Chapter-1

A Review of Literature

1.1 Introduction

Assessment of structural performance and safety under realistic dynamic
foads is one of the most serious challenges for a structural engineer. Many
dynamical systems of significance in civil, mechanical, naval and aircraft
industries are often subjected to excitations that are basically random in
nature. It includes systems subjected to aerodynamic and fluid dynamic forces
as well as those subjected to earthquake ground motion or machine induced
noise environments. Additional sources of randomness may be attributed to
the system uncertainties associated with the geometrical as well as material
properties of the structure itself. As the external load and/or system
randomness contributes significantly to the structural response, these effects
must be accounted for. If the system is deterministic and the input (external
forces) is random and time dependent, the output (response) is a stochastic
process. The analyses of such processes seek to determine the statistics or
the probability measure of response variables {or functionals) and involve the
probability theory and in particular, the theory of stochastic differential
equations (SDE-s). In estimating the failure probability of a dynamical system
or the reliability indices, these statistics play an important role. For such
studies, it is generaily required to generate an ensemble of sample path
solutions. Unfortunately, in most cases analytical or closed-form solutions of
SDE-s modeling an engineering system are not available and one is forced to
use numerical methods to approximate them. Recent developments on
efficient numerical algorithms in the broad area of stochastic structural
dynamics are based on Monte Carlo simulation, stochastic finite and
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boundary elements, finite differences, stochastic Green’s functions, and othe
methods. The Monte Carlo simulation method is the most general approach
and requires solving a large ensemble of deterministic sample problems
corresponding to generated samples of the input processes. The resuling
output sample processes may then be used to compute response statistics
and thus estimate reliability. Though the method has the drawback of potenti
inefficiency, it has its versatile application to linear as well as non-ines
stochastic analysis provided that sample pathwise or strong solution of the
associated deterministic problem corresponding to sample input processes
are known. Moreover, with several variance reduction and importance
sampling strategies being presently avaiiable to increase the computational
efficiency of MCS, there is an ever increasing research focus to explore new

and more complex stochastic dynamic systems using direct simulation.

Sample path solutions are achieved either in strong or weak sense. A strong
stochastic solution is a pathwise description of the response trajectory as it
evolves from a specified (deterministic) initial condition under a specific
realization of the stochastic excitation. On the other hand, when requirements
are relaxed in approximating the response in such a manner that the first few
statistical moments like mean, variance, skewness etc., of its ensemble
(generated under an ensemble of realizations of the stochastic excitation)
match with those of the ‘exact’ or strong response, then such an
approximation is referred to as a weak solution. In the numerical treatment of
SDEs, the weak approximations play an important role in efficiently computing
functionals of the response, such as moments, functional integrals, invariant
measures, and Lyapunov exponents. A weak solution is preferable if it can be
shown that it is numerically simpler and faster. This is particularty true as most
engineering solutions to problems in probabilistic mechanics need only 10

consider the first few statistical moments and not the pathwise realization o
the response,

Sample path solutions to dynamical systems may be attempted either in time-
domain or in frequency-domain. The ease of implementation along with the

versatility of application to non-linear and higher dimensional problems has
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driven the popularity of time integration approaches. Given the ready
availability of increasingly faster computers, there is a great thrust now on
computational methods to expand and generalize the integration procedures
and hence make them applicable to systems large enough for being of

interest to a practicing engineer.

The essence of the present research work is to develop a few single and
multi-step time integration strategies for a given mathematical model of a
system with excitation uncertainty only, in their strong and weak forms, and
consequently to apply them to non-linear stochastic dynamical systems
driven under both external {additive) and parametric (multiplicative) white

noise excitations.

1.2 Stochastic Processes and SDE-s
1.2.1 Some Concepts in Probability Theory

A large variety of charactéeristics are encountered in the broad area of
stochastic structural engineering that may be categorized under
static/dynamic stochastic analysis; low/higher dimensional systems in the
state space; deterministic/luncertain systems; external/parametric with
normal/non-Gaussian excitation; conservative/dissipative/hysteretic systems;
stationary/non-stationary response; collapse/serviceability failure conditions,
etc. Characterization of the response of such stochastic systems and/or
stochastically excited systems requires solutions of SDE-s along with the
knowledge of the input probabifity distributions. Random processes and
random fields are key concepts in subh studies. These are used, among
others, as models for excitation and response time histories. The construction
of probability density functions (PDF) and joint probability density functions
are necessary to characterize random variables and  random vectors

respectively.
A stochastic process may be viewed as a mathematical abstraction defining a

rule for the random selection of sample paths from a set of specified
functions of time [Grigoriu 2000). The stochastic field resembles a stochastic
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process but depends on a space rather than a time argument. In principle,
random processes and random fields can be described completely in terms of
infinite sequences of joint probability distributions of successively higher
order, or in terms of infinite sequences of moment functions or cumulant
functions. In practice, it may often be necessary to deal with very incomplete
descriptions; e.g., with marginal probability distributions only, or with a limited

number of statistical averages (mements).

In many engineering problems a partial characterization of random quantities,
referred to as the second moment properties, can provide useful information
on the trend and the magnitude of random fluctuations about this trend. The
second moment propenties consists of the mean and variance for random
variables, the mean vector and covariance matrix for random vectors, and the
mean function and co-variance functions for stochastic processes and fields.
The square root of the variance is called standard deviation. The ratio of
standard deviation to mean is the coefficient of variation and is defined for

random variables with non-zero mean. The second moment properties of a

random vector X ={x,} consists-of the mean 4, , variance o of the random
variables x,, and a measure of the relationship between these random
variables are given by the covariance, Y, :”(x,. —R)(x; —1,)p,dx,dx; foral
i#j, where p, denotes the joint probability density function of random

variables X, and X,. The covariance y, coincides with the variance ¢! of

x;. If the covariance y, are zero for all i# j, the coordinates of random
vector X are uncorrelated. The mean vector 11 = {u, }and the covariance

matrix y = {y }deflne the second moment properties of X. The scaled

covariance y,=v, / VY, s calléd the correlation coefficient of X.and X;.
The covariance function of g stochastic process X (r), denoted by «<(z,s), s
equal to the covariance of the random variables X (r) and X (s) for all values
of times tand s. If the mean function u(r)=p is constant and the covariance

function c(t,s)=c(r - s) depends only on the time lag ¢ - s, the process is said



