CHAPTER - I

INTRODUCT ION

The modern technolqu demands high strength durable
materials. The study of the kinetics of precipitate growth
will enable us to understand the stability and morpholegy of
second phase which contributes to strengthening and hinders

deterioration in service.

Available literaturest 0 on cementite particle
coarsening (Ostwald Ripening) during tempering show diverse
views on rate controlling steps for the kinetics. These can
be mainly divided into two groups (a) Interface controlled1
(b) Diffusion controlleg-6. Various authors have designated
diffusion of (i) Fe® (ii) Both Fe and C (coupled diffusion)>~®

as the rate controlling step.

Plain carbon steels containing 0.58 7., 0.56°/. and
0.34 /. carbon have been isothermally tempered in the
temperature range 973K to 861K for 1.5 hour to 209 hours
and morphology has been studied by quantitative metallography.
The effect of volume fraction on the kinetics of coarsening
has been estimated and the value of the specific interfacial
free energy has been calculated. A new time-temperature
parameter has been developed to describe particle coarsening.
Relationships amcng different stereological parameters have
been established. Four master plots have been developed

incorporating volume fraction in the relationships.



The mathematical relationship correlating parameters
makes the effect of volume fraction on the parameters more
vivid. Estimation of diffusivity and activation energy
indicates that the process of cementite particle coarsening
is a coupled diffusion controlled one. The parameters which
have been estimated by fitting experimental data to the
rate equation are in line with the same reported in the

literature.
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CHAPTER - IX

LITERATURE SURVEY

Rate Equation

The solubility of a spherical particle of radius r,

noncoherent with the matrix is related to the size of the

particle and is given by the Gibbs—Thomson? equation,
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where ca(ao is the solubility of a particle of infinite
radius

Ca(r) is the solubility of a particle of radius r

o~ is the specific interfacial free energy

between the particle and the matrix,

Vm is the molar volume of the particle and
RT has its usual meaning.

The principal assumptions are that the solution is ideal and
that the specific interfacial free energy and the particle
density are independent of particle size. There is a negli-
gible change in the specific interfacial energy with radius
of curvature where particle are greater than llpm in radius8
and the dilute solution may be taken as an ideal one. The
solute concentration around any particle can be derived

from equation (2.1). The concentration around a smaller

particle being more than that around a bigger one, there is



a concentration gradient from smaller particle to the larger
one. This concentration gradient existing in a system contain-
ing particles of different sizes is the driving force for

° in Ostwald ripeningg. Solute transfer

particle coarsening
will take place from smaller to larger particles, which will
cause the shrinkage of smaller particles and the growth of

10 and W‘agnerll

the larger one. lifshitz and Slyozov in theirk
pioneering work have developed the theory of diffusion
controlled particle coarsening. Martin and,Doherty12 following
Greenwood9 have developed an equivalent equation, a less
rigorous solution of Ostwald ripening and then have referred
tc the more complete results of Lifshitz and Slyozov10 and
Wagnerll. Assuming the instantaneous growth rate ér/6t to

be effectively constant, They have shown that
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where r is the average radius of the precipitates. An
approximate solution of equationA(2.2) has been achieved by

assuming that this is the same as the maximum value of

at r =2r
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radius of the particles at the onset of coarsening. They

have also shown that the rigorous analysis produces the
very similar result except Kl’ the numerical constant.
Assuming a narrow Gaussian distribution the final rate
equation for particle coarsening where steady state digtri-
bution has a sharp cut-off at r = 1.5 F, rather than 2, has

been achieved, and is given as
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The equation (2.5) predicts that T - follows a linear
relaticnship with the time of coarsening, t, having ;g

and K(®¢) as intercept and slope respectively. It is also
evident from the equation that O\ and C&(«O directly control
the rate of coarsening and the diffusion coefficient D plays

a very important role in Ostwald ripenihg.

From equation (2.2) several factors emerge

(1) Particles having radius equal to the mean value of the
system of particles (r = T ) are instantaneously neither

growing nor dissolving.



