CHAPTER I

INTRODUCTION

1.1 NON-TRADITIONAL MACHINING PROCESSES - AN OVERVIEW

Material scientists and metallurgists have developed new materials having higher strength, hardness, heat resistence and various other properties in order to cope with the needs of various new industries such as aerospace and nuclear. For shaping these materials, it is quite difficult to find suitable tool and die materials and the processes for producing them. Consequently, non-traditional or non-conventional machining processes have come into existence to deal effectively with the need of time. Though, non-traditional machining processes came up to tackle certain unique situations, but incourse of time, versatility has cost their uniqueness. In conventional metal cutting operation, it is the mechanical energy which causes material removal by shearing. On the other hand, nontraditional machining uses various forms of energy such as mechanical, electrical, thermal, chemical and electro-chemical in their direct or indirect forms. The different nontraditional machining processes which have earned their places in industry are Ultrasonic Machining (USM), Abrasive Jet Machining (AJM), Electro-chemical Machining (ECM), Chemical Machining (CHM), Electrical Discharge Machining (EDM), Electron Beam Machining (EBM), Laser Beam Machining (LBM), Plasma Arc Machining (PAM) etc.

Comparative statements of physical parameters, process capabilities, process economy and material applications as given in Tables 1.1, 1.2, 1.3 and 1.4 may help one to select a suitable non-traditional process for a particular situation.

Tables 1.1 to 1.4 indicate that PAM and ECM require high power for fast machining. The EBM and the LBM require high voltages and are useful in micro drilling and cutting. The USM and the EDM are suitable for cavity sinking and hole drilling. The AJM is useful for shallow pocketing. The ECM is useful for contour machining and it can machine faster with low thermal surface damage. The AJM has very low material removal rate combined with high tool wear.

1.2 ABRASIVE JET MACHINING (AJM)

The AJM works on the principle of impact erosion by multiple particles. As shown in the Fig. 1.1, compressed air from a reservior or any other carrier gas from a storage cylinder is made to pass through a mixing chamber where the gas gets properly mixed up with the abrasive particles flowing from a container. This abrasive powder loaded gas after passing through a sufficiently long accelerator tube, is made to impinge on the work piece by holding the nozzle at 90 deg. to it (Fig. 1.1). The process criteria are greatly influenced by the various operating parameters as mentioned now.

· Abrasives : composition, shape and size.

TABLE 1.1

Physcial parameters of the Process

() ; f		 	Processes					
arameter	NSO		ECM	CHM		Ш Ш	LBM	PAM
Potential (volts)	220	110	0-	; 	45	150000	4500	100
Currents (Amps)	12AC		10000 DC	1 	60 pulsed DC	0.001 pulsed DC	l	500 DC
Power (watts)	2400	250	100000	; ; ; ; ; ;	2700	150average 2000peak	Zaverage 2000peak	
Gaps (mm)	0.25		0.20	; 	0.03	102	152	7.62
Medium	Abrasive in in	Abrasive gas in	Liquid electr- olyte	Liquid chemi- cal	Liquid diele- ctric	Vacuum	A ir	

TABLE 1.2

		i	Process		Economy	1 1 1	 	 	! ! !
	Processes	ı			l				!
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Conventi- onal	MSO	 Σ Τ	I E I I	CHM	ED	EBM	L8	РАМ
Capital investment		1 00	∢ 	1	1	1	Ω	0	∢
Tooling and fixture	 	i	 	! !	 	Ω			60 I
Power requirement	 	! ! @	 	i I	 	1 CC	Ω		
 Efficiency	¥	0	Ι Ω Ι	 60 	ນ	Ω	Ш I	Ш	

Note: A = very low; B = low; C = medium; D = High; E = very high.

TABLE 1.3

Process capability

	Conventional milling of steel	I I I I I I I	 E T T	 E D	CHW	EDM	 E E U	 E B J	W W W
aterial emoval ra cm 3 /hr)	60	19.7	0.	983	1.0	49-197	0.10	0.007	4916
imensional ontrol (mm	. 0	0.008	0.05	0.05	0.05	0.13	0.03		
orner radii mm)	0.05	0.03	0.10	0.03	1.27	0.03 to	0.25	0.25	
urface finish	0.5 to 5.1	0.3 0.5	0.2 to	0.1 2.5	0.5 0.5 7.5	2.5 to 38.1		0.5 to 1.3	rough
Depth of poss- ible damage	0.03	0.03	0.003	500.0	0.005	0.13 0.38	0.25	0.13	0.51

TABLE 1.4

Material Applications

 	NSN	M L A	ECM	CHM		EBM		РАМ
Aluminium	0	 00 	 co	. ∢	œ		8	∢
Steel	80	ω	∢	∢	∢	œ	ω	∢
Super Alloys	ပ	∢	∢	œ	∢	œ	8	∢
Titanium	œ	œ	80	89	∢	œ	œ	æ
fractorie	∢	∢	ω	ပ	∢	∢	U	U
Ceramic	₹	₹	ι ι α	U	Ω	∢	Æ	Q
Plastic	œ	œ	Ω	ပ	Ω	8	6	O
Glass	∢	∢	Ω	a	Ω	۵	B	۵٫
	11111			1 1 1 1 1 1 1				1 1 1 1 1 1

D = Incapable. C = Poor,= Good, B = Fair, Note: A