CONTENTS

Title Page		i
Certificate of	Approval	ii
Declaration		iii
Certificate by	the Supervisor	iv
Acknowledge	ments	v
Notation		vi
List of Figure	s	viii
List of Tables		xi
Abstract		xii
Contents		xiii
Chapter 1	Introduction	1
	1.1 Background and motivation of the present work	1
	1.2 Literature review	3
	1.2.1 Microgrippers based on actuation methods	3
	1.2.1.1 Microgrippers based on piezoelectric actuation	3
	1.2.1.2 Microgrippers based on electrostatic actuation	5
	1.2.1.3 Microgrippers based on thermal actuation	5
	1.2.1.4 Microgrippers based on shape memory actuation	5
	1.2.2 Microgrippers based on manufacturing processes	6
	1.2.3 Design methods for compliant flexure-hinge based	
	gripper mechanisms	6
	1.2.4 Summary of study of various microgrippers	6
	1.3 Formulation of thesis objectives	7
	1.4 Outline of the thesis	9
Chapter 2	Design and Analysis of Microgripper Mechanisms	11
	2.1 Introduction	11
	2.1.1 Bio-inspired grasping mechanism design	11
	2.1.2 Design considerations for compliant microgripper	13
	2.1.2.1 Precise and fine resolution micro motion	13
	2.1.2.2 Flexure hinge material	14

	2.1.2.3 Manufacturing method	14
	2.2 Detailed design procedure for planar two-finger microgripper	15
	2.2.1 Kinematic synthesis and concept design	17
	2.2.2 Kinematic linkage model for bio-inspired design	17
	2.2.3 Transformation to compliant mechanism	18
	2.2.4 Pseudo-Rigid-Body-Model (PRBM)	
	(for single piezo actuator)	20
	2.2.5 Pseudo-rigid-body-model (PRBM)	
	(for dual-piezo actuator mechanism)	21
	2.2.6 Estimation of gripping force from PRBM	25
	2.2.7 Finite element analysis of microgripper	
	(for single and dual piezo actuated mechanisms)	26
	2.2.8 Comparison of results	27
	2.2.9 Optimization of microgripper dimensions	29
	2.2.9.1 By varying the link length and link distance	
	(for single piezo actuated mechanism)	29
	2.2.9.2 By varying the number of links and link thickness	
	(for dual-piezo mechanism)	31
	2.2.9.3 Optimization of microgripper dimensions by gene	tic
	algorithms (for dual-piezo actuated mechanism)	36
	2.3 Conclusion	39
Chapter 3	Dynamics and Control of Microgripper	40
	3.1 Introduction	40
	3.2 Model of single finger antagonistic microgripper dynamics	40
	3.2.1 Situation 1: microgripper dynamics	
	when no object is present	41
	3.2.2 Situation 2: microgripper dynamics when object is presen	it 43
	3.3 Simulation	44
	3.4 Position control	49
	3.4.1 Introduction	49
	3.4.2 Tuning of controller	50

	3.5 Gripping force control	52
	3.5.1 Need for force control	52
	3.6 Conclusion	54
Chapter 4	Fabrication of Microgrippers	55
	4.1 Introduction	55
	4.1.1 Selection of appropriate manufacturing process	55
	4.2 Process parameters of WEDM in fabrication of microgripper	56
	4.2.1 Wire electrode	58
	4.2.2 Machine movements	59
	4.2.3 Critical dimensions of microgripper	59
	4.3 Manufacturing of two prototypes using WEDM	60
	4.3.1 Prototype 1: Single-piezo actuated microgripper	61
	4.3.2 Prototype 2: Four-piezo-actuated microgripper	63
	4.3.3 Manufacturing and assembly errors	66
	4.4 Conclusion	66
Chapter 5	Characterization and Functional Evaluation of Microgrippers	67
	5.1 Introduction	67
	5.2 Experimental setup for microgripper control	68
	5.2.1 Establishment of vision-based measurement procedure	70
	5.2.2 Procedure for displacement measurement	70
	5.2.3 Calibration	72
	5.2.4 Characterization of four piezo-actuated microgripper	73
	5.2.4.1 Establishment of linear relationship between	
	input voltage and jaw displacement	73
	5.2.4.2 Determination of individual piezo response	74
	5.2.4.3 Determination of microgripper	
	range and workspace	77
	5.3 PID control of four piezo-actuated microgripper	78
	5.4 Conclusion	83
Chapter 6	Conclusions and Scope for Future Work	84
	6.1 Contributions of the thesis	85

6.2 Scope for future work References Curriculum Vitae	85 88 93