25.814 28.482 
Brown [18] 29.530 25.446 28.274 
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(b) Buckling of a unstiffened rectangular plate with partial load starting from one end  

 

The problem of the square plate (a/b = 1) as Fig 5.20 having simply supported boundary 

conditions at its four edges with partial load starting from one end (Type-I) to its full length 

is investigated. The full plate is modeled with 8×8 mesh for the analysis. The results are 

plotted along with the results of Deolasi et al. [31] in the Fig 5.21. It shows the results are in 

good agreement.  

 

a

b

c 
P P

 

 

 

 

 

 

Fig. 5.20  Simply supported square plate with partial load starting from one end 
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                      Fig 5.21 Comparisons of non-dimensional buckling load. DbPP crcr /=
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(c) Dynamic instability of eccentrically stiffened square plate simply supported at all the 

four sides 

 

The square plate (0.6m×0.6m×0.00633m) is attached with a stiffener (b = 0.0127m and ds s = 

0.0222m) on the bottom surface along its one center line. The non-uniform loading Type-I is 

acting in the direction of the stiffener. All the sides are simply supported. The loading width 

considered are c/b=0.2 and c/b=0.6. The non-dimensional excitation frequency 

( 2 /a hρΩ = Ω D ) is obtained taking first mode buckling load of the stiffened plate. The 

static load factor is kept as 0.2. The whole plate is divided with 10×10 mesh. The results of 

upper and lower bounding frequencies for the dynamic instability region are compared with 

the results given in Fig. 10 of Srivastava et al. [141] in Fig 5.22 and it shows that the results 

are in good agreement. 
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Fig. 5.22 Dynamic instability region for eccentrically stiffened square plate. 
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5.3.2 Problems under investigation 

 

After obtaining the validity of the present analysis for non-uniform loading cases, the 

buckling, vibration with the applied and dynamic instability analyses are carried out for a 

laminated composite stiffened shell problem (Problem 2, described in 4.7) (Fig 5.23) for all 

the four types of non-uniform loading cases (Fig.4.3). In all cases the different parameters are 

varied in a wide range to study the effects of these parameters on the behavior of the shell 

panels. 

 

 

 
Fig.5.23 A doubly curved shell panel with two orthogonal stiffeners with loading Type-I 

 

Numerical results 

 

The numerical results for the buckling, vibration with applied load and dynamic instability 

analyses are presented for all four (flat plate, cylindrical shell panel, spherical shell panel and 

hyperbolic hyperboloid panel) laminated composite stiffened shell panels with the four types 

of non-uniform loading cases (Fig. 4.3). The parameters like loading type, stiffener size, 
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lamination scheme, stiffening scheme, stiffener eccentricity, stacking scheme in stiffener etc. 

are varied in a wide rage to study the effect of these parameters on the behavior of the 

structure. The detail is given below. In all the analysis the whole structure is divided in 

10×10 mesh as this mesh size (10×10) is found sufficient to attain convergence and for 

validation of results (5.3.1).  

 

Loading Type-I 

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig.5.23) for the partial loading Type-I (Localized edge loading from 

one end of two opposite side) are presented in this section. The different parameters are 

varied in a wide rage to study the effect of these parameters on the behavior of the shell 

panels. The details are described below. 

 

(a) Buckling 

 

The effects of bandwidth ratio(c/b) of the patch loading for all the four types of stiffened 

shell panels are discussed here.  The load width ratios c/b are taken as 0.1, 0.2, 0.3,…, 1.0 for 

the buckling analysis. The panels are attached with a single stiffener (xst)b along the center 

line in all the cases. The stiffener depth to breadth ratio (ds/bs) is kept as 2.0. The lamination 

in the panel skin and stiffeners is taken as (0/90)1. The stacking scheme in the stiffener is 

horizontal. The laminated composite stiffened shell panels are simply supported (SSSS) 

along all the four sides. The plots in the Fig.5.24 show the variation of non-dimensional 

buckling load for the laminated stiffened flat, cylindrical, spherical, and hyperbolic 

hyperboloid panels. 

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Results and Discussions 99

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

40

80

120

160

200

240

280

 

 

N
on

-d
im

en
si

on
al

 b
uc

kl
in

g 
lo

ad

c/b ratio

loading case I

 plate
 cylinderical panel
 spherical panel
 hyperbolic hyperboloid panel

 
Fig. 5.24 Variation of non-dimensional buckling load with c/b ratios 

 

It is observed from Fig. 5.24 that when the c/b ratio is 0.1, it takes higher load for the 

buckling of the hyperbolic hyperboloid panel. When c/b is increasing the buckling load is 

decreasing gradually up to c/b = 0.8 and then again it is increasing a little up to c/b =1.0. 

However the variation is not very significant. In flat plate, cylindrical and spherical panel 

when c/b ratio is increased from 0.1 to 0.2 there is a significant reduction (about 45 percent 

in plate and 35 percent in cylindrical and 25 percent in spherical panel) in the buckling load. 

After that the reduction in buckling load is not prominent, and then an increase in buckling 

load is observed from c/b, 0.3 in plate and cylindrical panel, and from c/b = 0.2 in spherical 

panel to c/b = 1.0. The rate of increase in spherical panel is higher compared to plate and 

cylindrical panel. This may be due to the fact that for loading near the edges, the edge 

restraint increases the capacity to withstand higher loads and as c/b increases the effect of 

edge restraint decreases but after that again the load carrying capacity increase due to the 

stiffener present along the center line of the panels. 

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

                                                                                                  Results and Discussions       100 

 (b) Vibration  

 

The above mentioned stiffened shell panels are studied for the variation of frequency with the 

loading. The effects of all c/b ratios (0.1, 0.3, 0.5, 0.8 and 1.0) are considered for all the four 

types of panels. Figures 5.25-5.28 show the plot of the variation of first mode frequencies 

with the loading for plate, cylindrical, spherical, and hyperbolic hyperboloid panels 

respectively. It is observed from the plots (Fig.5.25-5.28) that when the load is zero the 

frequencies correspond to natural frequency of vibration. As the load increases the frequency 

of vibration gradually decreases and becomes zero when the load reaches the critical value.  
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Fig. 5.25 Variation of frequency with load, plate 
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Fig. 5.26 Same as Fig. 5.25 but for, cylindrical panel 
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Fig. 5.27 same as Fig. 5.25 but for, spherical panel 
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Fig. 5.28 same as Fig. 5.25 but for, hyperbolic hyperboloid shell panel 

 

 

(c) Dynamic stability  

 

After obtaining the free vibration and static buckling characteristics it is now pertinent to 

study the dynamic instability of stiffened shell panels. In all the dynamic stability analysis, 

the non-dimensional buckling stress, with uniformly loaded (c/b = 1.0, in Type-I loading), 

two layered simply supported (SSSS) cross-ply (0/90)  stiffened flat plate with a single (xst)2 b 

stiffener (d /bs s= 2) along the center line with (0/90)2 lamination scheme and horizontal 

stacking, is taken as the reference load, so as to plot the instability zones. The effect of 

parameters like number of stiffeners, stiffening scheme (x-direction and orthogonal 

stiffeners), number of layers, lamination scheme, eccentricity of stiffener, stacking sequence, 

stiffener size, boundary condition etc. on dynamic instability regions are presented. The static 

load factor (α) is 0.2 in all cases. The dynamic load factor (β) varies from 0.0 to 1.5.  
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i. Effect of load bandwidth ratio (c/b) 

 

The effect of load bandwidth ratio(c/b) on dynamic instability regions (DIR) for laminated 

composite stiffened flat, cylindrical, spherical, and hyperbolic hyperboloid panels is analyzed 

here. The panels are attached with a single (xst)b stiffener along the center line in all the 

cases. The stiffener depth to breadth ratio (d /bs s) is kept as 2.0. The lamination scheme in the 

panel skin and stiffeners is taken as (0/90)1. The stacking scheme in the stiffener is 

horizontal. The laminated composite stiffened shell panels are simply supported (SSSS) 

along all the four sides. The load width ratios c/b are taken as 0.1, 0.2, 0.3,…, 1.0 for the 

dynamic stability analysis. Figures 5.29-5.32 show the plots of the dynamic instability 

regions for plate, cylindrical, spherical, and hyperbolic hyperboloid panels respectively. 
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Fig. 5.29 Dynamic instability region for different c/b ratio, plate 
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Fig. 5.30 Same as Fig. 5.29 but for, cylindrical panel 
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Fig. 5.31 Same as Fig. 5.29 but for, spherical panel 
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Fig. 5.32 Same as Fig. 5.29 but for, hyperbolic hyperboloid shell panel 

 

In the stiffened plate (Fig.5.29), cylindrical (Fig.5.30) and hyperbolic hyperboloid panel 

(Fig.5.32) with increase in c/b ratio; the dynamic stability region is shifting to the lower 

frequency zone side with wider width. This indicates, these three panels are dynamically 

more unstable with higher load bandwidth. In the stiffened spherical panel (Fig.5.31) with 

increase in c/b ratio, the dynamic stability region is shifting to the higher frequency zone side 

with wider width up to c/b=0.3 and after that it is shifting to the lower frequency zone side. 

In all the cases of c/b the laminated stiffened spherical shell panel is dynamically more stable 

compared to the other three panels. 

 

ii. Effect of number of layers 

 

The effect of number of layers on dynamic instability regions (DIR) for laminated composite 

stiffened cylindrical and spherical shell panel is analyzed here. The stiffened cylindrical and 

spherical shell panels are considered.  The panels are attached with a single (xst)  stiffener b
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along the center line in all the cases. The stiffener depth to breadth ratio (d /bs s) is kept as 2.0. 

The lamination scheme in the panel skin and stiffeners is taken as (0/90)1, (0/90) , (0/90)2 3 

and (0/90)4 in four different cases. The stacking scheme in the stiffener is horizontal. The 

laminated composite stiffened shell panels are simply supported (SSSS) along all the four 

sides with c/b = 0.5. Figures 5.33-5.34 show the plots of the dynamic instability regions for 

cylindrical and spherical panels respectively. 
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Fig. 5.33 Dynamic instability region for different number of layers, cylindrical panel 
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Fig. 5.34 Same as Fig. 5.33 but for spherical shell panel 

 

In both the panels when the number of layer in panel skin and stiffeners are increasing, the 

dynamic instability regions (DIR) are shifting to higher frequency zone side. This indicates 

that with the increase in number of layers the panels become dynamically more stable. The 

instability regions are almost same for 4, 6 and 8 layered cases.  

 

iii. Effect of size of stiffeners 

 

The effect of size of stiffeners on dynamic instability regions (DIR) for all four types of 

panels is analyzed. The panels are attached with a single (xst)b stiffener along the center line 

in all the cases. The lamination scheme in the panel skin and stiffeners is taken as (0/90)2. 

The stacking scheme in the stiffener is horizontal. The laminated composite stiffened shell 

panels are simply supported (SSSS) along all the four sides with c/b = 0.5. Four different 

sizes of stiffeners with d /bs s equals to 2, 4, 6 and 8 are taken. The size of stiffeners is changed 

by increasing the depth (d ) of the stiffener keeping width (b ) as constant. The dynamic s s
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instability regions for cylindrical and spherical panels are plotted in Fig. 5.35-5.36 

respectively.  

 

It is observed with the increase in stiffener depth the dynamic instability regions shift to 

higher frequency zone with wider width and then shifts to lower frequency zone with 

narrower width. The instability region initiates at higher frequency value at d /bs s=4.0 in 

cylindrical panel and at d /b =6.0 in spherical panel compared to other d /bs s s s values. This 

indicates that the contribution of the stiffener to make the structure dynamically more stable 

is maximum at a particular depth of the stiffeners. 
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Fig. 5.35 Dynamic instability region for different size of stiffeners, cylindrical panel 
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Fig. 5.36 Same as Fig. 5.35 but for spherical shell panel 

 

 

iv. Effect of stiffening scheme 

 

The problems of laminated composite stiffened cylindrical and spherical shell panels are 

analyzed for different stiffening scheme. The panels with simply supported (SSSS) boundary 

condition with load bandwidth ratio, c/b = 0.5 is considered. The analysis is carried out for 

the two types of stiffener orientations, x-direction stiffener (xst)b in one case and orthogonal 

stiffeners (xst)  and (yst)b b in the other case. In both the cases the number of stiffeners taken 

are 1,3,5 and 7. The lamination scheme in the panel skin and stiffeners is taken as (0/90)2. 

The stacking scheme in the stiffener is horizontal. The stiffener depth to breadth ratio (d /bs s) 

is kept as 4.0. Figures 5.37-5.38 show the variation of dynamic instability regions for 

different number of x-stiffeners ((xst) ) for cylindrical and spherical shell panels respectively. b
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Similarly, Figure 5.39-5.40 show the variation of dynamic instability regions for different 

number of orthogonal (x and y) stiffeners ((xst) and (yst)b b) for cylindrical and spherical shell 

panels respectively. In both types of stiffeners for both cylindrical and spherical shell panels 

the dynamic instability regions (DIR) shift to the higher frequency zone with narrower width 

with the increase in the number of stiffeners. 
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Fig. 5.37 Dynamic instability region for different number of x-stiffeners (xst)b, 

cylindrical panel 
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Fig. 5.38 Same as Fig. 5.37, but for spherical panel 
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Fig. 5.39 Dynamic instability region for different number of orthogonal stiffeners (xst)b 

and (yst) , cylindrical panel b
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Fig. 5.40 Same as Fig. 5.39, but for spherical panel 

 

v. Effect of lamination scheme 

 

The effects of lamination schemes ((0/90)  and (45/-45)2 2) in panel skin and stiffener on 

dynamic instability regions (DIR) for stiffened cylindrical and spherical shell panels are 

presented in this section. The panels taken are simply supported (SSSS) along all the four 

boundaries with load bandwidth ratio, c/b = 0.5. The stiffening scheme for the panels taken is 

(xst)b=5 and (yst)b=5. The stacking scheme in the stiffeners is horizontal. The stiffener depth 

to breadth ratio (d /bs s) is kept as 4.0. The variations of non-dimensional excitation 

frequencies ( ) with dynamic load factor (β) for cross-ply (0/90)  and angle-ply (45/-45)Ω 2 2 

lamination scheme in panel skin and stiffeners is shown in Fig. 5.41-5.42 for stiffened 

cylindrical and spherical shell panels respectively. In case of cylindrical panel the dynamic 

instability region shifts to the higher frequency zone side with lower width in cross-ply 
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lamination pattern. On the other hand the dynamic instability region shifts to the higher 

frequency zone side with lower width in angle-ply lamination scheme. 
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Fig. 5.41 Dynamic instability region for different lamination scheme, cylindrical panel 
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Fig. 5.42 Same as Fig. 5.41, but for spherical panel 
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vi.  Effect of eccentricity of stiffener 

 

The effect of eccentricity (whether attached to bottom or top surface of the panels) of the 

stiffeners on dynamic instability region for cylindrical and spherical shell panels is 

considered here. Both cross-ply ((0/90) ) and angle-ply ((45/45)2 2) lamination scheme for 

panel and stiffener are taken. The panels taken are simply supported (SSSS) along all the four 

boundaries with load bandwidth ratio, c/b = 0.5. The number of stiffeners in both x and y 

directions is taken as 5. The stiffener depth to breadth ratio (d /bs s) is kept as 4.0. The stacking 

scheme in the stiffeners is horizontal. The dynamic instability region (DIR) with eccentric 

top and bottom stiffener with (0/90)2 for laminated composite stiffened cylindrical and 

spherical shell panels are shown in Fig. 5.43-5.44 respectively. Figures 5.45-5.46 show the 

instability regions for (45/-45)2. In case of cross-ply lamination scheme for both the panels 

the instability region is at higher frequency zone with the stiffeners attached in top surface. 

But in case of angle-ply lamination scheme for both the panels the instability region is at 

higher frequency zone with the stiffeners attached in bottom surface. 
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Fig. 5.43 Dynamic instability region with top and bottom stiffener with (0/90)2, 

cylindrical panel 
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Fig. 5.44 Same as Fig. 5.43, but for spherical panel 
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Fig. 5.45 Dynamic instability region with top and bottom stiffener with (45/-45)2, 

cylindrical panel 
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Fig. 5.46 Same as Fig. 5.45, but for spherical panel 

 

vii. Effect of stacking scheme of lamina in the stiffener 

 

The effect of stacking scheme of the lamina whether parallel or perpendicular to the lamina 

of the panel skin, on the instability region is discussed in this section. The problem of 

stiffened spherical shell panel with stiffener attached in both top and bottom surface also with 

both (0/90)  and (45/-45)2 2 lamination schemes is taken for the analysis. The number of 

stiffeners is 5 each both in x and y directions. The panel is simply supported (SSSS) along all 

the four boundaries with load bandwidth ratio, c/b = 0.5. The stiffener depth to breadth ratio 

(ds/bs) is kept as 4.0. In case of 0/90 lamination with stiffeners attached to bottom surface of 

the spherical panel, the DIR (Fig. 5.47) is at higher frequency zone with parallel stacking 

scheme. On the other hand when the stiffeners are attached to top surface, the DIR (Fig. 5.48) 

is at higher frequency zone with perpendicular stacking scheme. But in the case of 45/-45 

lamination scheme with stiffeners attached to both bottom and top surfaces the instability 
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region is at higher frequency zone with perpendicular stacking scheme as shown in Fig. 5.49-

5.50 respectively. 
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Fig. 5.47 Dynamic instability region with parallel and perpendicular stacking with 

(0/90)2, bottom stiffener 
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Fig. 5.48 Same as Fig. 5.47, but for top stiffener 
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Fig. 5.49 Dynamic instability region with parallel and perpendicular stacking with (45/-

45)2, bottom stiffener 
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Fig. 5.50 Same as Fig. 5.49, but for top stiffener 
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viii. Effect of boundary condition 

 

The effect of boundary condition on instability region of the spherical shell panel with 

orthogonal stiffeners ((xst) =5 and (yst)t t=5) attached to top surface with perpendicular 

stacking scheme is discussed in this section. The load bandwidth ratio c/b is 0.5. The stiffener 

depth to breadth ratio (d /bs s) is kept as 4.0. The lamination scheme in panel skin and stiffener 

is (0/90)2. The boundary conditions considered here are SSSS, CCSS, CCFF, CFCF, and 

CCCf. From Fig. 5.51 it is seen that out all these boundary conditions the instability region 

with CCSS is at highest frequency zone with narrower width. 
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Fig. 5.51 Dynamic instability region with different boundary conditions 

 

Loading Type-II 

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig 5.23) for the partial loading Type-II (Localized edge loading 
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from center of two opposite side) are presented in this section. The different parameters are 

varied in a wide rage to study the effect of these parameters on the behavior of the shell 

panels. The details are described below. 

 

(a) Buckling 

 

The effects of load bandwidth ratio(c/b) of the patch loading for all the four types of stiffened 

shell panels are discussed here.  The ratios c/b are taken as 0.2, 0.4, 0.6, 0.8 and 1.0 for the 

buckling analysis. The panels are attached with a single (xst)b stiffener along the center line 

in all the cases. The stiffener depth to breadth ratio (d /bs s) is kept as 4.0. The lamination in 

the panel skin and stiffeners is taken as (0/90)2. The stacking scheme in the stiffener is 

horizontal. The laminated composite stiffened shell panels are simply supported (SSSS) 

along all the four sides. The plots in the Fig. 5.52 show the variation of non-dimensional 

buckling load for the laminated stiffened flat, cylindrical, spherical, and hyperbolic 

hyperboloid panels. 
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Fig. 5.52 Variation of non-dimensional buckling load with c/b ratio 
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When the load bandwidth ration c/b=0.2 the buckling load is highest for all the panels. As the 

load width increases from center towards the edge the buckling load decreases and again it 

increases after some bandwidth of load. 

 

(b) Vibration 

 

The above mentioned stiffened shell panels are studied for the variation of frequency with the 

applied loading. The effects of c/b ratios (0.2, 0.4, 0.6, 0.8 and 1.0) are considered for all the 

four types of panels. Figures 5.53a-d show the plot of the variation of first mode frequencies 

with the loading for plate, cylindrical, spherical, and hyperbolic hyperboloid panels 

respectively. It is observed from the plots (Fig. 5.53a-d) that when the load is zero the 

frequencies are natural frequency of vibration. As the load increases the frequency of 

vibration gradually decreases and becomes zero when the load reaches the critical value.  
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Fig. 5.53a Variation of frequency with load, plate 
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Fig. 5.53b Same as Fig. 5.53a but for, cylindrical panel 
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Fig. 5.53c same as Fig. 5.53a but for, spherical panel 
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Fig. 5.53d Same as Fig. 5.53a but for, hyperbolic hyperboloid shell panel 

 

(c) Dynamic stability  

 

The dynamic instability analysis for all the four types of panels with different c/b ratios is 

carried out in this section. In the analysis, the non-dimensional buckling load (buckling stress 

factor = 131.727) uniformly loaded (c/b = 1.0, in Type-II loading) of the four layered simply 

supported (SSSS) cross-ply (0/90) stiffener (d /b stiffened flat plate with a single (xst) s s2 b = 4) 

along the center line with (0/90)2 lamination scheme and horizontal stacking, is taken as the 

reference load, so as to plot the instability zones. The static load factor (α) is 0.2 in all cases. 

The dynamic load factor (β) varies from 0.0 to 1.5. Figures 5.54-5.57 show the plots of the 

dynamic instability regions for plate, cylindrical, spherical, and hyperbolic hyperboloid 

panels respectively. 
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Fig. 5.54 Dynamic instability region for different c/b ratio, plate 
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Fig. 5.55 Same as Fig. 5.54 but for, cylindrical panel 
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Fig. 5.56 Same as Fig. 5.54 but for, spherical panel 
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Fig. 5.57 Same as Fig. 5.54 but for, hyperbolic hyperboloid shell panel 
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In all cases it observed that with the increase in load width the instability regions shift to 

lower frequency zone with wider width for all types of panel.  

 

 

Loading Type-III 

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig.5.23) for the partial loading Type-III (Localized edge loading 

from both ends of two opposite side) are presented in this section. The different parameters 

are varied in a wide rage to study the effect of these parameters on the behavior of the shell 

panels. The details are described below. 

 

 

(a) Buckling 

 

The effects of bandwidth ratio(c/b) of the patch loading for all the four types of stiffened 

shell panels are discussed here.  The load width ratios c/b are taken as 0.1, 0.2, 0.3, 0.4 and 

0.5 for the buckling analysis. The panels are attached with a single (xst)b stiffener along the 

center line in all the cases. The stiffener depth to breadth ratio (ds/bs) is kept as 4.0. The 

lamination in the panel skin and stiffeners is taken as (0/90)2. The stacking scheme in the 

stiffener is horizontal. The laminated composite stiffened shell panels are simply supported 

(SSSS) along all the four sides. The plots in the Fig. 5.58 show the variation of non-

dimensional buckling load for the laminated stiffened flat, cylindrical, spherical, and 

hyperbolic hyperboloid panels. 
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Fig. 5.58 Variation of non-dimensional buckling load with c/b ratio 

 

It is seen that when the patch load is near to the support the buckling load is highest in all the 

types of panels except the spherical shell panel. In spherical panel the buckling load is 

highest when it is loaded uniformly. As the both the loading patches increase towards the 

center, there is a decrease in buckling load upto certain length of the patch and after that 

again there is an increase in the load. 

 

(b) Vibration 

 

The above mentioned stiffened shell panels are studied for the variation of frequency with the 

loading. The effects of all c/b ratios (0.1, 0.2, 0.3, 0.4 and 0.5) are considered for all the four 

types of panels. Figures 5.59a-d show the plot of the variation of first mode frequencies with 

the applied loading for plate, cylindrical, spherical, and hyperbolic hyperboloid panels 

respectively. It is observed from the plots (Fig. 5.59a-d) that when the load is zero the 
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frequencies are natural frequency of vibration. As the load increases the frequency of 

vibration gradually decreases and becomes zero when the load reaches the critical value.  
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Fig. 5.59a Variation of frequency with load, plate 
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Fig. 5.59b Same as Fig. 5.59a but for, cylindrical panel 
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Fig. 5.59c Same as Fig. 5.59a but for, spherical panel 
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Fig. 5.59d Same as Fig. 5.59a but for, hyperbolic hyperboloid shell panel 
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(c)  Dynamic stability  

 

The dynamic instability analysis for all the four types of panels with different c/b ratios is 

carried out in this section. In the analysis, the non-dimensional buckling stress, of  uniformly 

loaded (c/b = 0.5, in Type-III loading) four layered simply supported (SSSS) cross-ply 

(0/90) stiffener (d /b2 stiffened flat plate with a single (xst) s sb = 4) along the center line with 

(0/90)2 lamination scheme and horizontal stacking, is taken as the reference load, so as to 

plot the instability zones. The static load factor (α) is 0.2 in all cases. The dynamic load 

factor (β) varies from 0.0 to 1.5. Figures 5.60-5.63 show the plots of the dynamic instability 

regions for plate, cylindrical, spherical, and hyperbolic hyperboloid panels respectively. 
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Fig. 5.60 Dynamic instability region for different c/b ratio, plate 
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Fig. 5.61 Same as Fig. 5.60 but for, cylindrical panel 
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Fig. 5.62 Same as Fig. 5.60 but for, spherical panel 
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Fig. 5.63 Same as Fig. 5.60 but for, hyperbolic hyperboloid shell panel 

 

In all cases it observed that with the increase in load width the instability region shifts to 

lower frequency zone with wider width for all types of panel except the spherical shell panel. 

The spherical panel is dynamically more stable with c/b = 0.2. 

 

Loading Type-IV 

 
The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig. 5.23) for the partial loading Type-IV (Concentrated edge 

loading of two opposite side) are presented in this section. The different parameters are 

varied in a wide rage to study the effect of these parameters on the behavior of the shell 

panels. The details are described below. 
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(a) Buckling 

 

The effects of position (c/b) of the concentrated loading for all the four types of stiffened 

shell panels are discussed here.  The ratios c/b are taken as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

and 0.9 for the buckling analysis. The panels are attached with a single (xst)b stiffener along 

the center line in all the cases. The stiffener depth to breadth ratio (d /bs s) is kept as 4.0. The 

lamination in the panel skin and stiffeners is taken as (0/90)2. The stacking scheme in the 

stiffener is horizontal. The laminated composite stiffened shell panels are simply supported 

(SSSS) along all the four sides. The plots in the Fig. 5.64 show the variation of non-

dimensional buckling load for the laminated stiffened flat, cylindrical, spherical, and 

hyperbolic hyperboloid panels. 
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Fig. 5.64 Variation of non-dimensional buckling load with different position of the 

concentrated load, loading Type-IV 
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It is observed that when the concentrated load is at the stiffener position (c/b = 0.5) the panels 

buckle at higher load. When the load move from c/b = 0.1 to c/b = 0.2, there is a decrease in 

buckling load and again when is moves from c/b = 0.2 to c/b = 0.3 and beyond upto c/b = 0.5 

an increase in buckling load is observed in all the panels. The stiffened spherical shell panel 

carries very high load at the load position of c/b = 0.5 in comparison to other panels. It 

indicates that for the given configuration the spherical panel is statically more stable.  

 

(b) Vibration 

 

The above mentioned stiffened shell panels are studied for the variation of frequency with the 

applied loading. The effects of c/b ratios (0.1, 0.2, 0.3, 0.4 and 0.5) are considered for all the 

four types of panels. Figures 5.65a-d show the plot of the variation of first mode frequencies 

with the applied loading for plate, cylindrical, spherical, and hyperbolic hyperboloid panels 

respectively. It is observed from the plots (Fig. 4.69a-d) that when the load is zero the 

frequencies are natural frequency of vibration. As the load increases the frequency of 

vibration gradually decreases and becomes zero when the load reaches the critical value.  
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Fig. 5.65a Variation of frequency with load, plate 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Results and Discussions 135

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0 40 80 120 160 200 240 280 320 360
0

10

20

30

40

50

60

 

 

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

Non-dimensional applied load

Cylinderical panel
 c/b=0.1
 c/b=0.2
 c/b=0.3
 c/b=0.4
 c/b=0.5

 
 

Fig. 5.65b Same as Fig. 5.65a but for, cylindrical panel 
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Fig. 5.65c Same as Fig. 5.65a, but for spherical panel 
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Fig. 5.65d Same as Fig. 5.65a, but for hyperbolic hyperboloid shell panel 

 

(c) Dynamic stability  

 

The dynamic instability analysis for all the four types of panels with different c/b ratios is 

carried out in this section. In the analysis, the non-dimensional buckling load, with load 

position at c/b = 0.1 in Type-IV loading, of the four layered simply supported (SSSS) cross-

ply (0/90) stiffener (d /b stiffened flat plate with a single (xst) s s2 b = 4) along the center line 

with (0/90)2 lamination scheme and horizontal stacking, is taken as the reference load, so as 

to plot the instability zones. The static load factor (α) is 0.2 in all cases. The dynamic load 

factor (β) varies from 0.0 to 1.5. Figures 5.66-5.69 show the plots of the dynamic instability 

regions for plate, cylindrical, spherical, and hyperbolic hyperboloid panels respectively. 
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It is observed that the flat plate (Fig. 5.66) and cylindrical shell panel (Fig. 5.67) are 

dynamically more stable when the load is at the center(c/b = 0.5), for all other positions of 

the load the instability zones shift to lower frequency zone with wider width. But the 

spherical (Fig. 5.68) and hyperbolic hyperboloid (Fig. 5.69) shell panels are dynamically 

more stable when the load is near the edge (c/b = 0.1). For all other position of the load the 

instability zone shifts to lower frequency zone with wider width. Though all the panels are 

statically more stable at loading position c/b = 0.5, the spherical and hyperbolic hyperboloid 

shell panels are dynamically less stable for this loading position. So if a structure is statically 

more stable for a particular loading position, it may or may not be dynamically more stable 

for that loading position. 
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Fig. 5.66 Dynamic instability region for different c/b ratio, plate 
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Fig. 5.67 Same as Fig. 5.66 but for, cylindrical panel 
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Fig. 5.68 Same as Fig. 5.66 but for, spherical panel 
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Fig. 5.69 Same as Fig. 5.66 but for, hyperbolic hyperboloid shell panel 

 

 

 
5.4 Laminated composite stiffened shell panels with cutout under non-

uniform loading 
 

The problem of laminated composite stiffened shell panels with square cutout, located at the 

center of the panels with four types of non-uniform loading (Type-I, Type-II, Type-III and 

Type-IV as Fig.4.3) is investigated for buckling (static stability), vibration and dynamic 

stability characteristics in this section. The four sides of the opening are attached with four 

stiffeners; length of each stiffener is equal to the size of the cutout. The convergence and 

accuracy of the proposed model is established further for non-uniform loading cases with 

cutout taking various problems of the earlier investigators’ available in the literature. 
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5.4.1 Convergence and validation study 

 

The convergence and accuracy of the proposed method are established again by comparing 

the results of various problems available in the literature. 

 

(a) Dynamic instability of un-stiffened simply supported laminated composite plate with 

cutout 

 

This problem of uniformly loaded laminated composite plate with square cutout is taken to 

carry out the convergence study. The dimensions of plate are a = b = 500mm, h = 2mm and 

lamination properties is [45/-45/-45/45]2. The properties of the material taken are E11 = 

191.13Gpa, E = 124.73Gpa, G = G = G = 56.19Gpa andν22 12 13 23 12 = 0.3. The static load factor 

α is taken as 0.0. The reference load is the first mode critical buckling load of the plate 

without cutout. The cutouts are square in size and located at the center of the plate. The 

whole structure is modeled with different mesh sizes for the dynamic instability analysis. The 

non-dimensional lower and upper excitation frequencies ( 2
22/a EρΩ = Ω 2h ) of the 

instability zones for three (0.0, 0.2 and 0.6) values of dynamic load factor (β) are shown in 

Table 1 taking the cutout size ca/a = 0.5 for all mesh sizes. It shows a rapid convergence with 

mesh refinement. Again a mesh size of 8×8 is found to be sufficient to attain the 

convergence. For validation the results obtained in the present analysis are compared with 

those of Sahu and Datta [125] in Table 5.17. To validate the formulation further the 

instability zones for two cutout sizes ca/a = 0.4 and ca/a = 0.8 are plotted in Fig. 5.70 along 

with the given results [125] taking 10×10 mesh of the full structure. The present results are 

well in agreement with the available result [125]. 
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Table 5.17 Non-dimensional bounding frequency (Ω ) for un-stiffened simply supported 

square laminated composite plate with cutout (ca/a=0.5) 

 

Non-dimensional bounding frequency ( ) Ω
β = 0.0 β = 0.2 β = 0.6 Analysis 
La Ub La Ub La Ub

Present (4×4) 16.468 16.468 15.493 17.370 13.254 18.992
Present (8×8) 16.302 16.302 15.314 17.211 13.027 18.832
Present (12×12) 16.212 16.212 15.221 17.123 12.920 18.744
Present (16×16) 16.178 16.178 15.186 17.092 12.884 18.708
Sahu and Datta [125] 16.343 16.343 15.372 17.314 13.170 18.770

 
a Lower boundary of the instability zone 
b Upper boundary of the instability zone 
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Fig. 5.70 Effect of cutout size on dynamic instability region of simply supported 

laminated plate 
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(b) Vibration of stiffened plate with cutout 

 

The problem of simply supported square stiffened plate with square cutout is used to carry 

out the vibration analysis. The plate is attached with an eccentric stiffener along the center 

line in. The cutouts are square in size and located at the center of the plate. The data of the 

stiffened plate is a = b = 0.6m, h = 0.001m, b 9= 0.00331m, d = 0.02025m, E = 68.7×10s s  

N/m2, ν = 0.34, ρ = 2780 Kg/m3. Four different sizes of cutouts with ca/a equal to 0.2, 0.4, 

0.6 and 0.8 are taken. The whole plate is divided in 10×10 mesh. The first mode non-

dimensional ( 2 /b hϖ ω ρ= D ) natural frequency obtained in the present analysis are plotted 

in Fig. 5.71 along with the finite element results given by Srivastava [140]. The present 

results are well in agreement with the available results [140]. 
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Fig. 5.71 Variation of frequency with cutout size 
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(c) Dynamic stability of simply supported stiffened plate with square cutout 

 

The problem of simply supported square stiffened plate with square cutout at the center is 

used to investigate the dynamic instability characteristics. The plate is attached with an 

eccentric stiffener along the center line. The cutouts are square in size and located at the 

center of the plate. The data of the stiffened plate is a = b = 0.6m, h = 0.001m, bs = 

0.00331m, d 9
s = 0.02025m, E = 68.7×10  N/m2, ν = 0.34, ρ = 2780 Kg/m3. Two different sizes 

of cutout with ca/a equals to 0.4 and 0.8 are considered. The load acting on the plate is non-

uniform loading Type-I with c/b ratio as 0.4 along the stiffener direction. The static load 

factor α is taken as 0.2. The whole plate is divided in 10×10 mesh. The non-dimensional 

( 2 /b hρΩ = Ω D ) excitation frequencies are plotted in Fig.5.72 for the two cutouts along 

with the results reported by Srivastava [140]. The present results are in good agreement with 

the results given by [140].  
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Fig. 5.72 Dynamic stability region of the stiffened late with different cutout size, loading 

Type-I, c/b=0.4 
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5.4.2 Problems under investigation 

 

After obtaining the validity of the present analysis, the buckling, vibration and dynamic 

instability analyses are carried out for a laminated composite stiffened shell panel(Problem 3, 

described in 4.7) with square cutout located at the center (Fig 5.73) for all the four types of 

non-uniform loading cases (Fig.4.3). In all cases the different parameters are varied in a wide 

range to study the effect of these parameters on the behavior of the shell panels. The 

numerical results are presented along with the problem definition taking various parameters 

into consideration. 

 

 

ca 

 
 

 

Fig. 5.73 A doubly curved shell panel with stiffened square opening with a central x-

stiffener subjected to loading Type-I 
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Numerical results 

 

The numerical results for the buckling, vibration and dynamic instability analyses are 

presented for all four (flat plate, cylindrical shell panel, spherical shell panel and hyperbolic 

hyperboloid panel) laminated composite stiffened shell panels with cutout for the four types 

of non-uniform loading cases (Fig. 4.2). The parameters like loading type, cutout size, 

lamination scheme, stiffener eccentricity, stacking scheme in stiffener etc. are varied in a 

wide range to study the effects of these parameters on the behavior of the structure. The 

detail is given below. In all the analysis the whole panel is divided in to 10×10 mesh as this 

mesh size (10×10) is found sufficient to attain convergence and for validation of results 

(5.4.1).  

 

Loading Type-I 

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell panels with cutout (Fig. 5.73) for the partial loading Type-I (Localized edge 

loading from one end of two opposite side) are presented in this section. The effect of cutout 

size and the loading width are considered to study the behavior of the shell panels.  

 

(a) Buckling 

 

The effects of load bandwidth ratio (c/b) of the patch loading (Type-I) and cutout ratio (ca/a) 

on buckling for all the four types of stiffened shell panels are discussed here. The analysis to 

study the effect of cutout size is carried out with uniformly distributed loading (c/b=1.0) on 

the panel edges. The cutout ratios (ca/a) taken are 0.2, 0.4 and 0.6. The panels are attached 

with single (xst)b stiffener along the center line and the four sides of the opening are stiffened 

with four stiffeners; length of each stiffener is equal to the size of the opening. These four 

stiffeners are also attached to the bottom surface. The stiffener depth to breadth ratio (ds/bs) 
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for all stiffeners is kept as 4.0. The lamination in the panel skin and stiffeners is taken as 

(45/-45)2. The stacking scheme in the stiffeners is parallel to the stacking in the panel skin. 

The study for the effect of load bandwidth ratio(c/b) is carried out with the cutout size ca/a = 

0.4. The ratios c/b are taken as 0.1, 0.2, 0.3,…, 1.0 for the buckling analysis. Figure 5.74 

shows the effect of cutout size (ca/a) for all four panels and Fig. 5.75 shows the effect of load 

bandwidth ratio(c/b) for flat plate and spherical shell panel, on buckling load. 
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Fig. 5.74 Variation of non-dimensional buckling load with ca/a ratio, (c/b=1.0) 
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Fig. 5.75 Variation of non-dimensional buckling load with c/b ratios, (ca/a=0.4) 

 

It is observed from Fig. 5.74 that with the increase in cutout size the buckling load is slightly 

increasing in plate and hyperbolic hyperboloid shell panel while it is decreasing significantly 

for the cylindrical and spherical panels. This may be due to the reason that the stiffness is 

reduced due to cutout in the spherical and cylindrical panel. Fig. 5.75 shows that the buckling 

load is decreasing with the increase in load width upto c/b = 0.3 in spherical panel and then it 

is increasing gradually, but in plate the buckling load is decreasing upto c/b = 0.6 and then it 

is increasing slowly compared to stiffened spherical panel.   

 

(b) Vibration 

  

The first mode natural frequency of the above four panels with the same configuration are 

plotted in Fig. 5.76 with three cutout sizes. The behaviour is observed to be similar to that of 

the buckling load with cutout as mentioned in the above section.   
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Fig. 5.76 Variation of non-dimensional frequency with ca/a ratio, (c/b=1.0) 

 

(c) Dynamic stability  

 

The dynamic instability analysis of the panels is carried out in this section. In all the dynamic 

stability analysis, the non-dimensional buckling stress, with uniformly loaded (c/b = 1.0, in 

Type-I loading), four layered simply supported (SSSS) angle-ply (45/-45)2 stiffened flat plate 

without cutout with a four layered single (xst) stiffener (d /bs sb = 4) along the center line with 

(45/-45)2 lamination scheme and horizontal stacking, is taken as the reference load, so as to 

plot the instability zones. The panels are attached with single (xst)b stiffener along the center 

line and the four sides of the opening are stiffened with four stiffeners, length of the 

stiffeners is equal to the length of the opening. These four stiffeners are also attached to the 

bottom surface. The stiffener depth to breadth ratio (d /bs s) for all the stiffeners is kept as 4.0. 

The lamination in the panel skin and stiffeners is taken as (45/-45)2. The stacking scheme in 

the stiffeners is parallel to the stacking in the panel skin. The static load factor (α) is 0.2 in all 

cases. The dynamic load factor (β) varies from 0.0 to 1.0. 
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i. Effect of cutout sizes 

 

The effect of cutout sizes on dynamic instability regions (DIR) for laminated composite 

stiffened flat, cylindrical, spherical, and hyperbolic hyperboloid panels is analyzed here. 

Three different sizes of cutout with ca/a equal to 0.2, 0.4 and 0.6 are taken for the analysis. 

The panels are loaded with uniformly load (c/b=1.0).  Figures 5.77-5.80 show dynamic 

instability regions for different cutout sizes for plate, cylindrical, spherical, and hyperbolic 

hyperboloid panels respectively. It is observed for the stiffened plate with cutout (Fig. 5.77) 

and stiffened hyperbolic hyperboloid panel with cutout (Fig. 5.80) that the instability regions 

are shifting to higher frequency zones with the increase in cutout size while the behaviour is 

reversed for stiffened cylindrical (Fig. 5.78) and spherical (Fig.5.79) shell panels with cutout. 

The presence of cutout is adding extra stiffening effect in plate and hyperbolic hyperboloid 

panel while in cylindrical and spherical shell panels the presence of cutout is reducing the 

stiffness. 
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Fig. 5.77 Dynamic instability region for different cutout sizes, with c/b=1.0, plate 
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Fig. 5.78 Same as Fig. 5.77 but for, cylindrical panel 
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Fig. 5.79 Same as Fig. 5.77 but for, Spherical shell panel 
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Fig. 5.80 Same as Fig. 5.77 but for, hyperbolic hyperboloid shell panel 

 

ii. Effect of load bandwidth ratio (c/b) 

 

The effect of load bandwidth ratio(c/b) on dynamic instability regions (DIR) for laminated 

composite stiffened flat and spherical panel with cutout is considered here. The cutout size is 

ca/a = 0.4 in all cases. The ratios c/b are taken as 0.1, 0.2, 0.3,…, 1.0 for the buckling 

analysis. Figures 5.81-5.82 show the dynamic instability regions for different loading patch 

for flat plate and spherical panel respectively. It is observed from Fig. 5.81 that in case of 

plate the dynamic instability regions are shifting gradually to lower frequency zone side with 

increased width with the increase in c/b ratio. But in case of spherical panel (Fig. 5.82) the 

dynamic instability regions are shifting gradually to higher frequency zone side with 

increased width with the increase in c/b ratio. 
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Fig. 5.81 Dynamic instability region for different c/b ratio, with ca/a=0.4, plate 
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Fig. 5.82 Same as Fig. 5.81 but for, Spherical shell panel 
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Loading Type-II 

 

The vibration, buckling and dynamic stability characteristics of laminated composite 

stiffened shell problem (Fig. 5.73) for the partial loading Type-II (Localized edge loading 

from the center of two opposite side) are presented in this section. The effects of cutout size 

and the loading width are considered to study the behavior of the shell panels. The details are 

described below. 

 

(a) Buckling 

 

The effects of load bandwidth ratio (c/b) of the patch loading (Type-II) and cutout ratio 

(ca/a) on buckling of the laminated composite stiffened plate and spherical shell panels with 

cutout are discussed here. The panels are attached with single (xst)b stiffener along the center 

line and the four sides of the opening are stiffened with four stiffeners; length of each 

stiffener is equal to the size of the cutout. These four stiffeners are also attached to the 

bottom surface. The stiffener depth to breadth ratio (ds/bs) for all stiffeners is kept as 4.0. The 

lamination in the panel skin and stiffeners is taken as (45/-45)2. The stacking scheme in the 

stiffeners is parallel to the stacking in the panel skin. 

 

 The cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. In the analysis of the effect of cutout 

size on buckling load the load bandwidth ratio (c/b) is kept as 0.4. Figure 5.83 shows the 

variation of non-dimensional buckling load with ca/a ratio of the plate and spherical panel. 

The cutout size with ratio ca/a is kept as 0.4 in the analysis of buckling load for different c/b 

ratios. Five loading patches are considered with c/b equals to 0.2, 0.4, 0.6, 0.8 and 1.0. The 

variation of non-dimensional buckling load with c/b is shown in Fig. 5.84.  
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With the given loading width (c/b=0.4) the load carrying capacity in the spherical panel 

decreases gradually with the increase in cutout size. In plate when ca/a increases from 0.2 to 

0.4 the buckling load decreases and again it increases with low rate with the increase in 

cutout size beyond 0.4 (Fig. 5.83). With the cutout size of ca/a=0.4 the load carrying capacity 

of both plate and spherical panel increases with the increase of the loading patch from center 

to both edges i.e. when c/b is increasing the buckling load is increasing (Fig. 5.84).  
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Fig. 5.83 Variation of non-dimensional buckling load with ca/a ratio, (c/b=0.4) 
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Fig. 5.84 Variation of non-dimensional buckling load with c/b ratios, (ca/a=0.4) 

 

(b) Vibration 

 

The analysis of variation of frequencies with the applied load for the stiffened plate and 

spherical panel with above configuration is carried out with loading patch c/b = 0.4. The 

cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. Figures 5.85-5.86 show the plot of the 

variation of first mode frequencies with the loading for plate and spherical panel respectively. 

In plate (Fig. 5.85) the natural frequency is increasing with the increase in cutout size. But 

the buckling load is decreased when the cutout size (ca/a) is increased from 0.2 to 0.4 and 

again the load carrying capacity is increasing beyond ca/a = 0.4. When the applied loads are 

increasing the frequency of vibrations are decreasing and finally attains zero value at the 

corresponding critical loads. In spherical shell panel (Fig. 5.86) the natural frequency and 

buckling load are decreasing with the increase in cutout size.   
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Fig. 5.85 Variation of frequency with load for different cutout sizes, c/b=0.4,plate 
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Fig. 5.86 Same as Fig. 5.85, but for spherical panel 
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(c) Dynamic stability 

 

The dynamic instability analysis of the laminated composite stiffened plate and spherical 

panel with cutout is carried out in this section. The panels are attached with single (xst)b 

stiffener along the center line and the four sides of the opening are stiffened with four 

stiffeners, length of the stiffeners is equal to the length of the opening. These four stiffeners 

are also attached to the bottom surface. The stiffener depth to breadth ratio (ds/bs) for all 

stiffeners is kept as 4.0. The lamination in the panel skin and stiffeners is taken as (45/-45)2. 

The stacking scheme in the stiffeners is parallel to the stacking in the panel skin. 

 

The non-dimensional buckling stress, of a uniformly loaded (c/b = 1.0, in Type-II loading), 

four layered simply supported (SSSS) angle-ply (45/-45)2 stiffened flat plate without cutout 

with a four layered single (xst)b stiffener (ds/bs= 4) along the center line with (45/-45)2 

lamination scheme and horizontal stacking, is taken as the reference load, so as to plot the 

instability zones. 

 

 The static load factor (α) is 0.2 in all cases. The dynamic load factor (β) varies from 0.0 to 

1.0. 

 

i. Effect of cutout sizes 

 

The effect of cutout sizes on dynamic instability regions (DIR) for laminated composite 

stiffened flat and spherical panel is analyzed here. Four different sizes of cutout with ca/a 

equal to 0.2, 0.4, 0.6 and 0.8 are taken for the analysis. The panels are loaded with patch load 

(c/b=0.4).  Figures 5.87-5.88 show dynamic instability regions for different cutout sizes for 

plate and spherical panel respectively. In stiffened plate with cutout (Fig. 5.87) the instability 

regions are shifting to higher frequency zones with the increase in cutout size while the 

behaviour is reversed for stiffened spherical (Fig. 5.88) shell panels with cutout. It indicates 
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that with the given configuration the spherical shell panel becomes dynamically more 

unstable with the increase in cutout size. 
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Fig. 5.87 Dynamic instability region for different cutout sizes, with c/b=0.4, Plate 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

0.0

0.2

0.4

0.6

0.8

1.0

80 100 120 140 160 180 200 220

 

 

Non-dimensional excitation frequency

D
yn

am
ic

 lo
ad

 fa
ct

or
(β

)

spherical panel
 ca/a=0.2
 ca/a=0.4
 ca/a=0.6
 ca/a=0.8

 
Fig. 5.88 Same as Fig. 5.87, but for spherical panel 
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ii. Effect of load bandwidth ratio (c/b) 

 

The effect of load bandwidth ratio (c/b) on dynamic instability regions (DIR) for laminated 

composite stiffened flat and spherical panel with cutout is considered here. The cutout size is 

ca/a = 0.4 in all cases. The ratios c/b are taken as 0.2, 0.4, 0.6, 0.8 and 1.0 for the dynamic 

stability analysis. Figures 5.89-5.90 show the dynamic instability regions for all five loading 

patches for flat plate and spherical panel respectively. In case of plate (Fig. 5.89) the dynamic 

instability regions are shifting gradually to lower frequency zone side with increased width 

with the increase in c/b ratio. But in case of spherical panel (Fig. 5.90) the dynamic 

instability regions are shifting gradually to higher frequency zone side with increased width 

with the increase in c/b ratio. 

 

0.0

0.2

0.4

0.6

0.8

1.0

30 35 40 45 50 55 60 65

 

 

Non-dimensional excitation frequency

D
yn

am
ic

 lo
ad

 fa
ct

or
(β

)

plate
 c/b=0.2
 c/b=0.4
 c/b=0.6
 c/b=0.8
 c/b=1.0

 
 

 

Fig. 5.89 Dynamic instability region for different c/b ratio, with ca/a=0.4, loading Type-

II, α = 0.2, plate 
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Fig. 5.90 Same as Fig. 5.89, but for spherical panel 

 

 

Loading Type-III 

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig. 5.73) for the partial loading Type-III (Localized edge loading 

from both ends of two opposite side) are presented in this section. The effect of cutout size 

and the loading width are considered to study the behavior of the shell panels. The details are 

described below. 

 

(a) Buckling  

 

The effects of load bandwidth ratio (c/b) of the patch loading (Type-III) and cutout ratio 

(ca/a) on buckling of the laminated composite stiffened plate and spherical shell panels with 

cutout are discussed here. The panels are attached with single (xst)b stiffener along the center 

line and the four sides of the opening are stiffened with four stiffeners, length of the 
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stiffeners is equal to the length of the opening. These four stiffeners are also attached to the 

bottom surface. The stiffener depth to breadth ratio (d /bs s) for all stiffeners is kept as 4.0. The 

lamination in the panel skin and stiffeners is taken as (45/-45)2. The stacking scheme in the 

stiffeners is parallel to the stacking in the panel skin. 

 

 The cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. In the analysis of the effect of cutout 

size on buckling load the load bandwidth ratio(c/b) is kept as 0.2. Figure 5.91 shows the 

variation of non-dimensional buckling load with ca/a ratio of the plate and spherical panel. 

The cutout size with ratio ca/a is kept as 0.4 in the analysis of buckling load for different c/b 

ratios. Five loading patches are considered with load bandwidth ratio c/b equal to 0.1, 0.2, 

0.3, 0.4 and 0.5. The variation of non-dimensional buckling load with c/b is shown in Fig. 

5.92.  
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Fig. 5.91 Variation of non-dimensional buckling load with ca/a ratio, (c/b=0.2), loading 

Type-III. 
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Figure 5.91 shows that the buckling load of both panels decreases when the cutout ratio is 

increased from 0.2 to 0.4 and after ca/a=0.4 the buckling load is gradually increasing.   
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Fig. 5.92 Variation of non-dimensional buckling load with c/b ratios, (ca/a=0.4) 

 

 

When the c/b ratio is increasing the load carrying capacity of the spherical shell panel 

decreasing upto c/b=0.3 and beyond that it is increasing upto c/b=0.5. But in case of plate the 

buckling load is gradually decreasing with the increase in the loading width (Fig. 5.92). 

 

(b) Vibration 

 

The analysis of variation of frequencies with the applied load for the stiffened plate and 

spherical panel with above configuration is carried out with loading patch c/b=0.2. The 

cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. Figures 5.93-5.94 show the plot of the 
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variation of first mode frequencies with the loading for plate and spherical panel respectively 

for all four ca/a ratios. In plate (Fig. 5.93) the natural frequency is increasing with the 

increase in cutout size and with the increase of the applied loads the frequency of vibrations 

are decreasing gradually and finally attains zero value at the corresponding critical loads. In 

spherical shell panel (Fig. 5.94) the natural frequency is decreasing with the increase in 

cutout size and with the increase in the applied load the frequency of vibration is almost 

remaining constant and just near to the critical value the frequency of vibration becomes 

zero. 
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Fig. 5.93 Variation of frequency with load for different cutout sizes, c/b=0.2, plate 
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Fig. 5.94 Same as Fig. 5.93, but for spherical panel 

 

(c) Dynamic stability 

 

The dynamic instability analysis of the laminated composite stiffened plate and spherical 

panel with cutout is carried out in this section. The panels are attached with single (xst)b 

stiffener along the center line and the four sides of the opening are stiffened with four 

stiffeners, length of the stiffeners is equal to the length of the opening. These four stiffeners 

are also attached to the bottom surface. The stiffener depth to breadth ratio (ds/bs) for all 

stiffeners is kept as 4.0. The lamination in the panel skin and stiffeners is taken as (45/-45)2. 

The stacking scheme in the stiffeners is parallel to the stacking in the panel skin. 

 

The non-dimensional buckling stress, with uniformly loaded (c/b = 0.5, in Type-III loading), 

four layered simply supported (SSSS) angle-ply (45/-45)2 stiffened flat plate without cutout 

with a four layered single (xst) stiffener (d /b = 4) along the center line with (45/-45)b s s 2 
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lamination scheme and horizontal stacking, is taken as the reference load, so as to plot the 

instability zones. The static load factor (α) is 0.2 in all cases. The dynamic load factor (β) 

varies from 0.0 to 1.0. 

 

i. Effect of cutout sizes 

 

The effect of cutout sizes on dynamic instability regions (DIR) for laminated composite 

stiffened flat and spherical panel is analyzed here. Four different sizes of cutout with ca/a 

equal to 0.2, 0.4, 0.6 and 0.8 are taken for the analysis. The panels are loaded with patch load 

(c/b = 0.2).  Figures 5.95-5.96 show dynamic instability regions for different cutout sizes for 

plate and spherical panel respectively. In stiffened plate with cutout (Fig. 5.95) the instability 

regions are shifting to higher frequency zones with the increase in cutout size while the 

behaviour is reversed for stiffened spherical (Fig. 5.96) shell panels with cutout. The 

spherical panel becomes dynamically unstable at constant frequencies of the applied load 

with ca/a equals to 0.4, 0.6 and 0.8 and the instability effect increase with the increase in 

cutout size. It indicates that with the given configuration the spherical shell panel becomes 

dynamically more unstable with the increase in cutout size. 
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Fig. 5.95 Dynamic instability region for different cutout sizes, with c/b=0.2, Plate 
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Fig. 5.96 Same as Fig. 5.95, but for spherical panel 

 

 

ii. Effect of load bandwidth ratio (c/b) 

 

The effect of load bandwidth ratio(c/b) on dynamic instability regions (DIR) for laminated 

composite stiffened flat and spherical panel with cutout is considered here. The cutout size is 

ca/a = 0.4 in all cases. The ratios c/b are taken as 0.1, 0.2, 0.3, 0.4 and 0.5 for the dynamic 

stability analysis. Figures 5.97-5.98 show the dynamic instability regions for all five loading 

patches for flat plate and spherical panel respectively. In case of plate (Fig. 5.97) the dynamic 

instability regions are shifting gradually to lower frequency zone side with increased width 

with the increase in c/b ratio. But in case of spherical panel (Fig. 5.98) the dynamic 

instability regions are shifting gradually to higher frequency zone side with increased width 

with the increase in c/b ratio.  



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Results and Discussions 167

0.0

0.2

0.4

0.6

0.8

1.0

35 40 45 50 55 60 65

 

Non-dimensional excitation frequency

D
yn

am
ic

 lo
ad

 fa
ct

or
(β

)

plate
 c/b=0.1
 c/b=0.2
 c/b=0.3
 c/b=0.4
 c/b=0.5

 
Fig. 5.97 Dynamic instability region for different c/b ratio, with ca/a = 0.4, loading 

Type-III, α = 0.2, plate 
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Fig. 5.98 Same as Fig. 5.97, but for spherical panel 
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Loading Type-IV  

 

The vibration, buckling and dynamic stability characteristics of the laminated composite 

stiffened shell problem (Fig. 5.73) for the partial loading Type-IV (Concentrated edge 

loading of two opposite side) are presented in this section. Various parameters are considered 

to study the behavior of the shell panels. The details are described below. 

 

(a) Buckling  

 

The effects of load position (c/b) of the concentrated loading (Type-IV) and cutout ratio 

(ca/a) on buckling of the laminated composite stiffened plate and spherical shell panels with 

cutout are discussed here. 

 

In the analysis of the effect of cutout size on buckling load the load position (c/b) is kept as 

0.5. The cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. The panels are attached with 

single (xst)t  stiffener along the center line and the four sides of the opening are stiffened with 

four stiffeners, length of the stiffeners is equal to the length of the opening. These four 

stiffeners are also attached to the top surface. The stiffener depth to breadth ratio (ds/bs) for 

all stiffeners is kept as 4.0. The lamination in the panel skin and stiffeners is taken as (45/-

45)4. The stacking scheme in the stiffeners is perpendicular to the stacking in the panel skin. 

Figure 5.99 shows the variation of non-dimensional buckling load with ca/a ratio of the plate 

and spherical panel. It is observed from Fig. 5.99 that the buckling load of the plate is 

decreased when ca/a is increased from 0.2 to 0.4 and beyond that upto 0.8 the buckling load 

is gradually increasing. But in spherical shell panel the buckling load is gradually increasing 

with the increase in cutout size upto 0.6 and then it starts decreasing from ca/a = 0.6 to ca/a 

= 0.8. 
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Fig. 5.99 Variation of non-dimensional buckling load with ca/a ratio, (c/b=0.5), loading 

Type-IV. 

 

In the analysis of the effect of load position (c/b) on buckling load the cutout size is kept as 

ca/a = 0.4. Five loading positions are considered with c/b equal to 0.1, 0.2, 0.3, 0.4 and 0.5. 

The panels are attached with single (xst)b along the center line and the four sides of the 

opening are stiffened with four stiffeners, length of the stiffeners is equal to the length of the 

opening. These four stiffeners are also attached to the bottom surface. The stiffener depth to 

breadth ratio (d /bs s) for all stiffeners is kept as 4.0. The lamination in the panel skin and 

stiffeners is taken as (45/-45)2. The stacking scheme in the stiffeners is parallel to the 

stacking in the panel skin. The variation of non-dimensional buckling load with c/b is shown 

in Fig. 5.100. When the concentrated load moves from the edge with c/b=0.1 to the center 

c/b=0.5, the buckling load in plate decreases gradually but the buckling load in spherical 

panel decreases upto c/b=0.2 and then starts increasing upto c/b=0.5.   
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Fig. 5.100 Variation of non-dimensional buckling load with c/b ratios, (ca/a=0.4) 

 

 

(b) Vibration 

 

The analysis of variation of frequencies with the applied load for the stiffened plate and 

spherical panel is carried out with loading position c/b=0.5. The panels are attached with 

single (xst)  stiffenert  along the center line and the four sides of the opening are stiffened with 

four stiffeners, length of the stiffeners is equal to the length of the opening. These four 

stiffeners are also attached to the top surface. The stiffener depth to breadth ratio (d /bs s) for 

all stiffeners is kept as 4.0. The lamination in the panel skin and stiffeners is taken as (45/-

45)4. The stacking scheme in the stiffeners is perpendicular to the stacking in the panel skin. 

The cutout ratios (ca/a) taken are 0.2, 0.4, 0.6 and 0.8. Figures 5.101-5.102 show the plot of 

the variation of first mode frequencies with the loading for plate and spherical panel 

respectively for all four ca/a ratios. 
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In plate (Fig. 5.101) the natural frequency is increasing with the increase in cutout size and in 

spherical shell panel (Fig. 5.102) the natural frequency is decreasing with the increase in 

cutout size. With the increase in the applied load the frequencies of vibration are decreasing 

gradually and finally attain zero value at the corresponding critical loads in both cases. 
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Fig. 5.101 Variation of frequency with load for different cutout sizes, c/b=0.5, plate 
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Fig. 5.102 Same as Fig. 5.101, but for spherical panel 
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(c) Dynamic Stability 

 

The dynamic instability analysis of the laminated composite stiffened plate and spherical 

panel with cutout is carried out in this section. The non-dimensional buckling load, of four 

layered simply supported (SSSS) angle-ply (45/-45)2 stiffened flat plate with cutout size 

ca/a=0.4, with a four layered single (xst)b stiffener (ds/bs= 4) along the center line with (45/-

45)2 lamination scheme is taken as the reference load, so as to plot the instability zones. The 

four sides of the opening are stiffened with four stiffeners (ds/bs= 4); length of each stiffener 

is equal to the size of the opening. These stiffeners are also attached to the bottom surface. 

To calculate the buckling load the load is kept at position c/b = 0.1, in Type-IV loading. The 

stacking in all stiffeners is parallel to the stacking in the plate. The static load factor (α) is 0.2 

in all cases. The dynamic load factor (β) varies from 0.0 to 1.0. 

 

i. Effect of cutout sizes 

 

The effect of cutout sizes on dynamic instability regions (DIR) for laminated composite 

stiffened flat and spherical panel is analyzed here. Four different sizes of cutout with ca/a 

equal to 0.2,0.4, 0.6 and 0.8 are taken for the analysis. The panels are loaded with 

concentrated load position at c/b=0.5. The panels are attached with single (xst)t  stiffener 

along the center line and the four sides of the opening are stiffened with four stiffeners, 

length of each stiffener is equal to the size of the opening. These four stiffeners are also 

attached to the top surface. The stiffener depth to breadth ratio (ds/bs) for all stiffeners is kept 

as 4.0. The lamination in the panel skin and stiffeners is taken as (45/-45)4. The stacking 

scheme in the stiffeners is perpendicular to the stacking in the panel skin. 

 

Figures 5.103-5.104 show dynamic instability regions for different cutout sizes for plate and 

spherical panel respectively. In stiffened plate with cutout (Fig. 5.103) the instability regions 
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are shifting to higher frequency zones with the increase in cutout size while the behaviour is 

reversed for stiffened spherical (Fig. 5.104) shell panels with cutout. 
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Fig. 5.103 Dynamic instability region for different cutout sizes, with c/b=0.5, loading 

Type-IV, Plate 
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Fig. 5.104 Same as Fig. 5.103, but for spherical panel 
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ii. Effect of load position(c/b) 

 

The effect of position of the concentrated load on dynamic instability regions (DIR) for 

laminated composite stiffened flat and spherical panel with cutout is analyzed.  The cutout 

size is kept as ca/a=0.4 for the analysis. Five loading positions are considered with c/b equal 

to 0.1, 0.2, 0.3, 0.4 and 0.5. The panels are attached with single (xst)b stiffener along the 

center line and the four sides of the opening are stiffened with four stiffeners, length of the 

stiffeners is equal to the length of the opening. These four stiffeners are also attached to the 

bottom surface. The stiffener depth to breadth ratio (d /bs s) for all stiffeners is kept as 4.0. The 

lamination in the panel skin and stiffeners is taken as (45/-45)2. The stacking scheme in the 

stiffeners is parallel to the stacking in the panel skin. 
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Fig. 5.105 Dynamic instability region for different c/b ratio, with ca/a=0.4, loading 

Type-IV, α = 0.2, plate 
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Figures 5.105-5.106 show the dynamic instability regions for all five loading position for flat 

plate and spherical panel respectively. In case of plate (Fig. 5.105) the dynamic instability 

regions are shifting gradually to lower frequency zone side with increased width with the 

increase in c/b ratio. But in case of spherical panel (Fig. 5.106) the dynamic instability 

regions are shifting gradually to higher frequency zone side with increased width with the 

increase in c/b ratio. Both the panels are dynamically more stable at load position near the 

edge at c/b=0.1. 
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Fig. 5.106 Same as Fig. 5.105, but for spherical panel 

 

iii. Effect of number of layers 

 

The effect of number of layers on dynamic instability behaviour of the stiffened spherical 

shell panel with cutout size ca/a=0.4 and loading position at c/b=0.5 is analyzed. The 

spherical panel is attached with single (xst) stiffener along the center line and the four sides b 
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of the opening are stiffened with four stiffeners, length of each stiffener is equal to the size of 

the opening. These four stiffeners are also attached to the bottom surface. The stiffener depth 

to breadth ratio (d /bs s) for all stiffeners is kept as 4.0. The stacking scheme in the stiffeners is 

parallel to the stacking in the panel skin. The numbers of layers are taken as 4 in one case and 

8 in other case. In both cases the cross ply (0/90) and angle ply (45/-45) lamination scheme is 

taken. Fig. 5.107 shows the dynamic instability regions (DIR) of the stiffened spherical panel 

for both number of layers and lamination scheme. In both lamination schemes the instability 

regions with 8 numbers of layers is at higher frequency zone in comparison to that of with 4 

numbers of layers. Again for both numbers of layers the angle-ply lamination scheme shows 

the instability zone at higher frequency zone with lower width. This indicates the spherical 

panel is dynamically more stable with angle-ply lamination pattern.    
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Fig. 5.107 Dynamic instability region for different number of layers with both 

lamination scheme, c/b=0.5, loading type-IV, Spherical panel 
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iv. Effect of stacking scheme in the stiffeners 

 

The effect of stacking scheme (whether parallel or perpendicular) on dynamic stability 

characteristics of the stiffeners is analyzed taking the problem of spherical shell panel with 

cutout (ca/a=0.4) and load position at c/b=0.5. The spherical panel is attached with single 

(xst)b stiffener along the center line and the four sides of the opening are stiffened with four 

stiffeners, length of each stiffener is equal to the size of the opening. These four stiffeners are 

also attached to the bottom surface. The stiffener depth to breadth ratio (d /bs s) for all 

stiffeners is kept as 4.0. The angle-ply lamination scheme with (45/-45)4 is taken for both 

panel skin and stiffeners. The instability regions for both parallel and perpendicular stacking 

in the stiffeners are plotted in Fig. 5.108. With the given configuration the stiffened spherical 

shell panel with cutout is dynamically more stable with perpendicular stacking scheme in the 

stiffeners. 
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Fig. 5.108 Dynamic instability region for both types of stacking, c/b=0.5, loading type-

IV, Spherical panel 
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v.  Effect of eccentricity of the stiffeners 

 

The effect of stiffeners positions (attached to bottom or top surface) on dynamic stability 

characteristics of the spherical shell panel is analyzed with cutout (ca/a=0.4) and load 

position at c/b=0.5. The spherical panel is attached with single stiffener along the center line 

and the four sides of the opening are stiffened with four stiffeners, length of each stiffener is 

equal to the size of the opening. The stiffener depth to breadth ratio (d /bs s) for all stiffeners is 

kept as 4.0. The stacking in the stiffeners is perpendicular in all stiffeners. The angle-ply 

lamination scheme with (45/-45)4 is taken for both panel skin and stiffeners. All the stiffeners 

are attached to bottom surface in one case and to the top surface in other case. Figure 5.109 

shows the dynamic instability regions of the stiffened spherical shell panel with cutout for 

both stiffener positions. The spherical shell panel is dynamically more stable when the 

stiffeners are attached to the top surface of the panel.  
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Fig. 5.109 Dynamic instability region for both stiffener eccentricity, c/b=0.5, loading 

type-IV, Spherical panel 
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Chapter-6 

Conclusions 
 

The theoretical investigations of the vibration, buckling and dynamic stability behaviour 

of isotropic and laminated composite stiffened shell panels with/without cutout, subjected 

to uniform and various non-uniform in-pane edge loadings have been carried out using 

the finite element method. The proposed finite element model consists of an eight-noded 

isoparametric degenerated shell element and a compatible three-noded curved beam 

element for the representation of shell skin and stiffeners respectively. It has exhibited 

very good performance in terms of accuracy and convergence without involving any 

numerical disturbance. The numerical results are presented and discussed in Chapter 5. 

The presentation of conclusions is divided in two parts. The major findings are listed first 

and the conclusions based on specific problems are presented subsequently.   

 

Major Findings: 

 

1. An efficient stiffener element is proposed, which is compatible to degenerated 

shell element.  Its combination with the shell element has given a unique tool for 

analyzing composite stiffened shell having a wide variety. The analysis tool is 

equipped in such a way that it can be used to solve vibration, buckling and 

dynamic instability problems having a wide range of parameters. 

2. When the stiffener depth is more than certain value in case of all four types of 

laminated stiffened shell panels with (0/90/0/90---) lamination scheme with 

stiffener in the loading direction, the global buckling load gets reduced. This may 

be due to the local buckling effects of the stiffener. This behaviour is not observed 

in the panels with (45/-45/45/-45---) lamination scheme. 

3. In the isotropic stiffened shell panels, the local buckling behaviour is observed for 

the four types of panels considered with stiffeners are placed along x-direction 

(load direction) and x-y-directions (orthogonal direction). This behaviour is not 

observed in the panels with stiffeners placed perpendicular to the load direction. 
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4. In case of isotropic stiffened spherical shell panel subjected to uniform loading, 

when the stiffeners are placed in the top surface of the panels the dynamic stability 

performance is better. On the other hand for the laminate composite stiffened 

spherical shell panel with ((45/-45/45/-45---) lamination scheme, the dynamic 

stability performance is better when the stiffeners are placed in the bottom 

surface. 

5. The dynamic stability region shifts to the higher frequency zone with the increase 

of orthogonal stiffeners in the case of a laminated stiffened spherical shell panel 

with (45/-45/45/-45) lamination scheme in uniform loading case. It is optimum for 

certain number of stiffeners. If the number of stiffeners is more than that value the 

shell panels becomes dynamically less stable. But for non-uniform loading case 

(load width from edge to centre of the panel) with (0/90/0/90) lamination scheme, 

the dynamic instability region gradually shifts to the higher frequency zone with 

the increase in number of stiffeners, converging to a particular region, in both 

spherical and cylindrical stiffened shell panels with stiffeners placed along the 

load direction and along orthogonal directions. 

6. In the isotropic stiffened spherical shell panel with stiffeners placed along load 

direction and along orthogonal directions, the instability region without any 

stiffener is at higher frequency zone. But with increase in dynamic load factor 

keeping static load factor constant, the lower boundary of the instability zone 

widen significantly to the lower frequency side. However, the instability region 

shifts to the lower frequency side with smaller width with the increase in number 

of stiffeners converging to a particular region.  

7. Keeping the width of the stiffener constant, the spherical and cylindrical stiffened 

shell panels give an optimum instability region with certain value of stiffener 

depth.  If the depth of the stiffener is more than that value, the shell panel becomes 

dynamically less   stable. 

8. The arrangement of layers (stacking scheme) has also significant effect on the 

dynamic stability behaviour of laminated composite stiffened spherical shell 

panel. For non-uniform loading case (load width from edge to centre of the panel) 
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with (0/90)2 lamination scheme, the dynamic instability region is at higher 

frequency zone with horizontal stacking in the stiffeners for stiffeners located in 

the top side. But the dynamic instability region shifts to higher frequency zone 

with vertical stacking for stiffeners located on the bottom side. The dynamic 

instability shifts to higher frequency zone with vertical stacking for the stiffeners 

located on bottom and top surface with (45/-45)2 lamination scheme. 

9. In most of the case the dynamic instability region shifts to lower frequency zone 

with increase in loading width. This is because the stiffness of the panels reduces 

with the increase in loading width.  

10. Almost in all stiffened shell panels with all loading types the frequency of 

vibration with in-plane load gradually decreases with increase in the load 

magnitude and attains zero value when the load becomes critical. In some loading 

cases of spherical panel the frequency almost remains constant and suddenly 

becomes zero when the load becomes critical. This may be due to the reason that 

the reduction in stiffness is not significant when the load is below critical.   

11. The loading width has significant effect on the buckling load of the panels. The 

effect is different for laminated stiffened shell panels with cutout and without 

cutout. 

12. The natural frequency of vibration of the spherical and cylindrical shell panels 

with cutout decreases with the increase in the cutout size, but the behaviour is 

opposite for stiffened flat plate and hyperbolic hyperboloid panel with cutout. This 

effect may be due to the variation of the stiffness of the panels having different 

parameters. The natural frequency of a structure increases either due to the 

reduction of mass or increase in the stiffness. But with the presence of cutout the 

stiffness of the structure reduces. So the combined effect of reduction of stiffness 

and mass is such that the natural frequency in plate and hyperbolic hyperboloid 

panel is increasing. On the other hand the natural frequency is decreasing in 

spherical and cylindrical shell panels with the presence of cutout. In the curved 

panels with cutout the rate of reduction of stiffness is more compared to flat plate. 

However, the hyperbolic hyperboloid panel is behaving like a plate because of 
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positive and negative curvature in both directions. Similar behaviour is also 

observed for isotropic un-stiffened curved panels [124]. 

13. The stiffened flat plate with cutout becomes dynamically more stable with the 

increase in the cutout size, but the stiffened spherical shell panel with cutout 

becomes dynamically more unstable with the increase in the cutout size for all 

loading cases.  

14. For the given configurations, in all four loading types, the laminated stiffened 

spherical shell panel without cutout is dynamically more stable compared to the 

other three panels. 

 

Other findings: 

 

Based on the observations in regard with the particular problem the findings of the 

present study are summarized below. 

 

Stiffened shell panels without cutout under uniform loading: 

 

 (Part-I) Laminated composite stiffened shell panels 

 

1. In most of the cases the non-dimensional buckling loads and frequencies are 

higher for angle-ply (45/-45/45/-45/---) stiffened shell panels in comparison to 

the cross-ply (0/90/0/90/---) lamination scheme.  

2. The stiffened panel with angle-ply lay up is dynamically more stable than the 

cross-ply scheme for the given geometry and stiffener configuration of the 

shell panel. 

3. For a given ply lay up and stiffener configuration, the spherical stiffened shell 

panel is dynamically more stable in comparison to the other panel geometries. 
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4. With regard to dynamic instability, for the given stiffener and lamination 

scheme it is better to place the stiffener in the bottom surface of the spherical 

shell panel. 

5. In case of vertical stacking scheme the onset of dynamic instability region 

shifts towards the higher frequency zone side for (45/-45)2 lamination scheme 

and towards lower frequency zone side for (0/90)2 lamination scheme for the 

spherical stiffened shell.   

6. For the stiffened spherical shell panel with three stiffeners in each direction, 

the onset of dynamic instability zone is at higher frequency zone in 

comparison to other stiffener arrangement.  

 

(Part-II) Isotropic stiffened shell panels 

 

1. In all the stiffened panels the non-dimensional buckling load parameters with 

cross-stiffener arrangement are more compared to the non-dimensional 

buckling load parameters with x-orientation stiffener and y-orientation 

stiffener. 

2. In all the stiffened panels the non-dimensional buckling load parameters with 

y-orientation stiffener are less compared to the non-dimensional buckling load 

parameters with other two stiffener arrangements. 

3. For the stiffened spherical panel, it is dynamically more stable with x-

stiffeners only. But for other panels, those are dynamically more stable with 

cross-stiffeners arrangements. 

4. The onset of dynamic instability is at higher frequency zone for the stiffeners 

placed on the top surface of the panels (spherical, cylindrical and hyperbolic 

hyperboloid). 

5. For the stiffened spherical panel the dynamic instability region is at higher 

frequency zone for ds/bs = 6 for the given number of stiffeners. 
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6. The dynamic instability zones are almost same for the stiffened spherical shell 

panel with 3, 5 and 7 x-stiffeners. Similar behaviour is observed for cross-

stiffener arrangements. 

 

Laminated composite stiffened shell panels without cutout under non-uniform 

loading: 

 

1. The width of the loading patches (type-I, type-II and type-III) and the position 

of the concentrated load (type-IV) has shown considerable effect on the 

buckling (static stability) and dynamic stability behaviour of all four types of 

panels. 

2. With the given configurations, the spherical shell panels buckles at higher load 

in all cases in comparison to cylindrical, flat and hyperbolic hyperboloid 

panels. 

3. In case of loading type-I, the buckling load reduces with the increase in 

loading width, but after some width it again starts increasing till the load patch 

covers the whole edge in spherical, cylindrical and flat stiffened panels. All 

these three panels take the highest load when they are loaded with full length 

of the edge load. The hyperbolic hyperboloid panel takes almost same load for 

all loading width. 

4. In type-II loading, the buckling behaviour of all four stiffened panels is same. 

They buckle at highest load when the loading patch is smaller. The buckling 

load decreases significantly with the increase in the loading width upto some 

length, and then the buckling load does not change much with further increase 

of the loading width. 

5. In case of loading type-III, the buckling load decreases with the increase in the 

loading width upto some distance and then it again increases. The increase is 

very significant in spherical panel. The spherical panel buckles at highest load 

when loaded with full edge load, but the other three panels buckle at highest 

load when they are loaded with small patches of load from both ends. 
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6. In the concentrated loading case (type-IV), the panels buckle at the highest 

load when the load acts at the stiffener position. 

7. In regard to the vibration with the applied load, the panels vibrate with their 

natural frequency when the applied load is zero and the frequency of vibration 

becomes zero when the applied load becomes critical.  

8. In case of loading type-I, the onset of dynamic stability for stiffened flat, 

cylindrical and hyperbolic hyperboloid panel starts when the load covers the 

whole width (c/b = 1.0) of the edges. When the loading width decreases (c/b < 

1.0) the DIR starts shifting to higher frequency zone side with smaller width. 

These three stiffened panels are dynamically more unstable with higher load 

bandwidth. In the stiffened spherical panel with increase in c/b ratio from 0.1, 

the dynamic stability region is shifting to the higher frequency zone side with 

wider width up to c/b = 0.3 and after that it starts shifting to the lower 

frequency zone side and the onset of dynamic instability takes place at the 

load width of c/b = 0.8. 

9. For a given ply lay up and stiffener configuration, for loading type-I, the 

dynamic instability regions of the cylindrical and spherical shell panels shift to 

higher frequency zone with the increase in the number of layers and then after 

some number of layers the change in DIR is insignificant. 

10. The increase in stiffener size (increase in depth ‘ds’ keeping width ‘bs’ 

constant) enhances the dynamic instability characteristics of the cylindrical 

and spherical shell panels, but after some depth of the stiffeners the panels 

becomes more unstable. 

11. The dynamic stability capacity increases with the increase in the number of 

stiffeners. Again after some number of stiffeners the DIR does not change 

much. 

12. For the given configurations, the panels become dynamically more stable 

when the stiffener are provided in both x and y directions in comparison to the 

stiffeners in x direction only. 
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13. In loading type-I, with same stiffeners configuration, the stiffened cylindrical 

panel is dynamically more stable with cross-ply (0/90) lamination scheme in 

comparison to angle-ply (45/-45) lamination scheme, but for spherical shell 

panel the behaviour is opposite. 

14. The eccentricity of stiffeners has great impact on the dynamic instability 

behaviour of the stiffened panels. In general, panels with stiffeners placed at 

the bottom are dynamically more stable. 

15. In case of loading type-II, all the four types of panels have similar behaviour, 

when the loading width is small the panels are dynamically more stable. With 

the increase in the loading width the DIR shifts to lower frequency zone with 

wider width. Similar behaviour is observed for loading type-III for all panels.  

16. In loading type-IV, The panels are dynamically more stable when the 

concentrated load coincides with the location of the stiffener.  

17. The effect of stacking scheme in the stiffeners has significant effect on the 

dynamic instability behaviour of the stiffened shell panels. 

18. For the given configurations, in all four loading types, the laminated stiffened 

spherical shell panel is dynamically more stable compared to the other three 

panels. 

19. The boundary conditions play important role in the behaviour of the stiffened 

shell panels. 

 

Laminated composite stiffened shell panels with square cutout under non-uniform 

loading: 

 

1. The (presence of) cutout in the panel and having different types of edge load 

show considerable effect on the vibration, buckling (static stability) and 

dynamic stability behaviour for all types of panels. 

2. In loading type-I, the buckling load of the stiffened plate and spherical shell 

panel with cutout decreases with the increase in load width upto some loading 

width and then it starts increasing gradually, the rate of increase is significant 
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in stiffened spherical panel with cutout in comparison to that of the stiffened 

plate with cutout. The stiffened plate with cutout takes highest load when the 

loading width is small but the stiffened spherical panel takes highest load 

when it is loaded with full edge load.     

3. When the panels are loaded with full edge load the buckling load of the 

spherical and cylindrical shell panels with cutout is decreasing with the 

increase in the cutout size, but the behaviour is opposite for stiffened flat plate 

and hyperbolic hyperboloid panel. 

4. In case of loading type-II, the buckling load of the stiffened flat plate and 

spherical shell panel with cutout is increasing with the increase of the loading 

width. With the load width ratio c/b = 0.4, the buckling load of the spherical 

panel with cutout is decreasing with the increase in the cutout size, but the 

buckling load of the stiffened plate with cutout is increasing slowly with the 

increase in the cutout size. 

5. In case of loading type-III, the load carrying capacity of the spherical shell 

panel with cutout is decreasing upto c/b = 0.3 and beyond that it is increasing 

upto c/b = 0.5. But in case of stiffened plate with cutout the buckling load is 

gradually decreasing with the increase in the loading width. With the load 

width ratio c/b = 0.2, the buckling load of both panels decreases when the 

cutout size (ca/a) is increased from 0.2 to 0.4 and after ca/a = 0.4 the buckling 

load is gradually increasing. 

6. In loading type-IV, the buckling load of the stiffened spherical shell panel 

with cutout is maximum when the load is at the center (c/b = 0.5), but this is 

just opposite in stiffened plate with cutout. With the load position at the 

center, the buckling load of the plate is decreased when ca/a is increased from 

0.2 to 0.4 and beyond that upto 0.8 the buckling load is gradually increasing. 

But in spherical shell panel the buckling load is gradually increasing with the 

increase in cutout size upto 0.6 and then it starts decreasing from ca/a=0.6 to 

ca/a=0.8. 
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7. The natural frequency of vibration of the spherical and cylindrical shell panels 

with cutout decreases with the increase in the cutout size, but the behaviour is 

opposite for stiffened flat plate and hyperbolic hyperboloid panel with cutout. 

8. The panels vibrate with their natural frequency when the applied load is zero 

and the frequency of vibration becomes zero when the applied load becomes 

critical.  

9. The stiffened flat plate with cutout becomes dynamically more stable with the 

increase in the cutout size, but the stiffened spherical shell panel with cutout 

becomes dynamically more unstable with the increase in the cutout size for all 

loading cases.  

10. In case of loading type-I, the stiffened flat plate with cutout the dynamic 

instability region is at higher frequency zone with minimum width. With the 

increase in the loading width the instability zone shifts to the lower frequency 

zone with wider width. In stiffened spherical shell panel with cutout the 

instability zone shifts to higher frequency zone with wider width. Similar 

behaviour is observed for loading type-II and type-III. 

11. In case of loading type-IV, when the load moves from a position nearer to 

edge to the centre in the stiffened flat plate with cutout the dynamic instability 

region gradually shifts from higher frequency zone to lower frequency zone 

with wider width. This behaviour is opposite in stiffened spherical shell panel 

with cutout. 
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Future Scope of Research 
 
There is a vast scope to carryout the present research work further considering different 

aspects. The possible extensions to the present study can be presented below, 

 

• The present study deals with conservative compressive forces. This may be 

extended to non-conservative and tensile loading cases. 

 

• The effect of material and geometric non-linearity can be taken into account for 

further extension of the dynamic stability analysis of stiffened shell panels. 

 

• The different size of cutout (circular, elliptical etc.) and stiffeners (hat etc.) may 

be taken into account as future work. 

 

• The effect of combination resonance can be investigated for these classes of 

problems. 

 

• The varying thickness of the panel skin can be included as further study. 

 

• The effecting of damping can be considered for future research. 

 

• There is a large scope of experimental investigation on dynamic stability of 

laminated composite stiffened shell panels. 
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Appendix 
 

 

Computer Program 

 

A general finite element code in Fortran-90 has been developed by the author from 

scratch to carryout all the analysis in the present investigations. The program contains a 

main routine and a number of subroutines which perform different activities. These 

subroutines are either called by the main routine or by some other subroutines. The 

subroutines of eigenvalue solver and assembling the elemental matrices used in the 

present analysis are taken from the previous investigators. As the stress field is non-

uniform, due to arbitrary nature of applied in-plane load, boundary conditions, stiffeners, 

and cutout in the structure the pre-buckling stress analysis is carried out first to determine 

the stresses. The static equation [ ]{ } { }K Δ = F  is solved to get the displacement field of 

the whole structure, where { }Δ is the global displacement vector of the structure. Then the 

nodal displacement vectors { }δ  of all the elements are found out by taking the 

displacement values associated with the elements from the global displacement 

vector{ }Δ . With the help of these nodal displacement vectors { }δ the strain fields in the 

elements are calculated and the stresses are obtained in the Gauss points. Same operations 

are performed for both the shell element and stiffener element. These stresses at the 

Gauss points are used to formulate the geometric stiffness matrix. The elastic stiffness, 

mass and geometric stiffness matrices are computed for all the shell elements and 

stiffener elements of the entire structure. The elemental matrices are assembled together 

to form the corresponding global matrices and stored in a single array where skyline 

storage algorithm is used. The global stiffness matrix is modified with respect to the 

boundary conditions. The solution for eigen values and eigen vectors is performed by the 

simultaneous iteration technique proposed by Corr and Jennings [28].  
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Method of Solution  

 

The solution procedure for the static, free vibration, vibration with in-plane load and 

dynamic instability analysis are presented in this section.  

 

Method of solution for linear static analysis 

 

The stiffness matrix is stored as a one-dimensional array through skyline storage scheme. 

The static equation of equilibrium can be written as the form[ ]{ } { }A X B= , where [ ]A is 

global stiffness matrix, { }X is global nodal unknowns to be solved and { }B  is the global 

load vector. The Cholesky factorization is used for this purpose. The program performs 

the decomposition, forward elimination and backward substitution by the subroutines 

decom, for and back. The Cholesky decomposition constructs a lower triangular matrix 

 in a way that its transpose [[ ]L ]TL serves as the upper triangular part. The matrix 

[ ]A can be written as,[ ] [ ] [ ]TL L = A . This is the advantage of the Cholesky 

decomposition that one need not have to find out two separate lower and upper triangular 

matrices of the global stiffness matrix  [ ]A . Then the solution of the nodal unknowns 

{ }X  is done in two steps. 

 

(i)  [ ]{ } { }L Y B=  (a) 

(ii) [ ] { } { }TL X Y=  (b) 

 

Method of solution for free vibration, vibration with in-plane load, buckling and 

dynamic stability 

 

The similar eigen value problem is solved for the free vibration, vibration with in-plane 

load, buckling and dynamic instability problems. The equation of motion is first 

transformed into a standard form. The characteristics equation for a discretised elastic 
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structural system under going small displacement having material properties within the 

elastic range for free vibration analysis can be expressed as     

[ ]{ } [ ]{ } { }2 0K q M qω− =              Or             [ ]{ } [ ]{ }2 M q K qω =  (c) 

This equation can be written as 

[ ] [ ]{ } [ ]{ }1
2

1K M q I q
ω

− = , where [ ]I  is the identity matrix.  (d) 

Or [ ] [ ] { } { }2

1 0D I q
ω

⎡ ⎤−⎢ ⎥⎣ ⎦
= , where [ ] [ ] [ ]1D K M−=  (e) 

Equation (e) is a standard eigen value problem. This equation can be used to find out the 

eigen values and the corresponding eigen vectors. The equation (e) can be rewritten as  

[ ] [ ] { } { }2

1 0i
i

D I q
ω

⎡ ⎤
−⎢ ⎥

⎣ ⎦
=              Or         [ ] [ ] { } { }0i iD I qλ⎡ ⎤−⎣ ⎦ =  (f) 

Where, iλ  is the eigen value of equation (f). The corresponding eigen vector of iλ  is{ }iq .  

The eigen value 21/i iλ ω=  is obtained and 1/i iω λ= is calculated. Putting any iω in the 

equation (f) the eigen vector (displacement{ }iq ) associated with that eigen value can be 

determined. Here  [ ]M  and [ ]K  are the global mass and stiffness matrix of the structure, 

{ }q is the relative displacement in the vibration mode corresponding to the natural 

frequencyω . The equation (f) can be solved in various methods. The technique used to 

solve equation (f) in the present investigation is developed by Corr and Jennings [28]. For 

this the stiffness matrix [ ]K  being positive definite can be decomposed by Cholesky 

factorization as 

[ ] [ ] [ ]TL L K=  (g) 

Where, [ is a lower triangular matrix. Using equation (g), equation (c) can be written as  ]L

[ ] { } [ ] { }1
2

1T T TL M L L q I L q
ω

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (h) 

Or [ ] [ ] { }{ } { }1
2

1 0T TL M L I L q
ω

− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
=  (i) 
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Or [ ] [ ] { } { }0i iA I pλ⎡ ⎤−⎣ ⎦ =  (j) 

The equation (j) is similar as equation (f). This shows that the symmetric matrix 

[ ] [ ]1 TA L M L−⎡ ⎤ ⎡= ⎣ ⎦ ⎣
− ⎤⎦ i has eigen values 21/iλ ω=  and eigen vector { }ip is such 

that{ } { }T
ip L q⎡ ⎤= ⎣ ⎦ i . So the eigen { }iq can be obtained as { } { }T

i iL p q−⎡ ⎤ =⎣ ⎦ . In this method 

one can find out the dominating required number of eigen values and corresponding eigen 

vectors. It gives the eigen values in the ascending order. Let the matrix [A] is of the order 

n×n and first m eigen values and corresponding eigen vectors are needed. Then the 

procedure of can be demonstrated very briefly as follows, 

 

1. Set a trial vector (modal vector) [ ]n m
U

×
and orthonormalize it. The trial vector is 

generated randomly. All the values are between -0.5 to 0.5. 

2. Back substitute[ ] [ ] [ ]n n n m n m
L X U

× × ×
= , [ ]n m

X
×

is determined. 

3. Multiply[ ] [ ] [ ]n m n n n m
Y M X

× × ×
= ,[ ]n m

Y
×

 is determined. 

4. Forward substitute[ ] [ ] [ ]T

n n n m n m
L V Y

× × ×
= , [ ]n m

Y
×

is determined. 

5. Form [ ] [ ] [ ]T

m m m n n m
B U V

× ×
=

×
, the diagonal elements of the matrix [ ]m m

B
×

are the 

eigen values. 

6. Construct [ ]m m
T

×
so that  if i = j   1ijt =

                                      and 
( ) ( )2 2

2

16

ij
ij

ii jj ii jj ij

b
t

b b s b b b

−
=

− + − +
 if i ≠ j 

                     where, s is the sign of ( ii jjb b− ). 

7. Multiply[ ] [ ] [ ]n m n m m m
W V T

× × ×
= , [ ]n m

W
×

is obtained. 

8. Perform Schmidt orthonormalization to derive 
n m

U
×

⎡ ⎤⎣ ⎦ from[ ]n m
W

×
. 

9. Check the vector tolerance[ ]n m n m
U U

× ×
⎡ ⎤− ⎣ ⎦ , the tolerance value kept here is 10-6. 

10. If tolerance is not satisfactory go to step 2 with the modified [ ]n m
U

×
i.e. 

n m
U

×
⎡ ⎤⎣ ⎦ . 
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This procedure is followed to solve the problem of vibration with in-plane load, buckling 

and dynamic instability of the isotropic and laminated composite stiffened shell panels 

with/without cutout subjected to in-plane uniform/non-uniform static and harmonic loads. 

In case of the buckling problem the geometric stiffness matrix [ ]GK  is put in the place of 

mass matrix[ ]M . Any in-plane load or in-plane stress can be applied in the panels to 

generate [ ]GK  matrix. The load or stress is applied in the structure as the equivalent joint 

load at the nodes in the corresponding degree of freedom. If stress is applied then the load 

due to the stress is found out and it is divided to the nodes coming under the stress patch. 

Then the result (eigen value) obtained from the eigen value problem is squared to get the 

buckling factor. Then this buckling factor is multiplied with the applied load or stress to 

get the buckling load or buckling stress of the stiffened panels. If the applied load or 

stress is of unit value then the square of the obtained result is directly the buckling load or 

stress. In the problem of vibration with in-plane load [ ]K is modified as [ ] [ ]GK P K⎡ ⎤−⎣ ⎦  

in relation to equation (56). The load P is in general sense, i.e. if [ ]GK  is generated for 

applied load, P is load and if [ ]GK  is generated for applied stress, P is stress. The value 

of P should not be more than the obtained factor because in that case the stiffness of the 

structure becomes negative. If P is zero the natural frequency of vibration is obtained and 

if P is critical the frequency of vibration becomes zero in the first mode. Again for 

dynamic instability problem the matrix [ ]K  is modified as [ ] [ ] [ ]1
2G GK P K P Kα β⎡ ⎤− ±⎢ ⎥⎣ ⎦

 

in line with equation (61). The sign plus and minus are used to get the upper and lower 

frequencies of the excited load respectively. The eigen value obtained is multiplied by 2.0 

to get the frequency of the excited load. In all cases the obtained eigen vector associated 

with the eigen value can be used to examine the mode shapes. This technique of solving 

the eigen value problem works very well during the execution of the program. In certain 

cases when the input matrices supplied wrongly, the method does not converge. This 

happens because when the global matrices come out of this solver the originality of the 

matrices used is loosed. So when the matrices are used again for another eigen value 
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extraction, this method does not converge. To avoid this it necessary to supply the 

original matrices in all different analysis.  

 

Description of the Computer Program 

 

In the present investigation for vibration, buckling and dynamic in stability analysis of 

isotropic and laminated composite  stiffened shell panels with/without cutout subjected to 

in-plane uniform/non-uniform static and harmonic edge loads is implement by a finite 

element computer program written if Fortran-90. The program involves three basic steps 

in terms of computational procedure as follows, 

 

 Preprocessor 

 Processor 

 Postprocessor  

 

Preprocessor  

 

The preprocessor reads the property of the structure and the type of the analysis. Theses 

are the inputs in the program. It reads the all the details of the structures such as 

geometry, material properties, boundary condition, loading configuration and magnitudes, 

stiffeners location, stiffener properties, cutout parameter, mesh parameters etc. Most of 

the data are supplied in the input file some are supplied in the executable screen during 

the execution (run) of the program. The subroutine geo generates the required data from 

the input, which are required for processing process. 

 

Inputs in the program 

 

xl, yl…Length of the panel in x and y direction,  

rx,ry…Radius of curvature in x-z and y-z plane, 

nstr …Structure code, plate-1,cylindrical -2,spherical -3,hyperbolic hyperboloid -4, 
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nlayer…Number of layers in the panel skin, 

thk,e1,e2,g12,g13,g23,pr12…Properties of each layer: thickness of the layer, E in the 

material axis-1, E in the material axis-2, G value in material axis-1-2, G value in material 

axis-1-3, G value in material axis-2-3, Poisson’s ration in axis-1-2. These properties of all 

layers are same, 

ori (i), i = 1,nlayer…Fiber orientation in all layers, 

nxd, nyd…Number of mesh divisions in x and y directions, 

nbc(i), i =1,4…Boundary condition codes for four sides: Side-1 code, Side-2 code Side-3 

code and Side-4 code, simply supported - 1, fixed - 2, free -3, symmetry – 4, 

rho…Density of the shell panel, 

nrqd…Required number of frequencies, 

alfa…Static load factor, 

no_x_st, no_y_st…Number of x and y directional stiffener, 

if (no_x_st > 0), then 

nl_xst(i), no_ly_xst(i) ,ly_arr_xst(i), i=no_x_st…Nodal line number of the x-stiffener, 

Number of line in the x-stiffener, Layer(ply) arrangements code in the x-stiffener,  for all 

x-stiffeners, 

                         Ply arrangement number: 1 - horizontal stacking, 

                         Ply arrangement number: 2 - vertical stacking, 

b_xst(i),d_xst(i),e_xst(i),tc_xst(i), i=no_x_st…Breadth of the x-stiffener, depth of the x-

stiffener, eccentricity of the x-stiffener, torsional constant of the x-stiffener, for all x-

stiffeners, 

                Eccentricity negative: Stiffeners on bottom surface, 

                Eccentricity positive: Stiffeners on top surface, 

ori_xst(i,j),j=1,no_ly_xst(i), i=no_x_st…Fiber orientation in all layers of all x-stiffeners, 

e1_xst,e2_xst,g12_xst,g13_xst,g23_xst,pr12_xst…Material properties of each layer of 

x-stiffeners. These properties of all layers of all x-stiffeners are same, 

rho_xst…Density of x-stiffener, same for all x-stiffeners, 

if(no_y_st > 0) then, Similar data as of x-stiffeners are taken. 

nci…Number of cutout index. 
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                      nic = 0, Cutout present 

                      nic = 1, Without cutout 

xlc,ylc…Dimensions of cutout in x and y directions. 

  

Subroutine geo 

 

This subroutine generates the x, y and z coordinates of all nodes with reference to a global 

Cartesian coordinate x-y-z system for all types of shell panels. This also generates all the 

nodal vector parameter of all the nodes which are used for the element stiffness matrix 

formulation.  

 

Processor 

 

Based on the finite element formulation the processor unit of the computer code performs 

the following tasks, 

 

 Generates elastic stiffness and mass matrix of the stiffened panel skin and 

stiffener elements. 

 Assembles of the elemental stiffness and mass matrix of the panel skin and 

stiffeners to form the corresponding global matrices. 

 Boundary conditions are imposed. 

 Solution for nodal displacements and computation of the stress field is done. 

 Free vibration analysis can be carried out if required. 

 Generates geometric stiffness matrix of the stiffened panel skin and stiffener 

elements. 

 Assembles of the elemental geometric stiffness matrix of the panel skin and 

stiffeners to form the global geometric stiffness matrix. 

 Buckling analysis is carried out. 

 Vibration analysis with in plane load can be performed. 

 Dynamic instability analysis is carried out. 
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The various subroutines performing various operations which are used in the processor 

unit of the computer code are presented briefly. 

 

Subroutine, stif_mass_mat 

This subroutine generates the stiffness and mass matrix of the elements of the panel skin 

and also assembles these to form the corresponding global matrices. The also need the 

help of other subroutine such as cutout, rigidmatrix, bmatrix and assem. The global load 

vector is also specified here with the help of subroutine global_load_vector.   

Subroutine, cutout 

This subroutine computes total number of elements present in the cutout and finds their 

global number. 

Subroutine, rigidmatrix 

This subroutine finds the constitutive matrix (stress-strain relationship matrix-D-matrx) of 

the panel skin element.  

Subroutine, bmatrix 

This subroutine finds the strain-displacement relationship matrix (B-matrx) of the panel 

skin element. It takes the help of subroutine shape_s. The jacobian matrix is developed 

here. 

Subroutine, shape_s 

This subroutine finds the shape functions and their derivatives with respect to ξ and η  of 

the shell element. This also develops the shape functions to find out B-matrx and mass 

matrix of the shell element. 

Subroutine, assem 

This subroutine assembles the elemental matrices to form the corresponding global 

matrices of the shell panel and stores the data in skyline storage scheme.  

Subroutine, global_load_vector 

This subroutine generates the global load vector for all four types of loading. 

Subroutine, stif_mass_mat_st_x 
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This subroutine generates the global stiffness and mass matrix of the whole structure 

taking the developed global stiffness and mass matrix of the panel and adding the 

contribution of the x-stiffeners to it. 

Subroutine, stif_mass_mat_st_y 

This subroutine generates the global stiffness and mass matrix of the whole structure 

taking the developed global stiffness and mass matrix of the panel and x-stiffeners and 

adding the contribution of the y-stiffeners to it. 

Subroutine, geo_stif_mat 

This subroutine generates the global geometric stiffness matrix of the panel skin 

assembling the geometric stiffness matrix of all elements of the panel skin. It takes the 

stresses of all elements calculated in another subroutine called subroutine stress. This 

subroutine stress calculates the stress in each element and their effect is taken into 

account in generating the elemental geometric stiffness matrix of the shell element. 

Subroutine, geo_stif_mat_st_x 

This subroutine generates the global geometric stiffness structure taking the developed 

global geometric stiffness matrix of the panel and adding the contribution of the x-

stiffeners to it. It takes the stresses of all stiffener elements calculated in another 

subroutine called subroutine stress_st. This subroutine stress_st calculates the stress in 

each stiffener element and their effect is taken into account in generating the elemental 

geometric stiffness matrix of the stiffener element. 

Subroutine, geo_stif_mat_st_y 

This subroutine generates the global geometric stiffness structure taking the developed 

global geometric stiffness matrix of the panel and x-stiffeners adding the contribution of 

the y-stiffeners to it.  

Subroutine, save 

This subroutine transfers the modified global stiffness, mass and geometric stiffness 

matrices into original one. This is necessary because when these matrices come out from 

the eigen value solver and Cholesky decomposition subroutine the originality is lost 

during the mathematical processes.  
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Subroutine, bdry 

This subroutine imposes the necessary boundary condition.  

Subroutine, r8usiv 

This subroutine finds the required number of eigen values and corresponding eigen vector 

for free vibration, vibration with load, buckling and dynamic instability analysis.  

 

The other subroutines like matmult, matinv, search, crunch, rigid_matrix, rgd_st, decom, 

for, back, shape_st and bmatrix_st are used in the processing unit of the program. 

 

Postprocessing 

 

In this part of the program the input data is echoed to check whether the specified 

information is correct or not. The output data in terms of displacement, stress, eigen 

values, eigen vector etc depending upon the analysis are stored in different output files. 

These data are used to plot curves or to prepare tables as necessary. The graphic software 

Origin (Version 6.0) is used to plot curves. 

 

Strength and limitations of the program   

 

Strength 

1. The finite element model gives reasonably accurate results. 

2. In relation to other numerical models (Spline finite strip method, Finite difference 

method, Boundary element method and Mesh free method), this finite element 

method is relatively easy (in complex geometry- shallow shell, deep shell and 

presence of cutout; boundary condition and variable material properties) to tackle 

the problem of vibration, buckling and dynamic stability of laminated composite 

stiffened shell panels with cutout. 

3. It can analyze shells of any shape, boundary and loading condition. 

4. The stiffeners may have horizontal as well as vertical stacking. 
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Limitations 

1. Prediction of the local buckling load has not been considered. 

2. Effect of nonlinearity (Geometric and Material) is not included. 

3. The stiffener should have rectangular shape. The effect of Z-type and closed box 

type (Hat) stiffeners is not considered, however this can be incorporated. 

4. Effect of other type of cutouts (Circular, Elliptical etc.) is not considered, however 

the other types of cutout can be incorporated. 

5. Any imperfection in the structure is not considered. 

 

Impact of the present investigation  

 

In the present finite element model an efficient stiffener element is proposed, which is 

compatible to degenerated shell element.  Its combination with the shell element has 

given a unique tool for analyzing composite stiffened shells having a wide variety. The 

analysis tool is equipped in such a way that it can be used to solve vibration, buckling and 

dynamic instability for a wide range of problems. The problem of laminated composite 

stiffened shell panels with uniform in-plane loading is analyzed. Four types of panel 

geometry are considered. The problem of isotropic stiffened panels is also taken in the 

present investigation. All the above mentioned analysis for laminated composite stiffened 

shell panels with non-uniform in-plane loading is done. Four types of different loading 

configurations are taken. Also the vibration, buckling and dynamic instability behaviour 

of the laminated composite stiffened shell panels with square cutout in the centre for in-

plane uniform and non-uniform loading are investigated in the present study. This will 

help to enhance the understanding regarding the behavior of the structure and it will 

definitely help a designer. A number of new results are presented taking different 

parameters into aspect, which will help the future researchers in this field fur further 

investigation.  

 

 

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Appendix 217

Additional references relevance to the investigation 

 

• Kumar, L.R., Datta, P.K. and Prabhakara, D.L. (2002), Tension buckling and 

vibration behaviour of curved panels subjected to non-uniform in-plane edge 

loading, International Journal of Structural Stability and Dynamics, 2(3), 409-

424.  

• Kumar, L.R., Datta, P.K. and Prabhakara, D.L. (2005), Vibration and 

stability behaviour of laminated composite curved panels with cutouts under 

partial in-plane loads, International Journal of Structural Stability and 

Dynamics, 5(1), 1-18. 

• Lee, S.G., Kim, S.C. and Song, J.G. (2001), Critical loads of square plates 

under different load configurations on opposite edges, Journal of Structural 

Stability and Dynamics, 1(2), 283-291. 
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