Chapter 1

Introduction

1.1 INTRODUCTION

The finite element method has evolved into one of the most powerful and widely employed
techniques for finding the approximate solutions to engineering problems. However, the
accuracy of the computed solution is estimated largely on qualitative basis by an experienced
user of the finite element method. Traditionally, experience on similar previous
computations, rules on permissible element shapes or sizes and the behaviour of the results
have been frequently employed by the experts. This approach is too expensive to use in
frequent application of the finite element method that is a common process while designing a
product. Moreover, the size and complexity of the problems now being solved has increased
to such an extent that even the most knowledgeable user finds it difficult to assess the validity

of the computed solution.

Under the above circumstances measuring the discretization error or simply error of a
computation is evidently desirable. The estimation of the error not only provides the
information about the accuracy of the finite element solution, but also serves as an indicator
for the mesh refinement, so that the current mesh can be further refined to the desired level
of accuracy. In fact, techniques have been developed so that in many applications this can be

taken care automaticaily without the intervention of the user. Such methods are well known
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today as adaptive finite element methods. The aim of much of the current research is to extend

such automation to all areas of practical applications.

The adaptive finite element or adaptive refinement is recursive in nature. These
methods automatically adjust themselves in order to improve the solution of the problem to4

specified accuracy. This approach

provides a level of confidence in the Tnput Data

Geometry, boundary conditions
Material properties

Loading conditions

Element size in initial mesh

accuracy of the finite element results

that would not otherwise exist. This

confidence does not depend on blind

faith in the output of the computer

Automatic Mesh Generation I

program. The progress to the desired (

level of accuracy can be traced in the

steady refinement of the model and the | Finite Element Analysis |
accompanying reduction in the errors.
Of the traditional approaches, the 4- Error Estimate
dantivi . *  Construct improved stress field
refinement or h-adaptivity is most +  Calculate element errors
. ¢ Calculate global error
common and natural to the engineers.

It is particularly suitable when Remeshing Strategies

¢ Calculate permissible errors
¢ Calculate new elements sizes

singularities are present in the domain as

it increases the convergence rate of the

Is error smaller than

estimated error. Figure 1.1-1 shows a
prescribed value?

NO

typical  self-explanatory  A-adaptive
finite element scheme. The figure also
shows the various components

involved in a typical scheme.

It can be observed from the Figure 1.1-1 An A-adaptive finite element sequence
above figure that pre-requisite for a

reliable and robust 4-adaptive scheme

is a reliable error estimator. It should meet certain criteria such as accuracy and low cost of
evaluation. The procedure of estimating the discretization error should also be practical and
simple. Recently introduced ZZ-error estimator (Zienkiewicz and Zhu, 1987 and 1992b) has

received much attention owing to its capability to accomplish the above requirements under
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certain conditions. In this approach, recovery techniques or stress smoothing techniques are
frequently employed in order to estimate the discretization error as function of the diference
between the improved stress solution and the original finite element solution. Here the

improved stress of the mesh under consideration acts as an exact solution to find the error.

It is evident that, it is important to know the performance of the recovery techniques
before the ZZ-error is intended to employ for problems containing the singularities. The
superconvergent patch recovery (SPR) technique is the most widely employed recovery
technique for ZZ-error estimation in the linear elasticity problems. Robust mesh generation
techniques and efficient refinement strategies are also needed for successful application of the

h-adaptive finite element methods to practical problems.

Application of the A-adaptive finite element techniques to fracture mechanics arca
forms an important domain in the adaptive finite element technology. Most of the
unfortunate accidents involving ships, bridges, offshore oilrigs, gas pipelines, pressure vessels
and other major constructions are only a few examples of the casualties of the britsle fracture
(fast and unstable fractures). It has been discovered that, such catastrophic accidents of
engineering structures arc due to the pre-existing flaws or high stress concentration zones that

are responsible for initiation of the cracks and fractures.

Fracture mechanics has become an interdisciplinary subject so as to prevent brittle
fractures. The concept of the fracture mechanics have been increasingly accepted and utilized
extensively by the various industries. It is widely applied to sophisticated fields like,
aerospace, nuclear plants, offshore structures, submarines, locomotives, spaceships, rockets
and ship structures. The principles of fracture mechanics have also been applied to other
structures such as machineries, cranes, automobiles, household goods, bridges and piping etc.

Thus, engineering design that is based on the fracture mechanics approach is
predominantly based on the concept of brittle failure. The basis of such design is the elastic
analysis of the cracked bodies commonly known as linear elastic fracture mechanics (LEFM).
A large number of engineering problems of practical interest fall in this category. The stress
intensity factor (SIF) K of a cracked structure is the primary quantity to be determined in
LEFM. The deformation of the surface of the crack in a structure can be categorized into
three basic modes each of which is associated with the corresponding stress intensity factor.

Mode-1 is the opening mode (K,), mode-Il is the sliding mode (K ;) and mode-III is the
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tearing mode (K m). The superposition of these three modes is sufficient to describe the

most general case of crack surface displacement or crack problems commonly known as the

mixed-mode problems.

Many problems of practical interest are of mixed-mode type. It has been noticed thy
(Meguid, 1989) the cracks, which start in single mode, may in fact become mixed mode later
on during their useful life. Furthermore, actual cracks are generally irregular in shape and
thus a combination of two modes may actually exist at a crack-tip. For the case of two.

dimensional mixed-mode problems, only opening and sliding mode exist at a crack-tip.

The stress intensity factor constitutes the crucial parameters in engineering design
against the brittle fracture. It is a function of the geometry of the cracked body, size of the
crack and the associated loading. The elastic analysis of the cracked body has revealed that
the stresses become singular as the crack-tip is approached in an inverse square root (1/Jr)
fashion (where r is the radial distance from the crack-tip). The displacements, however,
approach zero in a square root (+/7) fashion. The stress intensity factor is a unique design
parameter that represents the magnitude of the stress field severity near a crack-tip. From s
mathematical point of view, the stress intensity factor gives a measure of strength of the
singularity. Stress intensity factor provides a unique description of the stress, strain and the

displacement fields in the vicinity of a crack-tip.

The stress intensity factor can be employed to determine the nature of the fracture
process ie., ductile or brittle (Meguid, 1989). More importantly, in the brittle fracture
situations, the designer can come to know whether a crack in a component is likely to grow
or not. In mixed-mode loading conditions, SIFs are also useful in finding crack extension
direction and critical load calculations. It can also be used to determine the residual life in 2

component subjected to dynamic loading and it characterizes sub-critical growth due 10
fatigue and corrosion.

Due to the mathematical complexity of elastic analysis of the cracked bodies,
analytical solutions for SIFs are available for simple configurations (Murakami, 1987 and
1992; Sih, 1973; Tada er al., 1973; Rooke and Cartwright, 1976). Accurate values of the
SIFs of the cracked engineering structures are desirable as they are of prime importance i
preventing possible catastrophic britde failure, which essentially involves loss of capital

Investments and more importantly loss of human lives. However, more techniques that are
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general are needed for realistic complex configurations with mixed-mode loading situations
(that are usually encountered in practice). Numerical methods such as the finite element

method have been employed extensively in computational LEFM.

Thus, a finite element model of the cracked engincering structure must be propetly
designed to determine extremely accurate values of the SIFs. However, accurate extraction of
the SIFs depends also on the method of extraction. Even after extreme care is taken in
selection of the proper method and design of the mesh, as has been stated earlier, it could be
a very difficult task to assess the accuracy of the computed solution. Qualitative assessment of
accuracy of the finite element solution and subsequent results of the SIFs might pose danger
in view of the nature of the fracture problem. Evidently, application of the 4-adaptive finite
element techniques to the LEFM problems is more appropriate and it greatly reduces the risk
factors that are usually involved in the traditional approaches. As the A-adaptive finite

element techniques are scientific, they can provide more confidence on the accuracy of the

extracted SIFs than otherwise.

Many aspects of the traditional computational fracture mechanics are need to be
considered before attempting to develop such adaptive refinement procedures. Of various
aspects, finite element modeling at the crack-tip is found to be having profound effect on
accurate extraction of the SIFs. It is a well-known fact that the use of conventional elements
at the crack-tip decreases the convergence of the computed solution due to the lack of the
1/ T singularity representation (which is the characteristic of LEFM). A large number of
conventional elements need to be deployed around the crack-tip for sufficient representation
of the singularity and accurate extraction of the SIFs. This has led to the development of
various singular elements that can incorporate the necessary 1//7 stress singularity either
explicitly or implicitly in the formulation (Wahba, 1985). Amongst these elements, the
quarter point element (QPE) (Barsoum, 1974 and 1976; Henshell and Shaw, 1975) is the
most popular and widely employed at the crack-tips.

Owing to their good performance, many mixed-mode SIF extraction techniques such
as quarter point displacement technigue (QPDT), displacement correlation technique (DCT)
and modified crack closure integral technigues (MCCI) have been devised in conjunction with
development of the QPEs. Other methods like path independent integrals and virtual crack

extension methods are in principle independent of the affairs at the crack-tip. However, it has
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been shown that accuracy of the extracted SIFs by these methods can be improved using the
QPE:s at the crack-tip.

. Varieties of two-dimensional QPEs such as the quadrilateral, collapsed quadrilaters|
and natural isoparametric quadratic triangle have been developed for application in LEFM,
Of all the different QPEs, the natural isoparametric triangular ‘quarter point elements have

shown better performance due to their ability to represent 1/+/7 singularity along all the

radial lines that originate from the crack-tip (Wahba, 1985; Freese and Tracey, 1976; Lim e
al., 1993). It is interesting to note that, a large portion of the literature is dominated by the
isoparametric quadratic quadrilateral element and its corresponding collapsed quadrilateral
quarter point elements, in spite of the fact that, both the natural isoparametric quadratic
triangular element (T6) and its corresponding quarter point elements are efficient in

representing complex boundaries and crack-tip singularity respectively.

When the QPEs are employed at a crack-tip they demand an interesting necessity in
the design of the mesh, i.e., the shape and arrangement of the QPEs around the crack-tip. It
has been shown that these aspects have profound effect on the accuracy of the extracted SIFs.
It has been found that certain crack-tip mesh patterns have returned inaccurate values of the
SIFs than others for the same number of elements in the mesh. It is reasonable to expect that
a small number of QPEs surrounding the crack-tip would result in inadequate and erroncous
modeling of the field variables circumferentially. However, increasing the number of

elements around a crack-tip decreases the span angle. Subsequently this intioduces errors due
to excessive element distortion.

Extensive investigations on shape and arrangement have been conducted by many
researchers (Saouma and Schwemmer, 1984; Murti and Valliappan, 1986b; Menandro e 4l
1995). One of the most widely accepted suggestions for mixed-mode problems is that
symmetric mesh should be employed around the crack-tip and eight number of QPEs each
preferably having a span angle of 45  should be used around the crack-tip. The arm ratio
(ratio of maximum QPE side length to its minimum length) should also be close to unity for
best results (Saouma and Schwemmer, 1984; Murti and Valliappan, 1986b). The
commercial software ANSYS has also recommended a specific pattern of arrangement of
QPEs. As a result of these studies two basic patterns (Figurel.1-2(a)) have been employed at

the crack-tips in the literature. However, no literature is available on comparison of various
such recommendations.
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The accuracy of extraction of the SIF is considered as a basis for selection and design of the
quarter point element mesh
patterns. It is likely that the choice '
of a particular SIF extraction R
method has significant impact on ; i‘

the selection of a particular crack- 4

tip mesh pattern. To the best of ()

the author’s knowledge no report Basic patterns

is available on whether any

e
ROY

particular crack-tip mesh design is

needed in order to improve the

SIF  extraction by the path

independent integrals and virtual /
crack extension methods. In spite

of this fact, many researchers have

employed in practice the basic

crack-tip mesh patterns shown in -
Figure 1.1-2(a) along with certain

number of concentric rings. b)
Reason may be most obvious as
the patterns in the above figure . ) . .
. . Figure 1.1-2  (a) Different widely employed basic crack-tip
provide more secured mesh design mesh patterns; (b) typical crack-tip mesh patterns from
around the crack-tip and it seems general two dimensional automatic adaptive mesh generator

that there is no reason why they

should not be employed while using the path independent integrals and virtual crack
extension methods. Thus, employing either of the basic forms shown in Figure 1.1-2(a) is a
conservative approach irrespective of method of extraction of the SIFs. Indeed, the suggested
recommendations of commercial software like ANSYS are needed for any method of

extraction of the SIF.

Apart from these issues, individual requirements and performance characteristics of
the mixed-mode SIF extraction methods on the adaptively refined meshes play a crucial role
in extraction of the reliable mixed-mode SIFs of practical problems. For example, the

methods such as DCT, QPDT and MCCI techniques pose certain restrictions on the
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arrangement of the QPEs along with usual refinement requirements. On the other hand,
various parameters of the path independent integrals and virtual crack extension methods
also affect the accuracy of the SIFs. Thus, it is desirable to conduct a thorough investigation
on performance characteristics of a large number of SIF extraction methods on the adaptively
refined meshes. Such an investigation reveals about the methods that can be safely employed
along with the 4-adaptive finite element techniques in order to extract accurate mixed-mode

SIF values of practical problems.

Very limited amount of investigation (Lo and Lee, 1992; Min ez a/., 1994; Sandhu
and Liebowitz, 1995) has been conducted on application of the 4-adaptive displacement
finite element techniques to LEFM in order to extract accurate values of SIFs. These eatlier
investigations lack the ability to extract very accurate SIF values. Furthermore, the proposed
h-adaptive schemes cannot be extended to the domains with complicated boundaries and
intricate orientations of the cracks due to their inefficient mesh generators, refinement
strategies and the error estimation procedures. The results of Lo and Lee (1992) clearly
indicate that the inaccuracy in the extracted SIF values are primarily due to the inability of
their automatic adaptive mesh generator in providing any of the basic crack-tip mesh patterns

as shown in Figure 1.1-2(a).

Figure 1.1-2(b) shows schematic illustration of typical crack-tip element patterns that
are likely to appear at a given crack-tip by a general two-dimensional automatic adaptive
mesh generator. Clearly, these are not desirable for many reasons. However, it has been
demonstrated that (Lo and Lee, 1992), the relative percentage error in the mesh can be
drastically reduced by using the quarter point elements (QPEs) instead of standard
isoparametric elements around the crack-tips. As a result, the refinement needed for
achieving the same level of accuracy is also reduced.

Another important aspect of the earlier work in this direction is the absence of &
adaptive finite element analysis of mixed-mode crack problems. Despite the importance of
these loading situations in practical problems, all earlier researchers have attempted this

approach for only pure mode-I problems. In addition, to the best of the author’s knowledge,
' no report is available to date on application of an h-adaptive displacement finite element
technique to two-dimensional mixed-mode crack problems. Moreover, no attempt has been

made by the earlier researchers to suggest (with some confidence) the SIFs of a problem that
does not have any closed form solutions.



