BIO-DATA

The author received her Bachelor degree in Agricultural Engineering followed by Master's degree in Processing and Food Engineering from Punjab Agricultural University, Ludhiana, Punjab, in 2006 and 2009 respectively. She received Senior Research Fellowship under National Agricultural Innovation Project-Indian Council of Agricultural Research (NAIP-ICAR) funded project entitled "High pressure processing of high value perishable commodities" at Indian Institute of Technology Kharagpur in September 2009. She enrolled in the doctoral program at Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur in January 2010. She cleared the 'National Eligibility Test (NET)' conducted by ICAR in 2010. She joined as Assistant Professor in 2013 in Department of Food Engineering, National Institute of Technology Entrepreneurship and Management (NIFTEM). She has filed two patents, published nine research papers in international peer reviewed journals, two books, three book chapters and presented two papers in international and one in National conference.

The author's residential address is furnished below:

Barjinder Pal Kaur C/o Shri Manjit Singh C-9 Street Number 6 New Cantt Road, Faridkot Punjab-151203, India Email: barjinderpkaur@gmail.com

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere gratitude to my supervisor Dr. P. Srinivasa Rao, for his valuable guidance, constructive suggestions and continuous support to carry out the experimental work, manuscripts and thesis preparation. Without his untiring support, this study would not have been possible. I consider myself lucky to work under his guidance and apart from the research work he always stood by my side in difficult times during my stay at IIT Kharagpur.

I am thankful to the DSC members Prof. H. N Mishra, Prof. A. K. Datta, Prof T. K. Goswami, and Prof. S. K. Srivastava for their valuable suggestions during the research work. I am also thankful to Prof. V. K. Tewari, Head and Prof. P. B. S. Bhadoria and Prof. R Singh, former Heads of the Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur. I am thankful to the faculty members of Food Process Engineering group of the department for their cooperation and constructive suggestions during the entire study.

Also, I would like to thank National Agricultural Innovation Project (NAIP-ICAR) for funding the project entitled 'High pressure processing of high value perishable commodities', and SRIC for their support at various phases of the programme.

This thesis would not have come to the successful completion without the help of administrative and lab staff of the department. I would like to thank Mr. Nirmal Dolai, Mr. Somnath Banerjee, Mr. Kallol Sen Gupta, Mr. Arup Mahapatra, Mr. Shibu Pal and all other staff members for their services.

I would like to thank my IIT colleagues Mrs. Neelima Kaushik, Mr. Nishant, Mr. Kiran Patruni, Mr Snehasis, Mrs. Lakshmi E. Jayachandran, Mr Saumya, and Ms. Kaunsar Jabeen, for their support help during difficult times, encouragement and cheerful moments. I would also like to thank Dr P K Nema, Dr Vijender Mishra, Prof. Pitam Chandra, Dr Ajit Kumar, Er. Thangalakshmi Senthil, Dr Rakhi Singh and other colleagues from NIFTEM for their motivation and consistent encouragement.

It is with personal touch of emotions, that I fail to gather words enough to acknowledge the affection and moral support I received from Shalini, Chandani, and Anshu throughout this journey of Ph.D.

I would like to express my heartiest gratitude to my parents, my younger brother without their willingness and strong determination; I would never have been able to complete my thesis. This research work could not be completed without their valuable efforts, earnest enthusiasm and enormous support

Finally, last but not least, I thank **ALMIGHTY GOD**, for his blessings, for giving me strength to complete this work and showing me right path in my life.

Place: IIT Kharagpur November, 2016 (Barjinder Pal Kaur)

Chapter No.	Particulars	Page No
TITLE PAG	E	
APPROVAI	_	
CERTIFICA	TE	
DECLARA	ΓΙΟΝ	
BIO-DATA		i
ACKNOWL	EDGEMENTS	ii
CONTENTS	3	iii
LIST OF AF	BREVIATIONS AND SYMBOLS	v
LIST OF FI	GURES	viii
LIST OF TA	ABLES	xi
ABSTRACT		xiii
Chapter 1	INTRODUCTION	1-5
Chapter 2	REVIEW OF LITERATURE	7-30
2.1	Black Tiger Shrimp	7
2.2	Seafood Spoilage	7-10
2.3	Pathogens of Concern in Seafood	10-12
2.4	Introduction to High Pressure Processing	12-17
2.5	Factors Affecting High Pressure Processing	17-20
2.6	Effect of HPP on Physicochemical Quality of Seafoods	20-21
2.7	Effect of HPP on Microbial Inactivation in Seafoods	21-23
2.8	Kinetics Modeling of Microbial Inactivation	23-28
2.9	Shelf-life Study	28-29
2.10	Cost Analysis	30
Chapter 3	MATERIALS AND METHODS	31-52
3.1	Chemicals, Reagents and Instruments	31
3.2	Raw Material	31-32
3.3	High Pressure Processing	32-33
3.4	Combined Effect of Pressure and Holding Time on Quality of Black Tiger Shrimp	34
3.5	Proximate Composition	34
3.6	Quality Analysis	34-40

CONTENTS

Chapter No.	Particulars	Page No.
3.7	Effect of HPP on Pathogens and Enzyme Activity	40-45
3.8	Optimization of Processing Conditions for Shrimp	45-49
3.9	Storage Studies and Shelf-life Evaluation of Optimized Black Tiger Shrimp	49-51
3.10	Statistical Analysis	51-52
Chapter 4	RESULTS AND DISCUSSION	53-123
4.1	Changes in Proximate Composition	53-54
4.2	Quality Analysis	55-70
4.3	Effect of High Pressure Processing on Inactivation Kinetics of Pathogens and Enzyme	71-89
4.4	Optimization of Processing Parameters using Response Surface Methodology	89-99
4.5	Changes in Quality Attributes of High Pressure Processed Black Tiger Shrimp during Storage	100-122
4.6	Shelf-Life Estimation	123
Chapter 5	SUMMARY AND CONCLUSIONS	125-131
5.1	Methodology	126-127
5.2	Results Summary	128-131
5.3	Conclusions	131
	CONTRIBUTION BY THE SCHOLAR	133
	FUTURE SCOPE OF RESEARCH	134
	REFERENCES	135-157
	APPENDICES	159-161
	PUBLICATIONS AND PRESENTATIONS	163

Abbreviation/Symbol	Description
A_f	Accuracy factor
A_t	Enzyme activity at time <i>t</i>
A_0	Enzyme activity before pressure treatment
A_{PE}	Enzyme activity after pulse pressurization
Adj.	Adjusted
ANOVA	Analysis of variance
AOAC	Association of official analytical chemists
ATP	Adenosine triphosphate
β	Shape factor
С	Control
°C	Degree centigrade
CCRD	Central composite rotational design
CFU	Colony forming unit
d_i	Desirability function
D_i	Overall desirability function
D_P	Decimal reduction time
$E_{ m a}$	Activation energy
ΔE^*	Total color change
E. coli	Escherichia coli
et al.	And others
EVOH	Ethylene vinyl alcohol
Fig.	Figure
g	Gram
h	Hour
HPP	High pressure processing
Hx	Hypoxanthine
H_2S	Hydrogen sulphide
k	Microbial death rate constant
K	Kelvin
kg	Kilogram
kJ	Kilo joule
L	Litre
LDPE	Low density polyethylene
L. innocua	Listeria innocua
Log	Logarithm
m	Metre

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviation/Symbol	Description
mm	Millimetre
min	Minute
MMP	Multilayer metalized polyester
Mol	Mole
MDA	Malondialdehyde
MPa	Megapascal
nm	Nanometer
N_t	Microbial population after time t treatment
N_{0}	Initial number of microorganisms before pressure treatment
N_{PE}	Microbial population after pulse treatment
ND	Not determined
OAS	Overall acceptability sensory
р	Probability of accepting null hypothesis
Р	Pressure
Pa	Pascal
PE	Pulse effect
PTM	Pressure transmitting medium
%	Percent
PPO	Polyphenoloxidase
R	Universal gas constant
R^2	Coefficient of determination
RA	Relative activity
ref	Reference
RMSE	Root mean square of error
RSM	Response surface methodology
S	Second
S. aureus	Staphylococcus aureus
SCADA	Supervisory control and data acquisition
SD	Standard deviation
SE	Standard error of mean
SEM	Scanning electron microscopy
sp.	Single species
spp.	Plural form of species
SSE	Sum of square of error
Т	Temperature
TBA	Thiobarbituric acid

Abbreviation/Symbol	Description
TMA-N	Trimethylamine nitrogen
TMAO	Trimethylamine oxide
TPA	Texture profile analysis
TVB-N	Total volatile basic nitrogen
V_{a}	Activation energy
WVP	Water vapor permeability
μm	Micrometer
δ	Shape factor
$ extsf{{\Delta}V}$	Activation volume
Z_p	Pressure sensitivity

LIST	OF	FIGURES

Figure No.	Description	Page No.
2.1	Isostatic principle of high pressure processing	14
2.2	Pressure, time and temperature profiles during high pressure processing	15
2.3	Generation of high pressure by direct and indirect compression of the pressure-transmitting medium in high pressure processing systems	16
2.4	Representation of six different shapes of survival curves: (A) log-linear, (B) survival with shoulder, (C) survival with tail, (D) biphasic, (E) survival with shoulder and tail, and (F) biphasic with shoulder	25
3.1	Flow diagram depicting steps followed in sample preparation for HPP	32
3.2	Major components of high pressure processing system	33
3.3	Portable colorimeter	36
3.4	Texture analyzer and typical texture profile curve generated by system	37
3.5	Mechanism of segregation of pulse-pressure and pressure- hold period for kinetic modeling describing the effects of HPP on microbial activity.	39
3.6	Activated cultures of <i>E. coli</i> O157:H7, <i>L. innocua</i> ATCC 33090 and <i>S. aureus</i> ATCC 29213	41
3.7	Schematic representation of the experimental plan and steps followed to optimize the processing conditions for black tiger shrimp	48
4.1	Effect of high pressure processing on TMA-N content (mgN 100g ⁻¹ muscle) of black tiger shrimp	55
4.2	Effect of high pressure processing on TBA content (mg MDA kg ⁻¹) of black tiger shrimp	57
4.3	Visual appearance of high pressure treated black tiger shrimp	58
4.4	Effect of high pressure processing on drip loss (%) of black tiger shrimp	60

Figure No.	Description	Page No.
4.5	Changes in microstructure of high pressure processed black tiger shrimp	64
4.6	Effect of high pressure processing on the survival ratio of <i>E.coli</i> in black tiger shrimp	68
4.7	(a) $\text{Log}_{10} D_P$ versus pressure; and (b) Ln <i>k</i> versus pressure plot for high pressure treated black tiger shrimp	70
4.8 A	Effect of different pressure-temperature treatments on the inactivation of a) <i>E.coli</i> and b) <i>L. innocua</i> in black tiger shrimp	73
4.8 B	Effect of different pressure-temperature treatments on the inactivation of <i>S. aureus</i> in black tiger shrimp	74
4.9	Residual plots of the inactivation of a) <i>E. coli</i> , b) <i>L. innocua</i> , c) <i>S. aureus</i> for log-linear and Weibull models	78
4.10	Correlation between experimental and predicted values for a) <i>E. coli</i> , b) <i>L. innocua</i> , c) <i>S. aureus</i> for log-linear and Weibull models	79
4.11	Effect of pulse pressurization on PPO enzyme in black tiger shrimp.	82
4.12	Effect of different pressure-temperature treatments on the inactivation of PPO enzyme in black tiger shrimp	84
4.13	Sum of square of errors associated with <i>nth</i> order kinetics for PPO in high pressure processed black tiger shrimp	85
4.14	Comparison between experimental and predicted values of inactivation rates from equation (4.3)	89
4.15	Response surface plots showing interaction effect of processing parameters on hardness of black tiger shrimp	93
4.16	Response surface plots showing interaction effect of processing parameters on total color change (ΔE^*) values of black tiger shrimp	95
4.17	Response surface plots showing interaction effect of processing parameters on inactivation rate of <i>S. aureus</i> in black tiger shrimp	98
4.18	Over lay plot showing the optimal conditions for high pressure processing of black tiger shrimp	99
4.19	Changes in <i>E. coli</i> count of shrimp samples during storage at a) 4 °C, b) 15 °C, c) 25 °C	107

_

Figure No.	Description	Page No.
4.20	Changes in <i>L.innocua</i> count of shrimp samples during storage at a) 4 °C, b) 15 °C, c) 25 °C	108
4.21	Changes in <i>S. aureus</i> count of shrimp samples during storage at a) 4 °C, b) 15 °C, c) 25 °C	109
4.22	Changes in color values of high pressure processed black tiger shrimp during refrigerated storage (4 °C)	116
4.23	Changes in microstructure of untreated and high pressure processed shrimp samples in EVOH films during storage at $4 ^{\circ}C$	121
4.24	Changes in Overall acceptability sensory scores of high pressure processed black tiger shrimp during storage at a) $4 \degree C$, b) $15 \degree C$	122

Table No.	Description	Page No.
2.1	Bacterial spoilage compounds in fish	9
2.2	Effect of high pressure processing on physicochemical and microbiological quality of seafoods	22
2.3	Effect of high pressure processing on inactivation rate of pathogens in different sea foods	24
2.4	Mathematical equations describing microbial inactivation by high pressure processing	27-28
2.5	High pressure processed products available in market	29
3.1	Uncoded and coded independent variables used in RSM design	46
3.2	Experimental plan by central composite rotatable design for the optimization of high pressure processing parameters for black tiger shrimp	47
3.3	Experimental design for storage study	50
4.1	Effect of high pressure processing on the proximate composition of black tiger shrimp	54
4.2	Effect of high pressure processing on the color parameters of black tiger shrimp	59
4.3	Textural parameters of high pressure processed black tiger shrimp	62
4.4	Effect of high pressure processing on the microflora (Log CFU g ⁻¹) of black tiger shrimp	66
4.5	Estimated kinetic parameters for pressure inactivation of natural microflora in black tiger shrimp	67
4.6	Estimated pressure sensitivity (z_p) and change in activation volume (ΔV) of natural microflora in high pressure processed black tiger shrimp	69
4.7	Estimated PE values (Log PE) for <i>E. coli</i> , <i>L. innocua</i> and <i>S. aureus</i> in black tiger shrimp	72
4.8	Comparison of goodness-of-fit of linear and Weibull models for the survival curves of <i>E. coli</i> , <i>L. innocua</i> and <i>S. aureus</i> in black tiger shrimp	76
4.9	Scale factors (δ' , δ and δ_l) obtained after model fitting at different pressure-temperature combinations for different microorganisms in black tiger shrimp	77

Table No.	Description	Page No.
4.10	Inactivation rate constants, activation energy and activation volume values for <i>E. coli</i> , <i>L. innocua</i> and <i>S. aureus</i> in high pressure processed black tiger shrimp	81
4.11	Estimated inactivation rate constant, activation energy and activation volume for high pressure treated black tiger shrimp	86
4.12	Estimated model parameters for equation (4.3)	88
4.13	Measured responses for the different pressure-temperature-time combinations obtained using central composite rotatable design	90
4.14	Regression coefficients and Analysis of variance of the fitted polynomial model for the responses	91
4.15	Constraints set for optimization of process parameters for high pressure processing of black tiger shrimp	97
4.16	Predicted and experimental values of responses for processing of black tiger shrimp using optimum process parameters	99
4.17	Effect of high pressure processing on total viable count (Log CFU g^{-1}) of black tiger shrimp during storage in different packaging material	101
4.18	Effect of high pressure processing on psychrotrophic bacteria count (Log CFU g ⁻¹) of black tiger shrimp during refrigerated storage in different packaging material	102
4.19	Changes in bacterial count (Log CFU g^{-1}) of black tiger shrimp after pressurization	104
4.20	Changes in TVB-N content (mgN 100g ⁻¹ muscle) of high pressure processed black tiger shrimp during storage	111
4.21	Changes in TMA-N content (mgN 100g ⁻¹ muscle) of high pressure processed black tiger shrimp during storage	112
4.22	Changes in TBA content (mg MDA kg ⁻¹) of high pressure processed black tiger shrimp during storage	114
4.23	Changes in total color values (ΔE^*) of high pressure processed black tiger shrimp during storage	117
4.24	Changes in hardness (gf) of high pressure processed black tiger shrimp during storage	119
4.25	Estimated shelf-life of black tiger shrimp under different storage conditions	123

ABSTRACT

The effects of high pressure processing, on physicochemical attributes and microbial inactivation kinetics of natural microbiota in black tiger shrimp was investigated within the range of 100-600 MPa/3-15 min/30 °C. The color parameters L^* (lightness) and b^* (yellowness) increased but a^* (redness) decreased with both pressure and holding time increment; imparted brighter and mildly cooked appearance to shrimp muscle. Pressure-induced lipid oxidation accelerated at pressure treatments >300 MPa. Hardness was found to be influenced by both pressure level and holding time. Among the group of microorganisms studied, pressure sensitivity of *E. coli* was found to be maximum, whereas, aerobic mesophiles were least sensitive (z_p values of 421 MPa and 714 MPa; ΔV values of -18.60×10^{-5} m³ mol⁻¹ and -9.13×10^{-5} m³ mol⁻¹, respectively).

Further the effect of process variables (300-600 MPa/0-15 min/30-60 °C) on the inactivation kinetics of inoculated pathogens (*E. coli* 0157:H7, *L. innocua* ATCC 33090, and *S. aureus* ATCC 29213) and polyphenoloxidase (PPO) enzyme activity in black tiger shrimp was studied. *S. aureus* was found to be the most baroresistant among the three pathogens studied and all the pathogens were eliminated beyond 50 °C. PPO enzyme was found to be sensitive to both pressure and temperature upto 50 °C, above which no significant difference was observed in the inactivation rates.

A central composite rotatable design was applied to evaluate the effect of processing parameters on inactivation rate of *S. aureus*, physical properties (color and texture) of shrimp and to optimize the process conditions to achieve maximum bacterial inactivation with minimal changes in quality attributes. The results revealed that processing conditions significantly affected the inactivation rate, hardness, color and the experimental data has been adequately fitted into a second-order polynomial model with regression coefficients (R^2) of 0.922, 0.874 and 0.945, respectively. The optimized condition satisfying the processing targets was obtained as: pressure, 361 MPa; time, 12 min and temperature, 46 °C. The adequacy of the model equations for predicting the optimum response values was verified effectively by the validation data.

The shrimp samples vacuum packed in low density polyethylene (LDPE), ethylene vinyl alcohol (EVOH) and multilayer metalized polyester (MMP) pouches treated at optimized high pressure condition were examined for different quality attributes during storage at 4 °C, 15 °C and 25 °C for 30 days. Based on sensory and microbiological results, the high pressure treated samples stored at 4 °C in EVOH, MMP and LDPE films showed a shelf-life of 30, 27 and 18 days, respectively, as compared to 6 days for untreated samples. The samples showed a shelf-life of 6 days stored at 15 °C and less than 3 days at 25 °C. Among the three packaging materials employed, EVOH film was found to be the best packaging material for preserving the quality of high pressure processed shrimp.

Keywords: Black tiger shrimp; High pressure processing; Microbial destruction kinetics; Enzyme inactivation kinetics; Quality; Response surface methodology; Refrigerated storage; Shelf-life; Packaging