
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1

Introduction and Summary

1.1 Introduction

Estimation of reliability of an equipment is of paramount importance in the context of

modern technology and its future development. When we buy an equipment we expect it

to function properly for a reasonable period of time. When a new brand of a product is

floated in the market, the customers will like to have some information about the average

life of the products. Since the item is likely to fail at any time, it is quite customary to

assume that life of the item is a random variable with a distribution function F (t), that is,

the probability that the item fails before time t. This type of questions, can be answered

if we know F (t). Let R(t) = 1 − F (t) denote the probability of failure free operation

until time t. However the parameters of these life time distributions are unknown and

so the behavior of the component can be investigated by estimating the reliability of

the component. The components may be mechanical, electronic or of any other type.

Measurements include failure rates and system reliability. In many cases, failure of an

equipment is inconvenient but not dangerous, such as failure of a television, airconditioner,

fan or computer etc. In other cases it can be life threatening, for example, failure of an

equipment during operation may cause death of a patient. Failure of electronic control of

an aircraft may cause the plane to crash. We may be interested in different measures of

reliability when we deal with various components. For example, the measure associated

with components of a nuclear power reactor is frequently the hazard rate or the failure

rate as instantaneous failure rate of a nuclear power reactor is of primary concern. On the

other hand a power supply system for a deep space satellite must function for the entire

mission period which requires the probability of survival.

The present thesis deals mainly with the estimation of reliability and hazard rate
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functions under different exponential life models. Some useful definitions in reliability

studies are given below.

Definition 1.1 Let the random variable X represent the life time or time to failure of

a component. The probability that a component survives until time t(> 0) is called the

reliability of the component at time t and is defined by

R(t) = P (X > t) = 1 − FX(t), (1.1.1)

where FX(x) is the cumulative distribution function (cdf) of X.

We expect our cars, computers, electrical appliances, television etc. to function for

a specified period of time without failing. One needs to know the reliability of these

systems.

Definition 1.2 (Series system): Let X1, . . . , Xk be independent and denote the life times

of a k-component series system, then the system fails if at least one of the components

fails. So, the system reliability is defined as

R(t) = P (minXi > t) =
k
∏

i=1

P (Xi > t). (1.1.2)

For example, suppose a CPU has two microprocessors connected in series. Let the

lives of microprocessors be independent with reliabilities at time t as R1(t) and R2(t)

respectively. Then the reliability of the CPU is R1(t)R2(t).

Definition 1.3 (Parallel system): Let X1, . . . , Xk be independent and denote the life

times of a k-component parallel system, then the system fails if all the components fail.

So, the system reliability at time t, is defined as

R(t) = P (maxXi > t)

= 1 − P (maxXi ≤ t)

= 1 −
k
∏

i=1

(1 − P (Xi > t)). (1.1.3)

For example, if an office has k copy machines, it is possible to copy a document if at

least one machine is in good condition.
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Definition 1.4 Let X and Y be two continuous (discrete) random variables denoting the

stress and strength respectively of a mechanical equipment, then the system survives if

stress is less than the strength. In this case the reliability R of the system is defined by

R = P (X < Y ) =

∫

x<y

∫

f(x, y)dxdy, when X and Y are continuous,

=
∑

x<y

∑

f(x, y), when X and Y are discrete, (1.1.4)

where f(x, y) is the joint probability density (mass) function of X and Y .

There are some applications of stress-strength models for the k components system and

which have a common stress. Suppose different electric bulbs are arranged in a series and

there is a common voltage passing through them. If the common voltage is more then

the strength of the filament of any bulb, then the system fails. Voltage of a current is a

continuous variable. This type of stress-strength models are quite common in industrial

applications.

Definition 1.5 The hazard rate or failure rate function is defined as the instantaneous

failure rate of a component given by

H(t) = lim
△t→0

P (t < X ≤ t+ △t)
△tP (X > t)

.

If R(t) and f(t) denote the reliability function and density function of X, respectively,

then

H(t) =
f(t)

R(t)
=

−R′(t)

R(t)
= − d

dt
(logR(t)). (1.1.5)

1.2 A Review of Literature on Estimation of Mea-

sures of Reliability

In this section we describe the details of earlier results on various measures of reliability.

1.2.1 Estimation of Reliability Function

A significant amount of literature is available in the field of reliability estimation, es-

pecially when the life times are assumed to be exponentially distributed. One may refer

to Sinha (1986) for detailed review of results in this area. Pugh (1963) obtained the uni-

formly minimum variance unbiased estimator (UMVUE) of reliability in the exponential

case. Basu (1964) considered the estimation of reliability function when the life time X

3



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

follows a negative exponential distribution with mean θ. The reliability function is given

by

R(t) = P (X > t) = e
−t
θ , θ > 0, t > 0.

Individual components are subjected to life testing and the test continues until a preas-

signed number r0 of failures have occurred. Basu derived the uniformly minimum variance

unbiased estimator (UMVUE) of the reliability function as

R̂U =
(

1 − t

T

)r0−1

I(t,∞)(T ), (1.2.6)

where T is the total life on all the components tested and IB(z) is the usual indicator

function. See also Voinov and Nikulin (1993).

Rutemiller (1966) considered a multi-component system with k identical components.

The lifetimes of these components are exponentially distributed. He considered the prob-

lem of finding an unbiased estimator for the system reliability of k components arranged

in series and parallel, respectively. Suppose individual components have been placed on

test and the test continued until a preassigned total life T0 (T0 > t) has been observed.

Let the number of failures in time T0 be r. Then the UMVUEs of the system reliability

for both parallel and series systems are given by

(Parallel) R̂U1 =

k
∑

j=1

(−1)j−1 kCj (1 − jt

T0
)r, I(kt,∞)(T0) (1.2.7)

and

(Series) R̂U2 = (1 − kt

T0
)r, I(kt,∞)(T0), (1.2.8)

respectively. Although the maximum likelihood estimator (MLE) and UMVUE of reliabil-

ity are easy to compute when the life times are exponentially distributed, the expressions

for the mean squared errors (MSE) are complicated.

Bhattacharya (1967) introduced a Bayesian approach to life testing and reliability.

Some proper and improper priors are proposed and the corresponding Bayes and gener-

alized Bayes estimators were obtained.

Zacks and Even (1966a) gave the exact mathematical expressions for MSE of both the

estimators for small sample sizes of one unit systems. They also considered the efficiencies

in small samples of these two estimators. The calculations are done for exponential,
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normal and Poissions distributions. Numerical comparisons of the mean squared errors

are carried out.

Zacks and Even (1966b) have also derived the UMVUE and the MLE of reliability

functions for a two components system connected in series as well as in parallel for ex-

ponential and Possion models. The UMVUE R̂U3 for the exponential life time model at

time t (> 0) was obtained as

R̂U3 =

(

1 − 2t

T

)2n−1

, I( t
2
,∞)(T ), when θ1 and θ2 are assumed to be equal,

=
k
∏

i=1

(

1 − t

Ti

)ni−1

, I(t,∞) min(T1, T2),

when θ1 and θ2 are assumed to be unequal, (1.2.9)

where θ1 and θ2 denote the expected lives of the two components.

Basu and Mawaziny (1978) have extended this work to a k-out-of-m system in the

independent exponential case. They obtained the UMVUE for both distinct and identi-

cal parameter cases. The performance of the estimator when the component life times

are identically distributed is compared with the corresponding MLE for both large and

small sample sizes using Monte-Carlo simulation. They showed that these estimators are

asymptotically equivalent. They also proved that the UMVUE has asymptotically normal

distribution.

Chao (1981) derived approximate expressions for mean squared errors of the estimators

obtained by Basu and Mawaziny (1978). Kurkijian et al. (1987) considered the estimation

reliability function of one parameter exponential distribution. They propose two new

estimators and their risk performances are numerically compared with MLE and UMVUE.

It is shown that the new estimators have better risk performances over a portion of the

parameter space.

Singh et al. (2004) have considered a convex combination of MLE R̂M(t) and UMVUE

R̂U(t) of the reliability function of an exponential distribution.

Ra(t) = aR̂U(t) + (1 − a)R̂M(t), −∞ < a <∞. (1.2.10)

They derived the choice of a that minimizes the MSE of Ra(t). As this choice depends

on the parameter, they replace the parameter by the MLE. The resulting estimator is

compared numerically with the MLE and the UMVUE.
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Gupta and Gupta (1987) estimated the reliability function in the following models.

(i) N(µ, 1) (Normal model) , with σ known and equal to 1.

(ii) N(µ, σ2) (Normal model), with σ is unknown.

(iii) E(X, λ, θ) (Exponential Model), with unknown location and scale parameters.

Five estimators were proposed. These estimators are (i) MLE, (ii) UMVUE, (iii) an esti-

mator obtained through structural approach, (iv) Bayes estimator, (v) an estimator from

predictive approach. The mean squared errors of these estimators are compared analyt-

ically whenever possible. In other cases simulation studies are carried out to compare

these five estimators.

Dey et al. (1988) considered a series system with p components which have exponential

life times. They considered the problem of estimating the system reliability using type

II censored samples in exponential life time model. The system reliability is a function

of U(λ) =
∑p

j=1 λj, where λj is the hazard rate of the jth component. An estimator of

U(λ) which dominates the MLE in terms of risk was derived. Dey and Jaisingh (1988)

estimated the reliability function of a series system with independent components based

on random samples from Weibull distribution with parameters θi and βi. It was assumed

that βi’s are known, which reduces the reliability of the system to a function of γ(θ),

where θ = (θ1, . . . , θp). An estimate of γ(θ) which is better than the UMVUE in terms

of MSE was determined. The predicted reliability and the percentage of improvement for

this estimator is compared and computed with the UMVUE of γ(θ).

Bhattacharya and Soejoeti (1989) developed a statistical model for step stress ac-

celerated life test. It is motivated from the point of view that a change of stress has a

multiplicative effect in the failure rate function over the remaining life. Properties of the

proposed model, including an interpretation in terms of the conditional reliability and

relationships with the existing models were discussed. MLEs of the parameters of this

model were derived.

Basu and Ebrahimi (1992) derived the Bayes estimator of the reliability function in

the exponential life testing model using an asymmetric loss function of the form

L(△) = b[ea△ − a△− 1], (1.2.11)

where △ = ( θ̂
θ
− 1), a 6= 0, b > 0. They have obtained the Bayes estimator of reliability

function using various priors. A comparison of mean squared errors was made between

these and with the Bayes estimates with respect to the squared error loss function.

Estimation of reliability, where X follows Pareto distribution was considered by Bhat-
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tacharya et al. (1994). The estimation based on the first r ordered observations and n− r
survivors was proposed. The UMVUE, Bayes estimators of the mean life, hazard rate and

reliability function were derived.

The Bayes estimation of reliability function for a mixture of inverse Gussian distri-

butions (IGD) has been studied by Akman and Huwang (1997) through a numerical

approach. Since the calculations in deriving the Bayes estimators are difficult, they have

used a rejection method to obtain them for all three parameters in this case. The model

under their consideration is given by

fp(x) = (1 − p)f(x) + p g(x), p = 0, 1, 2, (1.2.12)

where f(y) is the density function of an inverse Gussian distribution with finite mean µ

and g(y) = y f(y)
µ

.

Since the structures of the Bayes and natural estimators of reliability function are

complicated, exact decision theoretic properties are hard to derive. Chaudhury et al.

(1998) have studied the asymptotic decision theoretic properties of the natural estimators

of reliability of a k components series system. The life times of these components are

exponentially distributed. They established that θ̂MLE is second order admissible within

a class of estimators of the form

θ̂c = θ̂MLE +
1

n
c(θ̂MLE), (1.2.13)

where c(.) is assumed to admit Taylor’s series expansion at θ.

El-Neweihi and Sinha (2000) provided a class of n unbiased estimators of the reliability

function of an exponential distribution based on the first r observations of a ranked

set sample of size n. The sample X(11), . . . , X(nn) of independent but not identically

distributed of ordered statistics is said to be ranked set sample. They conjectured that

the estimator that uses all n observations in the sampling scheme has the minimum

variance in the given class of n unbiased estimators. They proved this for n = 2 and 3.

Ghitany (2005) has presented two counter examples to show that the conjecture made by

El-Newihi and Sinha (2000) was incorrect. Ghitany (2005) has disproved the conjecture

given by El-Neweihi and Sinha (2000) by taking n = 4 and 5, respectively.

Chaturvedi and Tomer (2003a) have considered the estimation of the reliability function

and P (X < Y ) for the case of negative binomial distribution. The UMVUEs and the Bayes

estimators of the reliability function and P (X < Y ) were derived. Using the UMVUEs and

Bayes estimators of the powers of the parameter, the UMVUEs and the Bayes estimators
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were derived. The UMVU estimation of the reliability function and P (X < Y ) of the

generalized life distributions were also studied by Chaturvedi and Tomer (2003b).

Nassar and Eissa (2004) have derived the Bayes estimates of the two shape parameters,

reliability function and hazard rate for the exponentiated Weibull model (EWM) from

complete and type II censored samples. The density of EWM is given by

f(x) = αθxα−1e−x
α

(1 − e−x
α

)θ−1, x > 0, θ > 0, α > 0. (1.2.14)

Conjugate priors for either one or two shape parameters are considered. An approximation

form due to Lindley (1980) was used to obtain the Bayes estimates under squared error

and linear-exponential (linex) loss function (1.2.11). The root mean squared errors of the

estimates are computed. Comparisons are made between these estimates and MLE using

a Monte-Carlo simulation study.

Bekker and Roux (2005) have derived the MLE, Bayes and empirical Bayes estimators

of the truncated first moment and hazard rate function of the Maxwell distribution with

density

f(x; θ) =
4√
π
θ

3
2 x2e−θx

2

, x ≥ 0, θ > 0. (1.2.15)

A comparison of the relative efficiency of these three estimators is carried out using a

simulation study.

1.2.2 Estimation of Hazard Rates and the Scale Parameters in
Exponential Models

Sharma (1977) has considered the problem of estimating the hazard rate in a two

parameter exponential distribution. The location and scale parameters are assumed to be

unknown. Let Y1, . . . , Yn be a random sample from this population. Further let Y and Ys

denote the mean and the minimum of this sample, respectively, and W = Y − Ys. Based

on a result of Kiefer (1957), Sharma claimed that the best affine equivariant estimator
n−3
nW

is minimax. Further he obtained an improvement over the best affine equivariant

estimator. The improved estimator is given by

δ1 =

{

max{ n−2
n(Ys+W )

, n−3
nW

} if Ys > 0,
n−3
nW

, otherwise.
(1.2.16)

The problem of estimating the vector of scale parameters (θ−1
1 , . . . , θ−1

p ) and their recip-

rocals (θ1, . . . , θp) of p gamma distributions was addressed by Berger (1980) using differen-

tial inequalities. Four types of losses of the form
∑p

i=1 θ
m
i (δiθi− 1)2, m = −2,−1, 0 and 1
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were considered. Let (X1, . . . , Xp) be independent and Xi follows a gamma distribution

with the scale parameter θ−1
i and shape parameter αi, i = 1, . . . , p. It was shown that

δ∗(X) = (δ∗1(X), . . . , δ∗p(X)), where

δ∗i (X) =

(

αi − 2

Xi

+
cXi

b+
∑p

j=1X
2
j

)

, 0 < c < 4(p− 1), b ≥ 0, p ≥ 2

improves upon the best scale equivariant estimator

δ(X) =

(

α1 − 2

X1
, . . . ,

αp − 2

Xp

)

under norm squared error loss.

Dasgupta (1986) also used the differential inequality approach of Berger (1980) and

obtained new class of solutions to derive improvements over the best scale equivariant

estimators of scale and reciprocals of scale parameters for several gamma populations. Let

(X1, . . . , Xp) be independent and Xi follows a gamma distribution with scale parameter

θ−1
i and shape parameter αi, i = 1, . . . , p. The estimator with the ith co-ordinate

δi(X) =
αi − 2

Xi

(

1 + c (sgn mi)X
mi
2
i

p
∏

i=1

X
−

mi
p

i

)

for small positive value of c dominates the estimator with ith co-ordinate αi−2
Xi

, i = 1, . . . , p.

The loss function considered was the sum of weighted quadratic losses. It is of the form
∑p

i=1 ciθ
mi

i ( δi
θi
− 1)2, where ci > 0 and mi 6= 0.

The estimation of common scale σ of several exponential with unequal and unknown

locations has been studied by Madi and Tsui (1990) under a large class of loss functions

of the form L(δ, σ) = W ( δ
σ
), where W is assumed to be continuous and strictly bowl

shaped with minimum of W (t) occuring at t = 1. The best affine equivarient estimator

was shown to be inadmissible. They have provided an estimator which improves upon the

best affine equivarient estimator. Since the improved estimator is not smooth, a smooth

estimator was also constructed in the paper.

Elfessi and Pal (1991) have considered the estimation of the common scale parameter

σ of several exponentials with unknown and unequal location parameters when censored

samples are available. Let Xi1, . . . , Xini
be the sample drawn from ith population, i =

1, . . . , k. Let Xi(1) ≤ . . . ≤ Xi(ri) be the first ri observations in the ith sample. Define

Vi =
∑ri

j=1(Xi(j) − Xi(1)), V =
∑k

i=1 Vi, W = 2V
σ

, Y =
∑k

i=1

niXi(1)

σ
and U = Y

W
. Elfessi
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and Pal considered scale equivariant estimators of the form σ̂ = V φ(U), and obtained

improvements of the form V φ∗(U), where φ∗(U) = min

(

φ(U), 1+2U
r−k+2

)

, r =
∑k

i=1 ri.

This estimator is used to construct improved estimator of the location parameters.

Elfessi (1997) has investigated the estimation of scale parameter, its reciprocal and

the location parameter in a two parameter exponential distribution based on a doubly

censored sample. It was shown that the best affine equivariant estimator is inadmissible

and the improving estimator is derived. The improved estimator of the receprocal of

the scale parameter is similar to the one obtained by Sharma (1977). He also derived

estimators of the quantile.

1.2.3 The Problem of Estimation After Selection

Let Π1, . . . ,Πk be k populations with Πi having an associated probability density func-

tion f(x|θi), i = 1, . . . , k. A common problem is to select the best population or a subset

of populations containing the best. The population may be termed as the best according

to some characteristic such as the largest(smallest) mean, the largest(smallest) variance

etc. Some typical examples are:

1. There are different types of treatments available for a particular disease. A doctor

will choose the treatment which will be most effective for that treatment. Here the

effectiveness may be judged by the time required to cure a patient, or the proportion

of patients cured by the treatment.

2. There are a number of organic and chemical fertilizers that can be used for a certain

crop. An agricultural farm owner wants to select a fertilizer for his/her crop that

will give a high yield and also maintain the soil quality over a period of time.

3. An army chief will like to select the best quality guns for his army. Here the best may

be decided on the basis of the proportion of successful hits or easy maneuverability

of the gun carriage.

4. An industrialist will like to select that machine for his/her manufacturing facility

which will give the highest production.

5. An investor will like to purchase shares of the companies which are expected to yield

higher returns over next few years.

10



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

An important practical problem is to estimate the parameters of the selected population

or a characteristic of the selected subset. In example 1, the doctor will like to estimate

the expected time to cure or the proportion of patients cured by his/her chosen line of

treatment. In example 2, the farm owner will like to have an estimate of the expected

yield if he/she using the best fertilizer. An investor will like to know the estimated returns

on his/her investments in the best chosen stocks. These problems are commonly referred

to as ”Estimation after selection”.

The problem of estimation after selection differs from the classical estimation problem

in a certain sense. In the usual estimation set up, the parameter to be estimated is taken

to be unknown and fixed quantity. Thus an estimator T is said to be unbiased for g(θ),

if Eθ(T ) = g(θ) for all θ. However, in the problem of estimation after selection, the

parameter to be estimated is a random but unknown quantity, say θJ , as it depends on

the selection rule. Hence an unbiased estimator T for θJ must satisfy E(T−θJ ) = 0. Thus

an unbiased estimator of θJ is an unbiased estimator of E(θJ) and the uniformly minimum

variance unbiased estimator (UMVUE) for θJ is, in fact, the UMVUE for E(θJ ). In the

classical estimation problem, the mean squared error (MSE) of an unbiased estimator is

its variance. For example, if U is unbiased for θ, then MSE(U, θ) = E(U − θ)2 = Vθ(U).

Therefore, if a UMVUE of θ exists, then it is uniformly better (MSE wise) than any other

unbiased estimator. In contrast, the MSE of an unbiased estimator T of θJ is,

MSE(T, θ) = E(T − θJ )
2 = Vθ(T ) + Vθ(θJ) − 2 Covθ(T, θJ ), (1.2.17)

where Covθ(T, θJ ) denotes the covariance between T and θJ .

The problem of estimation after selection seems to have been initially formulated and

investigated by Rubinstein (1961, 1965) in the context of reliability estimation. Rubin-

stein used a sequential scheme for selecting the components in a manufacturing process.

He derived unbiased estimators for the failure rates of the selected components. His

methods also give unbiased estimator of selected Poisson parameters for a wide class of

selection procedures.

The problem of estimating the mean of the selected normal population was introduced

by Stein (1964). Let Xi be N(θi, 1), i = 1, . . . , k and be independently distributed.

Suppose the population corresponding to the largest Xi is selected and M denote the

mean of the selected population. For k = 2, Stein proved that XJ = max(X1, X2)

is admissible and minimax, when the loss function is squared error. However, it was

remarked that XJ is positively biased and that its bias tends to infinity with k when θs
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are close. The inadmissibility of XJ was also conjectured for k ≥ 3. Later Brown (1967)

disproved this conjecture showing that XJ is admissible for any k. Practical estimators

for the above problem have been proposed by Sarkadi (1967), Dahiya (1974) and Hseih

(1981) (for unknown and common variance case). Cohen and Sackrowitz (1982) made

an extensive study and proposed a family of estimators, which turn out to be empirical

Bayes. Their main contribution is for the case k ≥ 3. Some further work on normal

populations has been done by Hwang (1987) and Venter (1988).

Major work on the problem of estimation after selection when underlying populations

are non-normal was initiated by Sackrowitz and Samuel-Cahn (1984). They considered

estimation of the mean of the selected exponential population when the selection rule is

according to the largest observation or the smallest one. They derived the UMVUEs in

both the cases. Sackrowitz and Samuel-Cahn (1987) have established some general results

for the Bayes and minimax estimators for the parameters of the selected population.

Vellaisamy (1993) proved some general results about uniformly minimum mean sqaured

error unbiased estimation.

Estimating the mean of the selected uniform population was introduced by Vellaisamy,

Kumar and Sharma (1988). Their results were further extended by Song (1992), Anand,

Misra and Singh (1998). Vellaisamy and Sharma (1988) initiated the work on estimating

the mean of the selecetd gamma population. Further contributions to this problem have

been made by Vellaisamy and Sharma (1989), Vellaisamy (1992a), (1996) and Misra et

al. (2006).

Estimation of the quantile of a selected population has been considered by Sharma

and Vellaisamy (1989), Kumar and Kar (2000, 2001a,b) and Vellaisamy (2003). Mishra

and van der Meulen (2001) have studied the estimation after selection in general trun-

cation distributions. Vellaisamy and Punnen (2002) have considered the simultaneous

estimation of k (where k is random) location parameters in the selected subset. The ith

population is exponentially distributed with common known scale parameters but unequal

location parameters. They obtained some improved estimators which dominate the natu-

ral estimators under squared error loss function by solving some differential inequalities.

Vellaisamy and Jain (2008) have considered the estimation of the selected parameters of

a discrete exponential family. Further Vellaisamy (2008) has derived a general condition

under which the unbiased estimators of the selected parameters do not exist.
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1.3 A Summary of the Results in the Thesis

In Chapter 1, we give a detailed review of the existing literature on the following prob-

lems : (i) estimation of the reliability function, (ii) estimating the hazard rate function,

(iii) estimation of reliability in stress strength models and (iv) estimation of reliability and

hazard rate function from a selected component. In Chapter 2, some basic definitions

and results of decision theory are discussed. These are useful in subsequent chapters.

In Chapter 3, the problem of estimation of the system reliability of a k compo-

nents series system is discussed. The life time of the ith component is assumed to be

exponentially distributed with unknown scale λ−1
i , for i = 1, . . . , k. The loss taken here

is the log squared error loss. The estimation of system reliability under log squared error

loss is equivalent to that of estimating the sum of hazard rates under squared error loss.

Independent random samples are drawn from each of k populations. Let Xi1, . . . , Xini

be a random sample drawn from the ith population, i = 1, . . . , k. Then T = (T1, . . . , Tk)

is complete and sufficient, where Ti =
∑ni

j=1Xij. In Section 3.2.1, scale invariance is

introduced in this problem and improvements over the existing estimators are obtained

using the Brewster-Zidek (1974) technique. A generalized Bayes estimator is derived

and its admissibility is established in Section 3.2.2. A numerical comparison is made to

compare the risks of these improved estimators and the generalized Bayes estimator in

Section 3.2.3. In Section 3.3, we consider the estimation of reliability of a series system,

where the life times of individual components follow two parameter exponential distribu-

tions with a common unknown location µ and unknown but different scale parameters

λ−1
i , i = 1, . . . , k. Let Xi1, . . . , Xin be a random sample drawn from the ith popula-

tion, i = 1, . . . , k. (X, T ) is a complete and sufficient statistic for this problem, where

X = mini minj Xij , T = (T1, . . . , Tk) and Ti = 1
n
(
∑n

j=1Xij) − X. The UMVUE for the

system reliability is derived in Section 3.3.2. A modified MLE in the light of Ghosh

and Razmpour (1984) is proposed in Section 3.3.3. The mean squared errors of these

estimators are compared through simulation in Section 3.3.4.

In Chapter 4, we investigate the problem of estimating the hazard rates of several

exponential populations with a common unknown location µ and different scale param-

eters. Let the population Πi follow a two parameter exponential distribution with a

location parameter µ and scale parameter λ−1
i , i = 1, . . . , k. Independent random sam-

ples are drawn from each populations. Let Xi1, . . . , Xin be a random sample drawn from

the ith population. Further suppose Xi = min(Xi1, . . . , Xin), X = min(X1, . . . , Xk),

13
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Yi = 1
n

∑n

j=1Xij and Ti = Yi −X, for i = 1, . . . , k. Then (X, T ), where T = (T1, . . . , Tk),

is complete and sufficient statistic. In Section 4.2, we study the estimation of the hazard

rate of the first population when the populations have a common location. In Section

4.2.1, we obtain some basic estimators using Rao-Blackwellization. An identity is devel-

oped to derive unbiased estimators and using it, we find a UMVUE. Further the mean

squared errors of these basic estimators are compared. It is shown that the modified

best scale equivariant estimator δ1
MBS performs the best amongst these estimators under

the squared error loss. Sufficient conditions for inadmissibility are derived for affine and

scale equivariant estimators in Sections 4.2.2 and 4.2.3 respectively. The results for the

class of scale equivariant estimators motivated us to consider the estimation of the hazard

rate of the first population when µ ≤ 0. The restricted MLE δRML, a restricted mod-

ified MLE δRMML, a restricted modified UMVUE δRUM and a restricted modified best

scale equivariant estimators δRMBS are derived through Rao-Blackwellization in Section

4.2.4. The mean squared errors of these estimators are compared through simulation

in Section 4.2.5. It is shown that δRMBS has the smallest mean squared error among

these estimators. In Section 4.3, we study the simultaneous estimation of hazard rates.

The loss function taken here is the sum of squared errors. Some basic estimators are

proposed. In Section 4.3.1, a differential inequality is developed in the light of Berger

(1980). Using this an improved estimator dominating these estimators is derived when

k ≥ 2. In Section 4.3.2, a general inadmissibility result for affine equivariant estimators

is derived when the loss is the sum of squared errors or the sum of quadratic errors. In

Section 4.3.3, sufficient conditions for the inadmissibility of the scale equivariant estima-

tors are derived. In Section 4.4, the problem of estimating the common hazard rate λ

of k exponential populations with different location parameters µ1, . . . , µk is considered.

Let (X11, . . . , X1n), . . . , (Xk1, . . . , Xkn) be independent random samples from these pop-

ulations. (X1, . . . , Xk, Y ) is a complete and sufficient statistic in this problem, where

Y =
∑k

i=1

∑n
j=1Xij and Xi = min(Xi1, . . . , Xin), i = 1, . . . , k. In Section 4.4.1, some ba-

sic estimators and the best affine equivariant estimators are derived using the quadratic

loss. A general inadmissibility result for the class of scale equivariant estimators is derived

in Section 4.4.2 using an orbit by orbit improvement technique of Brewster-Zidek (1974).

It is shown that the best affine equivariant estimator δBAE of λ is in admissible. The

improved estimators which dominate δBAE are obtained.

In Chapters 5 and 6 of this thesis, we discuss the problem of estimation after

selection.

14
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In Chapter 5, we investigate the hazard rate estimation from a selected expo-

nential population. Let Π1,Π2 be two populations where Πi follow a one parameter

exponential distribution with scale λ−1
i , for i = 1, 2. Let (Xi1, . . . , Xin) be a random

sample drawn from the ith population, i = 1, . . . , k. The loss function is quadratic. De-

fine Xi =
∑k

i=1Xij , the natural selection rule is to select the population with largest Xi,

i = 1, 2. That is, select the population Πi if Xi = max(X1, X2), i = 1, 2. The opti-

mality of the natural selection rule has been investigated among others by Bahadur and

Goodman (1952), Lehmann (1966) and Eaton (1967). We consider the estimation of the

hazard rate from the selected component. In Section 5.2, the analogues of the MLE, the

UMVUE and the best scale equivariant estimators are proposed. It is shown that these

estimators are admissible within a class of estimators of the form c
XM

, where c > 0 and

XM = max(X1, X2). Minimaxity of the analogue of the best scale equivariant estimator

δN1 = n−2
XM

is proved in Section 5.2. A sufficient condition for the inadmissibility of scale

equivariant estimators is derived in Section 5.4. Finally a numerical study is done to

compare the risks of various estimators in Section 5.5.

In Chapter 6, we study the problem of estimation of the survival function of a

selected exponential population. Let Π1, . . . ,Πk be k populations where Πi follows an

exponential distribution with unknown location parameter µi and known common scale

parameter λ−1, i = 1, . . . , k. Independent random samples are available from each of

k populations. Let (Xi1, . . . , Xin) be a random sample drawn from the ith population,

i = 1, . . . , k. The loss function is quadratic. Let Xi denote the minimum of ith sample.

Then complete and sufficient statistic is (X1, . . . , Xk). The problem of estimation of re-

liability function from a selected component is investigated in Section 6.2. The natural

selection rule is to select the component with lowest reliability. That is, select the popu-

lation Πi, if Xi = min(X1, . . . , Xk). The UMVUE and some basic estimators are derived.

The minimaxity of a generalized Bayes estimator is proved for k = 2 in Section 6.2.2.

Admissible estimators within a class of estimators of the form ceXJ are obtained, where

XJ = min(X1, X2). A general inadmissibility result for the scale equivariant estimators

is derived in Section 6.2.2. We study the simultaneous estimation of reliability functions

in the selected subset in Section 6.3. We aim to select a subset of the populations with

high reliabilities. We call the population associated with the maximum µi as the best

population. A subset of the given k populations is selected according to Gupta’s subset

selection procedure (Gupta (1965)), that is, select Πi if and only if Xi ≥ X(1) − d, for

some d such that the probability of correct selection (CS) is at least P ∗, a specified quan-
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tity (Gupta and Panchapakeshan (1979)), where X(1) = max(X1, . . . , Xk). The problem

is to estimate θ = (θ1I1, . . . , θkIk), where θi = eµi ,

Ii = 1, if Xi > X(1)i − d,

= 0, otherwise, i = 1, . . . , k,

and

X(1)i = max{X1, . . . , Xi−1, Xi+1 . . . , Xk}.

A natural estimator and the UMVUE are derived in Section 6.3.1. For d = 0, sufficient

conditions for inadmissibility of the estimators of the form ceX(1) are derived. Inadmissibil-

ity of the UMVUE and the natural estimator is verified. The generalized Bayes estimator

δ∗N of θ with respect to the improper prior

τ(µ) =

{

1, if −∞ < µi <∞, i = 1, . . . , k,
0, otherwise.

is seen to dominate both the UMVUE and the natural estimator under squared error loss.

In Section 6.3.3, some improved estimators which dominate the estimators of the form

δc = {ceX1I1, . . . , ce
XkIk}, where 0 < c < 1, are constructed using a differential inequality

approach used by Vellaisamy (1992) and Vellaisamy and Punnen (2002). In Section 6.4, we

study the problem of estimation of reliability function of the selected negative exponential

population. The UMVUE is derived in Section 6.4.1. Finally a numerical comparison is

made between the UMVUE and the natural estimators in Section in 6.4.2.
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