CONTENTS

Title Page		i
Certificate b	by the Supervisor	iv
Declaration		v
Acknowledg	Acknowledgement	
List of Figu	res	vii
List of Table	es	Х
Abstract		xiii
Contents		xiv
Chapter 1	Introduction	1
	1.1 Motivation and background	1
	1.1.1 Definition of texture	2
	1.2 Literature review	3
	1.2.1 Statistical method	3
	1.2.2 Signal processing method	7
	1.2.3 Geometrical method	12
	1.2.4 Model based method	14
	1.3 Motivation	15
	1.4 Objective of the thesis	19
	1.5 Contribution of the thesis	20
	1.6 Organization of the thesis	21
Chapter 2	Rotational invariant features based on DCT basis filtering masks	23
	2.1 Introduction	23
	2.2 Theory	29
	2.2.1 Rotational invariant features based on DFT coded	29
	even symmetric Gabor filter bank	
	2.2.2 Theory for rotational invariant features based on DCT	31

	2.2.2.1 Rotational invariant statistical features based	31
	on DCT for classification of rotated textures	
	2.2.2.2 Rotational invariant energy features based on	38
	DCT for texture segmentation	
	2.3 Results and discussions	47
	2.3.1 Results for rotational invariant features based on DFT	47
	coded even symmetrical Gabor filter	
	2.3.2 Results for rotational invariant features based on DCT	49
	2.3.2.1 Results for rotational invariant statistical features	49
	based on DCT for classifying rotated textures	
	2.3.2.2 Results for rotational invariant energy features	56
	based on DCT for unsupervised segmentation	
	of natural textures and scenes	
	2.3.2.3 Results of rotational invariant energy features	75
	based on DCT for segmenting TEM images	
	of oral submucous fibrosis (OSF)	
	2.4 Conclusion	83
Chapter 3	A comparative study of feature extraction techniques for	85
	unsupervised texture segmentation with contextual	
	information	
	3.1 Introduction	85
	3.2 Feature extraction through filtering	88
	3.2.1 Even symmetric Gabor filter bank	89
	3.2.2 Laws filter masks	91
	3.2.3 Discrete cosine transform (DCT)	91
	3.2.4 Co-occurrence features	92
	3.2.5 Contextual information	93
	3.2.6 Integrating feature images	94
	3.3 The Experiment	95

	3.3.1 Texture representation	96
	3.3.2 Results and discussions	97
	3.4 Conclusion	106
Chapter 4	Detection of constituent layers of histological OSF images by hybrid segmentation algorithm	107
	4.1 Introduction	107
	4.2 Theory	110
	4.2.1 A hybrid segmentation algorithm (HSA) based	
	on watershed from Markers	111
	4.2.1.1 Preprocessing	111
	4.2.1.2 Connected operator filtering	113
	4.2.1.3 Selection of marker	115
	4.2.1.4 Gradient magnitude computation	116
	4.2.1.5 Watershed formulation in the shortest path	116
	forest frame-work	
	4.2.2 Region growing algorithm (RGA)	121
	4.3 Results and discussions	122
	4.4 Conclusion	126
Chapter 5	Segmentation of constituent layers of histological OSF	127
	images by fusion of features based on rotational invariant	
	DCT, context and RGA	
	5.1 Introduction	127
	5.2 Theory	130
	5.2.1 Rotational invariant features based on	130
	discrete cosine transform (DCT)	
	5.2.2 Contextual information	130
	5.2.3 Region growing algorithm (RGA)	131
	5.2.4 Fusion of features	132

	5.2.5 Fuzzy c-means clustering	133
	5.3 Results and discussions	134
	5.4 Conclusion	138
Chapter 6	Conclusion	139
	6.1 Future direction	142
References		143
Publications related to this thesis		154
Author's biography		156