CONTENTS

	Page No.
Title Page	i
Certificate by the Supervisor	iii
Declaration	iv
Acknowledgement	V
Contents	vi-xi
List of Symbols	xii-xiii
Abstract	xiv
Chapter 1 Introduction and Objectives	1-26
1.1 Introduction	1-8
1.1.1 Arsenic chemistry	2-4
1.1.2 Occurrence and mobilization of arsenic in groundwater	4-6
1.1.3 Health hazards of arsenic	6-8
1.1.4 Social impact of arsenicosis	8
1.2 Arsenic removal technologies	8-19
1.2.1 Oxidation	10
1.2.2 Chemical coagulation-precipitation and electrocoagulation	11
1.2.3 Ion Exchange	11
1.2.4 Membrane Technology	12
1.2.5 Adsorption	12-20
1.3 Laterite and treated laterite used as adsorbent in this study	20-22
1.4 Approaches to improve performances of adsorbent	22-24
1.5 Organization of experimental work	24-25
1.6 Aim/Objective of the current research	25-26
1.7 Organization of the thesis	26
Chapter 2 Application of raw laterite as arsenic adsorbent	27-94
2.1 Introduction	27-28
2.2 Experimental	28-36

	2.2.1 Arsenic spiked water	28-29
	2.2.2 Arsenic contaminated groundwater	29
	2.2.3 Preparation of Adsorbent (Raw laterite)	29
	2.2.4 Experimental Procedure	29-31
	2.2.5 Conduction of adsorption experiments	31-32
	2.2.6 Conduction of desorption experiments	32-33
	2.2.7 Conduction of leaching study of KRL	33-34
	2.2.7.1 Toxicity Characteristic Leaching Procedure (TCLP)	33-34
	2.2.7.2 Synthetic landfill leachate (SSL)	34
	2.2.8 Analysis	34-36
	2.2.8.1 Adsorbent characteristics	34-35
	2.2.8.2 Arsenic measurement	35-36
2.3	Results and discussions	36-94
	2.3.1 Adsorbent characteristics	36-42
	2.3.2 Isotherm study of As(III) and As(V) on RL	42-55
	2.3.2.1 Selection of the operating conditions for the adsorption study of	42-44
	As(V) and As(III) using KRL as adsorbent	
	2.3.2.2 Effect of pH of the solution	44-46
	2.3.2.3 Equilibrium studies	46-55
	2.3.2.3.1 Arsenic adsorption isotherm on different RL samples	47-48
	2.3.2.3.2 As(III) adsorption isotherm using RL adsorbent	48-52
	2.3.2.3.3 As(V) adsorption isotherm	52-54
	2.3.2.3.4 Arsenic adsorption isotherm using contaminated	54-55
	groundwater (CGW)/RL system	
	2.3.3 Kinetic study	56-62
	2.3.3.1 As(III) adsorption kinetics	56-59
	2.3.3.1.1 Order of adsorption kinetics of As(III)	57
	2.3.3.1.2 Effect of Initial As(III) concentration	58
	2.3.3.1.3 Effect of adsorbent dose on As(III) adsorption in the	58-59
	kinetic study	
	2.3.3.2 As(V) adsorption kinetics	59-62

2.3.3.2.1 Effect of the initial As(V) concentration	59-61
2.3.3.2.2 Effect of ionic strength on adsorption kinetic	61-62
2.3.3.2.3 Effect of Temperature on Adsorption Kinetics	62
2.3.4 Competitive ions effect on As(III)/As(V) adsorption	62-60
2.3.4.1 Anionic interference on As(III)/As(V) adsorption	62-64
2.3.4.2 Cationic interference on As(III)/As(V) ions adsorption	65
2.3.4.3 Mixed ions interference on As(III)/As(V) ions adsorption	65-66
2.3.5 Modeling of adsorption kinetics	67-77
2.3.5.1 Theory	67-70
2.3.5.2 Numerical Method	70-71
2.3.5.3 Experimental conditions for kinetic modeling	71
$2.3.5.4$ Estimated values of D_e and K_f	71
2.3.5.5 Parametric study	72-76
2.3.5.5.1 Effect of initial adsorbate concentration	72-74
2.3.5.5.2 Effect of temperature	75
2.3.5.5.3 Effect of Biot number	75
2.3.5.5.4 Effect of the mass of adsorbent to the solution volume	75-76
2.3.5.6 Arsenic adsorption kinetics of arsenic CGW on RL	77
2.3.6 Fixed-bed adsorption of As(III) and As(V) on RL	78-87
2.3.6.1 Mathematical analysis of fixed-bed experimental data	78-79
2.3.6.2 Adams-Bohart model	79-8
2.3.6.3 Design of adsorption column by the BDST model	81-82
2.3.6.4 Design of adsorption column for different inlet concentration	82-83
2.3.6.5 Design of adsorption column for different flow rate	83
2.3.6.6 Effect of the bed depth of the column	83
2.3.6.7 Effect of interruption of operation	83-85
2.3.6.8 Effect of inlet As(V) concentration	85-86
2.3.6.9 Quality of effluent water	87
2.3.7 Fixed-bed adsorption of arsenic on RL using CGW	87-88
2.3.8 Pressure drop develop in fixed-bed column	88
2.3.9 Desorption/leaching study of arsenic-loaded RL	89-93

2.3.9.1 Desorption study using alkali solution	89-90
2.3.9.2 Recycling of used adsorbent	91
2.3.9.3 Leaching study	91-93
2.3.9.3.1 Leaching effect of pH of solution on RL	91-92
2.3.9.3.2 Toxicity Characteristic Leaching Procedure (TCLP)	92
2.4 Conclusion	93-94
Chapter 3 Application of acid treated laterite as arsenic adsorbent	95-118
3.1 Introduction	95-96
3.2 Experimental and Method	96-99
3.2.1 Materials	96-97
3.2.1.1 Preparation of acid activated laterite	96-97
3.2.2 Experiment	97-99
3.2.2.1 Equilibrium study	97-98
3.2.2.2 Kinetic study	98
3.2.2.3 Fixed-bed study	98
3.2.2.4 Conduction of desorption experiments	98
3.2.2.5 Leaching study of AAL (0.2 N) and arsenic-loaded AAL(0.2 N)) 98-99
3.2.3 Analysis	99
3.3 Results and discussion	99-118
3.3.1 Adsorbent characterization	99-104
3.3.2 Selection of acid concentration in acid activation step	104-105
3.3.3 Equilibrium studies	105-108
3.3.3.1 Arsenic adsorption using As(V)/As(III) spiked water	105-107
3.3.3.2 Arsenic adsorption using CGW	107-108
3.3.4 Kinetic study	108-112
3.3.4.1 Kinetic model	108-109
3.3.4.2 Effect of initial arsenic concentration	109
3.3.4.3 Effect of temperature	109-110
3.3.4.4 Effect of particle size	111
3.3.4.5 Adsorption kinetics using CGW	111-112

3.3.5 Competitive ions effect on As(III)/As(V) ions adsorption	112-114
3.3.5.1 Anionic interference on As(III)/As(V) ions adsorption	112-113
3.3.5.2 Cationic interference on As(III)/As(V) ions adsorption	113-114
3.3.6 Fixed-bed adsorption of arsenic	114-117
3.3.6.1 Regeneration of arsenic-loaded fixed-bed column and	117
reuse for adsorption	
3.3.7 Leaching study of fresh AAL(0.2 N) and arsenic	117-118
adsorbed AAL(0.2 N)	
3.3.7.1 Leaching effect of pH of solution on AAL(0.2 N)	117-118
3.4 Conclusion	118
Chapter 4 Application of TL as arsenic adsorbent	119-170
4.1 Introduction	119-120
4.2 Experimental and Method	120-126
4.2.1 Materials	120-122
4.2.1.1 Preparation of acid-base treated laterite	121-122
4.2.2 Experiment	122-125
4.2.2.1 Equilibrium study	122-123
4.2.2.2 Fixed-bed study	123-124
4.2.2.3 Household column filter design	124
4.2.2.4 Conduction of desorption experiments	124-125
4.2.2.5 Leaching study of TL and arsenic-loaded TL	125
4.2.3 Analysis	126
4.3 Results and discussion	127-169
4.3.1 Optimization of treatment conditions	127-128
4.3.2 Adsorbent characterization	128-142
4.3.2.1 Characterization of KTL	128-139
4.3.2.2 Characterization of KTL, BTL, PTL1, and PTL2	139-142
treated at optimal condition	
4.3.3 Batch mode arsenic adsorption on treated laterite	142-169
4.3.3.1 Effect of treatment parameters on arsenic adsorption isotherm	142-144

Appendix A		193-195
References		179-191
Chapter 5	Conclusions and perspective of future work	177-178
4.4 Conclusio	ns	175-176
	4.3.3.10.1 Leaching effect of pH of solution on TL	174
4.3.3	3.10 Leaching study of fresh TL arsenic adsorbed TL	174-175
	4.3.3.9.6 Household filter performance	173-174
	4.3.3.9.5 Pressure drop develop in fixed-bed column	172-173
	TL and activated alumina bed using CGW	
	4.3.3.9.4 Comparison of fixed-bed column performance between	171-172
	4.3.3.9.3 Regeneration and reuse of TL fixed-bed in column run	171
	breakthrough behavior	
	4.3.3.9.2.2 Thomas and W-J model predicted	167-171
	modeling	
	4.3.3.9.2.1 Thomas and Wheeler-Jonas fixed-bed	165-167
	4.3.3.9.2 Fixed-bed modeling	162-171
	spiked distilled water and CGW	
	4.3.3.9.1 Fixed-bed column study using As(V) and As(III)	159-162
	3.9 Fixed-bed column study	159-174
4.3.3	8.8 Effect of other ions on As(III) and As(V) adsorption	158-159
	arsenic species	130-137
	4.3.3.7.2 Shrinking core model applied to system containing both	
4.3.3	3.7 Kinetic modeling of TL/arsenic system 4.3.3.7.1 Estimated values of D _e and K _f for single arsenic system	155-157
	3.6 Effect of treatment parameters on arsenic adsorption kinetics	153-155
	3.5 Effect of pH on adsorption isotherm	150-152
	adsorbent KTL, BTL, PTL1, and PTL2	
4.3.3	3.4 Comparison of arsenic adsorption performance using	149-150
4.3.3	3.3 Isotherm of binary adsorbate system	148-149
4.3.3	3.2 Comparison of adsorption capacity of TL with other adsorbents	144-147

Appendix B	195
Curriculum Vitae	197-198

