Contents Page No. Title page i Certificate of Approval v Certificate vii Curriculum Vitae ix Acknowledgement xi **Declaration** xiii List of Tables xv List of Figures xvii List of Abbreviations and Symbols xxi Abstract XXV Contents xxvii Introduction and Review of Literature Chapter 1 1 Introduction and Review of Literature 1 1 1.1 Energy and its global demand 1.2 Basics of biofuels 1 1.3 Biomethane 2 1.4 Anaerobic digestion of organic wastes 4 1.5 Classification of wastes 5 1.6 Agro-industrial wastes 6 1.7 Anaerobic digestion of potato wastes 7 9 1.8 Anaerobic digestion of vegetable/kitchen waste 9 1.9 Anaerobic digestion of *Pistia stratiotes* (an aquatic weed) 1.10 Bottlenecks of process parameters that govern methane 12 production efficiency 1.10.1 Influence of inoculum 12 1.10.2 pH 13 1.10.3 Inhibitory action of VFA 14 1.10.4 Variation in C:N 15

CONTENTS

1.11 Anaerobic codigestion of agrowastes for biomethane production	15
1.12 Kinetic modeling of anaerobic digestion process	17
1.13 Application of digested slurry as biofertilizer	19
1.13.1 Bulk density (BD)	20
1.13.2 Porosity	20
1.13.3 Soil organic matter	20
1.13.4 pH	21
1.13.5 Total C and N	21
1.14 Biogas slurry as plant growth promoter	21
1.15 Research gap	22
1.16 Objectives	23
Chapter 2 Materials and Methods	
2 Materials and Methods	25
2.1 Materials	25
2.1.1 Substrates	25
2.1.1.1 Potato Wastes (PW)	25
2.1.1.2 Kitchen Wastes (KW)	25
2.1.1.3 Pistia stratiotes (PS)	25
2.1.2 Inoculum for biomethane production	26
2.1.3 Inoculum for biomanure production	27
2.1.4 Media	29
2.1.4.1 Inoculum media	29
2.1.4.2 Basal media and its constituents	30
2.1.5 Anaerobic digestion	31
2.2 Methods	31
2.2.1 Characterization of substrate	31
2.2.1.1 Moisture and total solid (TS)	31
2.2.1.2 Ash and volatile solid (VS) content	32
2.2.1.3 Total soluble sugar	32
2.2.1.4 Cellulose	33
2.2.1.5 Hemicellulose	33

2.2.1.6 Lignin	33
2.2.1.7 Volatile fatty acids	34
2.2.1.8 Total alkalinity	34
2.2.2 Biogas	35
2.2.3 Estimation of nutrients (N, P and K) in the substrate and	35
digestate	
2.2.3.1 Diacid digestion of the samples	35
2.2.3.2 Estimation of phosphorous by colorimetric method	36
2.2.3.2.1 Preparation of Barton's reagent	36
2.2.3.2.2 Procedure	36
2.2.3.3 Estimation of potassium (K) by flame photometric method	36
2.2.3.3.1 Preparation of working standard K solution	36
2.2.3.3.2 Procedure	36
2.2.4 Ultimate analysis by elemental analyzer	37
2.2.5 Bulk density and porosity of soil	37
2.2.6 Isolation and Enrichment of Methanogens	37
2.2.7 Specific methanogenic activity (SMA)	38
2.2.8 Determination of suitable consortia from the selected strains	39
2.2.9 Determination of growth pattern of isolated strains	40
2.2.10 SEM analysis	40
2.2.11 Optimization of process parameters	41
2.2.11.1 Experimental design for optimization and statistical analysis	41
by RSM	
2.2.11.2 Artificial Neural Network (ANN)	42
2.2.11.3 Genetic Algorithm (GA)	43
2.2.11.4 Verification of data	44
2.2.11.4.1 Evaluation of model predictability	44
2.2.12 Theoretical calculation of biomethane yield	44
2.3 Equipment	44
2.4 Chemicals	46
2.5 Sterilization	46

	2.6 Software	47
Chapter 3	Characterization of inoculum for biomethanation process	
	3 Introduction	49
	3.1 Inoculum and its characteristics	49
	3.1.1 Growth characteristics of non-methanogenic strains	50
	3.1.1.1 Characteristics of Aneurinibacillus migulans, Staphylococcus	51
	epidermidis, Corynebacterium nuruki and their growth pattern	
	3.1.1.2 Characteristics of Enterobacter cloacae, Bacillus subtilis,	52
	Pseudomonas aeruginosa and their growth pattern	
	3.1.1.3 Kinetic parameters of non-methanogenic strains (1-6)	54
	3.1.2 Growth characteristics of methanogenic strains	56
	3.1.2.1 Characteristics of Methanosarcina barkeri and Methanosaeta	56
	sp. and their growth pattern	
	3.1.2.2 Kinetic parameters of methanogenic strains (7 and 8)	57
	3.2 Fluorescence microscopic examination of methanogenic strains	58
	3.3 pH profiling of digestion process with the chosen substrates and	59
	MAC	
	3.4 Determination of suitable consortia from the selected strains	61
	3.5 Specific methanogenic activity (SMA)	63
	3.6 Discussion	65
Chapter 4	Substrate Characterization, Evaluation and Optimization of	
	Anaerobic Codigestion Process	
	4 Introduction	75
	4.1 Characteristics of substrate	75
	4.1.1 Proximate analyses of PW, KW and PS	75
	4.1.2 Ultimate analysis	76
	4.1.3 Biochemical analysis of PW, KW and PS	77
	4.2 Evaluation of anaerobic codigestion process	78
	4.2.1 Codigestion experiment-PW+PS	78
	4.2.1.1 Biogas profile	78
	4.2.2 Codigestion experiment-KW+PS	82

4.2.2.1 Biogas profile	82
4.2.3 Triple substrate codigestion of PW, KW and PS	84
4.2.3.1 Biogas profile	84
4.3 Assessment of synergistic effect during codigestion	86
4.4 SEM analysis	87
4.5 Optimization of process parameters for anaerobic codigestion	88
4.5.1 Selection of process parameters by OVAT	88
4.5.1.1 Effect of substrate concentration	88
4.5.1.2 Effect of cosubstrate proportion	90
4.5.1.3 Effect of inoculum concentration	93
4.5.2 Optimization of anaerobic codigestion by CCD-RSM	94
4.5.2.1 Optimization of anaerobic codigestion of PW+PS	95
4.5.2.1.1 Analysis of variance (ANOVA) for the mixture of PW and	97
PS	
4.5.2.1.2 Response surface plots for codigestion mixture of PW and	98
PS	
4.5.2.1.3 Validation of the model for codigestion mixture of PW and	100
PS	
4.5.2.2 Optimization of anaerobic codigestion of KW and PS	101
4.5.2.2.1 Analysis of variance for the codigestion mixture of KW and	102
PS	
4.5.2.2.2 Response surface plots of the codigestion mixture of KW	102
and PS	
4.5.2.2.3 Validation of the model of codigested mixture of KW and PS	104
4.5.3 Optimization of anaerobic codigestion by ANN-GA	106
4.5.3.1 Optimization of anaerobic codigestion mixture of PW and PS	107
by ANN-GA	
4.5.3.1.1 Validation based on GA for codigestion mixture of PW and	107
PS	
4.5.3.2 Optimization of anaerobic codigestion mixture of KW and PS	109
by ANN-GA	

	4.5.3.2.1 Validation based on GA for codigestion mixture of KW and	110
	PS	
	4.6 Discussion	112
Chapter 5	Kinetic Modeling of Anaerobic Codigestion Process	
	5 Introduction	123
	5.1 First order kinetic model	123
	5.1.1 Determination of maximum biogas yield (M_u)	125
	5.1.2 Model fit for first order kinetic	125
	5.2 Modified Gompertz model	127
	5.3 Unstructured segregated model	129
	5.3.1 Theoretical considerations of the model	134
	5.3.2 Methane correlation plot	141
	5.4 Discussion	143
Chapter (6 Nutrient Enrichment of Residual Slurry for its Utilization as	
	Biomanure	
	6 Introduction	151
	6.1 Nutrient enrichment of residual slurry (digestate)	152
	6.1.1 Nitrogen enrichment	152
	6.1.2 Phosphorous enrichment	153
	6.1.3 Potassium enrichment	153
	6.2 Field application of biomanure	156
	6.2.1 Effect on plant growth	157
	6.2.1.1 Height of the plant	157
	6.2.1.2 Number of leaves	158
	6.2.1.3 Average number and size of fruits	158
	6.3 Soil quality parameters	160
	6.3.1 Bulk density	160
	6.3.2 Porosity	161
	6.3.3 Soil organic matter	162
	6.3.4 Total C and N	162
	6.3.5 pH	162

6.4 Discussion	163
Conclusion	175
References	177
Appendix	201