
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1IntrodutionValidation is an important task in the proessor design yle. The validationphase is onsidered to be a major bottlenek beause of the progressive inreasein proessor design omplexity and heavy time-to-market onstraints. There havebeen ontinuous e�orts by researhers to make this phase faster and more omplete.The proessor design yle goes through several phases before reahing the bit-aurate level with the granularity and design omplexity inreasing with everyphase of the design. The design spae exploration starts with an initial design ofthe instrution set formally known as the ISA (Instrution Set Arhiteture). Ahost of software tools like ompilers, assemblers, linkers, loaders and simulators arerequired in this phase for arhiteture simulation and evaluation. The ISA design isfollowed by the implementation of a funtional simulator whih is goldenized usingvarious random and direted testing methodologies. Typially, a set of benhmarksare run on the funtional simulator to evaluate the arhiteture in this phase. Thisgives way to the pipeline design phase where an e�ient pipeline arhiteture forthe ISA is designed. Other than the omplex pipeline and various funtional unitsdesigned in this phase, methodologies like register renaming, sore boarding, out-of-order exeution, reservation stations, branh predition, speulative exeutionand various advaned pipelining tehniques are inorporated into the proessordesign in this phase. These additional features enhane the performane of theproessor by improving the throughput in terms of instrutions per yle. Theexeutable of the design in the pipeline design phase is built in the form of ayle aurate pipeline simulator whih is used for arhitetural simulation andbenhmarking at this stage.One of the biggest hallenges in the arhiteture design phase is to verify theorretness of the pipelined design with respet to the ISA. The proess of arhi-teture exploration is iterative, where the iteration ontinues till the performanerequirements of the design are met. Every iteration of the exploration phase resultsin new features and omponents inorporated into the arhiteture whih improveperformane of the design. After every iteration whih results in a hange in the1
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2 1. Introdutiondetailed arhiteture, it is neessary on the part of the designer to hek whetherthe semantis of the pipelined exeution is onsistent with the semantis of thefuntional (ISA) spei�ations. Along with the additional funtionality whih isintrodued into the pipeline, timing behavior of the various instrutions and theirinteration with other units/environment is also modeled in the yle-auratepipeline simulator. This adds to the omplexity of the pipeline phase making theveri�ation of the pipeline an even more di�ult task.There has been signi�ant researh in the domain of proessor validation, us-ing both simulation based veri�ation and formal methods. Formal methods likeModel heking [85℄ , SAT based methods [138℄ and their variants have been usedin the domain of proessor validation. Several formal approahes for heking thepipelined implementation with respet to the input ISA spei�ation have beenreported in the literature. These inlude methods based on term rewriting [23℄,model heking [28℄, theorem proving [53℄, �nite state mahine abstration [126℄,and graph modeling [122℄. While formal methods have been e�etive in relativelysmaller designs, some attempts have been made to verify miroproessor pipelineimplementations. For example, Levitt and Olukotun [109℄ used formal veri�a-tion for pipeline implementation to verify a design against itself. There have beene�orts to verify formally almost all the features of a pipeline, inluding registerrenaming [146℄, speulative exeution [22℄, and Tomasulo's algorithm [118℄. How-ever, these methods require detailed spei�ation of the arhiteture as input tothe veri�er.Simulation Based Veri�ation is still the most widely used validation method-ology for proessor designs. It is the state of the art veri�ation methodologyadopted for large sale industrial designs sine available formal methods do notsale well enough for large state spae based designs. Simulation Based Veri-�ation tehniques have been proposed to validate speial pipeline features likepipeline interloks[58℄, rename-bu�ers[155℄, et. There has been onsiderable re-searh work in the domain of test generation of pipeline proessors[15℄,[29℄,[121℄,[123℄,[124℄. Aarti et al. [71℄ propose a overage driven hybrid method to ut downon the number of tests. Wagner et al. [159℄ have presented a Markov-model drivenrandom-test generator with ativity monitors that provides assistane in loatinghard-to-�nd orner-ase design bugs and performane problems.This thesis explores Simulation Based Veri�ation tehniques in the domainof pipeline proessor validation. This hapter has been organized as follows. Wepresent related work in Setion 1.1 followed by motivation and objetives of thiswork in Setion 1.2. We then present a summary of the ontributions of this thesisin Setion 1.3 followed by thesis organization in Setion 1.4.
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1.1. Related Work 31.1. Related WorkIn this setion, we present related researh work in the domain of simulationbased veri�ation. We lassify the related work into the following ategories (i)Comparison with ISA, (ii) Assertion Based Veri�ation and (iii) Test Generation.We present the popular methodologies adopted along with the reent advanes inthe respetive domains. Firstly, we present the simulation trae based validationtehniques followed by assertion based veri�ation tehniques and �nally end withtest generation methodologies.1.1.1. Comparison with ISASeveral formal and semi-formal approahes developed for veri�ation of pipelinebehavior have been reported in the literature. In the �eld of pipeline veri�ation,one of the popular methods used is to show the equivalene of the ISA and the or-responding miro-arhiteture design. An ISA is a non-pipelined abstrat mahinewhih spei�es the e�ets of individual instrutions, while a miro-arhiteturaldesign represents the pipeline arhiteture of the atual mahine implementation.The equivalene between these levels is established by de�ning a ommutative re-lationship with an abstration funtion mapping a miro-arhitetural state to anISA state. The methodologies used to prove this equivalene relationship ompriseof formal methods like theorem proving, usage of logi and abstration funtionsand Term Rewriting Systems. There are two broad ategories into whih themethodologies an be divided, namely:Bottom Up - This is the more traditional approah in whih the pipeline spei-�ation is extrated from an already existing pipelined implementation andis ompared with the ISA for equivalene.Top Down - The behavioral desription of the pipeline spei�ation is providedby the user and this is used for the purpose of veri�ation.Most of the reported methodologies exept for the ADL driven methods are bottomup approahes. In the top down approah, the proessor pipeline spei�ationshould satisfy a set of properties to ensure orret behavior. These propertiesensure that the pipelined exeution adheres to the orret semantis of sequentialexeution. We disuss some of the signi�ant ontributions in this domain in thefollowing setions.1.1.1.1. Use of Logi and Abstration FuntionsBurh and Dill [40℄ desribe a tehnique for verifying the ontrol logi of pipelinedmiroproessors. The veri�ation proess begins with the user providing behav-ioral desriptions of an implementation and a spei�ation. In ase of proessor
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4 1. Introdution
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FPipe and IS stands for IStallveri�ation, the spei�ation desribes how the programmer-visible parts of theproessor state are updated when one instrution is exeuted every yle. Theimplementation desription is at the highest level of abstration whih reveals thepipelining details. The steps of the above mentioned methodology are as follows.Eah of the desriptions of the spei�ation and implementation is automati-ally ompiled into a transition funtion, whih takes a state as its �rst argument,the urrent inputs as its seond argument, and returns the next state. The tran-sition funtion is enoded as a vetor of symboli expressions with one entry foreah state variable. FISA and FPipe are spei�ed to denote the transition funtionof the spei�ation and the implementation, respetively. It is required that theimplementation and the spei�ation have orresponding input wires. They use amethodology alled �ushing to establish the equivalene between the spei�ationand implementation, whih is desribed next.Almost all proessors have an input setting that auses instrutions already inthe pipeline to ontinue exeution while no new instrutions are initiated, whihis typially referred to as stalling the proessor. If IStall is an input ombinationthat auses the proessor to stall, then the funtion FPipe(., IStall) represents thee�et of stalling for one yle. All instrutions urrently in the pipeline an beompleted by stalling for a su�ient number of yles. This operation is alled�ushing the pipeline, and it is an important part of the veri�ation methodology.The fundamental priniple of orretness whih the veri�er tries to establish isthat if the implementation and spei�ation start in any mathing pair of states,then the result of exeuting any instrution will lead to a mathing pair of states.The exeution of instrutions in the ISA is sequential, where as there are multipleinstrutions exeuting simultaneously in the pipeline. This makes the problem ofheking the equivalene between the ISA and the pipeline a di�ult problem tosolve. Finding a synhronization point where the states from both the desriptionsan be ompared is di�ult to establish. The veri�er irumvents this problem bysimulating the e�et of ompleting every instrution in the pipeline before doing
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1.1. Related Work 5the omparison, whih is ahieved by �ushing the pipeline.This has been represented �guratively in Figure 1.1. The implementation anbe in a arbitrary state SPipe, whih has been labeled as �Old Pipeline State"in the Figure 1.1. To omplete the partially exeuted instrutions urrently inthe pipeline, in the state SPipe, the pipeline is �ushed, produing �Flushed OldPipeline State�. The next step is to do a projetion (represented by the edgelabeled proj ) to get a programmer's view of the implementation. This produes
SISA, the �Old ISA state�. The state SISA mathes the pipeline state SPipe, as
SPipe has been tranformed to SISA through a sequene of stall transitions. Inthe presene of an input I to the pipeline spei�ation, the pipeline makes atransition marked by FPipe(., I) from the present state to a new state alled S ′

Pipe,the �New Pipeline State�. Similarly, the ISA spei�ation will hange state to S ′
ISAthrough a transition labeled as FSpec(., I). The pipeline implementation is said tobe equivalent to the ISA spei�ation i� S ′

Pipe mathes S ′
ISA. There are two pathsfrom the SPipe to S ′

ISA, one that goes through FSpec(., I) - the spei�ation side andother takes the FPipe(., I) - the implementation side. For both these paths, there isa orresponding funtion whih is a omposition of the various funtions along thevarious edges on the path. The implementation is said to satisfy the spei�ationi� the funtion orresponding to the implementation side of the diagram is equalto the funtion orresponding to the spei�ation side of the diagram in Figure1.1.In this approah Burh and Dill[40℄ use quanti�er-free logi of uninterpretedfuntions and prediates with equality and propositional onnetives. Uninter-preted funtions are used to represent ombinational ALUs, for example, with-out detailing their funtionality. Desription and omparison of ontrol in thespei�ation and the implementation is done using propositional onnetives andequality. Firstly, the operational desriptions of the spei�ation and implemen-tation are ompiled, then a logial formula is onstruted that is valid if and onlyif the implementation is orret with respet to the spei�ation. The seondphase is a deision proedure that heks whether the formula is valid. They showexperimental results for a subset of the DLX proessor.Skakkebaek et al.[148℄ extend Burh and Dill's work [40℄ and present a two-part approah that deals with the out-of-order sheduling logi and the in-orderbu�ering mehanisms separately. First, the implementation is modi�ed to derivean in-order abstration. These modi�ations bypass the out-of-order logi andresult in instrutions exeuting in order. By exploiting domain-spei� knowledge,they are able to establish a funtional equivalene relation between the out-of-orderimplementation and the abstration. The seond step of this tehnique shows thatthe in-order abstration is funtionally equivalent to the ISA. This is aomplished
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6 1. Introdutionvia a tehnique introdued alled inremental �ushing [40℄, based on the Burh-Dillautomati �ushing approah.Velev and Bryant[158℄ extend Burh and Dill's �ushing tehnique for formalveri�ation of miroproessors to be appliable to designs where the funtionalunits and memories have multiyle and possibly arbitrary lateny. They alsoshow ways to inorporate exeptions and branh predition and use it to studythe modeling of the above features in di�erent versions of dual issue supersalarproessors. Egon et al. [34℄ use a re�nement methodology using sequential evolv-ing algebras[73℄ to prove the equivalene of the sequential model with the pipelinemodel. In this setion we disussed the appliation of logi and abstration fun-tions to establish the equivalene between the pipeline design and the ISA. Wenow disuss other methodologies like Theorem Proving, usage of Term RewritingSystems and other methodologies adopted to establish this equivalene relation-ship.1.1.1.2. Theorem ProvingTheorem proving, urrently the most well-developed sub�eld of automated reason-ing, is the proving of mathematial theorems by a omputer program. Commerialappliation of theorem proving is mostly in the domain of integrated iruit de-sign and veri�ation. Sine the famous Pentium FDIV bug in Otober 1994,extra are is taken to design the ompliated �oating point units of modern mi-roproessors. In the latest proessors from AMD∗, Intel†, and others, automatedtheorem proving has been used to verify that division and other operations areorret. Theorem proving tehniques have been used extensively for veri�ationof pipelines[51℄, [143℄, [149℄. The methodology omprises of three steps: (i) Giventhe spei�ation state mahine, (ii) Given the implementation state mahine, and(iii) Prove that the implementation mahine satis�es the spei�ation mahine.Sawada and Hunt [143℄ veri�ed the orretness of a miro-arhitetural spei�a-tion of a pipeline proessor with respet to the ISA-level spei�ation by de�ninga table-based exeution abstration alled MAETT (Miro-Arhitetural Exeu-tion Trae Table). They use MAETT to speify the various pipeline propertiesand inrementally prove that these properties are invariantly held by all miro-arhitetural states reahable from a �ushed pipeline state and �nally use thisfat to prove the orretness riteria whih says that the pipeline implements theISA. They verify a simple out-of-order ompletion pipelined miroproessor designusing the ACL2 theorem prover [1℄. We brie�y disuss the methodology here.A MAETT M is an unbounded list of all instrutions I1, I2, · · · , In whih
∗Advaned Miro Devies, http://www.amd.om
†http://www.intel.om
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1.1. Related Work 7are urrently being exeuted or have already retired (�nished exeution) sine themahine started.
M = (I1, I2, · · · , In)The ISA exeutes I1, I2, · · · , In in that order. Eah instrution Ii is representedby a reord like:
Ii = (F lgi, PCi, Insti, RAi, RBi, RCi, Stgi, Regsi, Memi, Misci)where PCi, Insti, RAi, RBi, RCi, Stgi, Misci are respetively the instrutionaddress; instrution word; operand register identi�ers of RA, RB and RC; urrentstage of the instrution; and misellaneous stage-dependent information. F lgi isa �ag indiating whether Ii is speulatively fethed. Regsi and Memi are theorret register �le and memory states after ompleting all previous instrutions

I1,· · · ,Ii−1 and before exeuting Ii with the ISA. Let ISA-state(PC, Reg, Mem)denote the ISA state with PC, Reg, Mem as its program ounter, register �le andmemory, respetively. An �ideal� ISA state Si orresponding to Ii is de�ned by:
Si = ISA-state(PCi, Regi, Memi)The next ISA state Si+1 is related to Si by:
Si+1 = ISA-state-step(Si)In this way a MAETT reords an ISA exeution sequene. At the same time, aMAETT also represents the miro-arhitetural state, by reording the urrentstatus of eah instrution. They de�ne a MAETT update funtion MAETT-step()to simulate the miro-arhitetural state transition miro-state-step(). If s is amiro-arhitetural state and M is its MAETT representation, MAETT-step(M, s)gives a MAETT representation of the next miro-state-step(s). MAETT-stepupdates appropriate �elds of the instrution reords already in a MAETT.Along with the MAETT representation, the user de�nes ertain pipeline in-variant properties of the pipeline implementation using the rihness and regularityof MAETT representation. One suh invariant property whih they model is theWAW hazard free prediate �no-WAW-hazards?�. The WAW hazard between theinstrutions Ik and Il is de�ned as follows:WAW-violation?(Ik , Il) = (reg-writebak-inst?(entry-inst(Ik))

∧ reg-writebak-inst?(entry-inst(Il))
∧ same-destination-reg?(Ik ,Il)
∧ out-of-order-retire?(Ik ,Il))
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8 1. IntrodutionThis de�nition assumes that Ik is an earlier instrution than Il, with respet to theexeution order in ISA. The de�nition says that a WAW hazard between Ik and Ilours when both of the instrutions have to write-bak to the same destinationregister and Il retires earlier than Ik. Eah of the prediates in the de�nition ofWAW-violation? is further de�ned as a relation of the �elds of Ik and Il. Finally,they de�ne a global WAW hazard free property no-WAW-hazards? as a reursiveprediate whih heks WAW-violation? for all pairs of instrutions in MAETT
M : no-WAW-hazard?(M) = ∀Ik, Il ∈ M s.t. Ik <M Il, ¬ WAW-violation(Ik ,Il),where Ik <M Il means that Ik appears in M earlier than Il. Similarly, the otherglobal invariants like no-strutural-hazard?, in-order-issue? are de�nedwhih are essential for exhibiting orret funtionality.Srivas and Bikford [149℄, have used Clio[30℄,[32℄ a funtional language basedveri�ation system, to prove the orretness of a large-sale, realisti miroproes-sor design arhiteture. Clio veri�es properties of programs written in Caliban[30℄a polymorphi, strongly typed, lazy funtional language. The properties to beproved are expressed in the Clio assertion language and proved interatively withthe Clio theorem prover. The miroproessor, Mini Cayuga, used is a three-stageinstrution pipelined RISC proessor with a single interrupt. Mini Cayuga is asaled down version of a RISC proessor, Cayuga [31℄. In all of these ases, ei-ther the proessor was extremely simple or a large amount of labor in the form ofmanual intervention was required.Kumar and Tahar [103℄ present a generi tehnique for the formal veri�ation ofpipeline on�its in RISC ores. They model the di�erent kinds of pipeline on�itsformally and present automated proof tehniques for eah kind of on�it whih isimplemented within the HOL veri�ation system [69℄. When on�its are detetedduring the proof proess, the onditions under whih these our are generated,thus aiding a designer in the debugging of these on�its. They demonstratethe e�ay of their approah on a DLX RISC proessor. The details of theirimplementation of the interpreter model spei�ations and the proof methodologyis reported in [152℄. Theorem proving may not require manual intervention atevery step, but requires the detailed information regarding the spei�ation andimplementation model.1.1.1.3. Term Rewriting SystemsA term rewriting system(TRS) is de�ned as a tuple (S, R, S0), where S is a setof terms, R is a set of rewriting rules, and S0 is a set of initial terms (S0 ⊆ S).The state of a system is represented as a TRS term, while the state transitionsare represented as TRS rules. The general struture of rewriting rules is:
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1.1. Related Work 9
s1 if p(s1)

→ s2where s1 and s2 are terms, and p is a prediate. We an use a rule to rewrite aterm if the rule's left-hand-side pattern mathes the term or one of its subtermsand the orresponding prediate is true. The new term is generated in aordanewith the rule's right-hand side. If several rules apply, then any one of them anbe applied. If no rule applies, then the term annot be rewritten any further.Term rewriting systems (TRSs)[27℄,[93℄ are used to onveniently speify par-allel and asynhronous systems and prove the orretness of an implementationwith respet to a given spei�ation. Arvind and Shen [23℄ use TRS to desribethe operational semantis of a single-yle, non-pipelined, in-order exeution pro-essor and the speulative proessor apable of register renaming and out-of-orderexeution. They take a minimalist RISC instrution set, where they speify thesemantis of the instrution as a rewrite rule, speifying how the state is modi�edafter eah instrution exeutes. They de�ne the operational semantis of instru-tions using a single-yle, non-pipelined, in-order exeution proessor model alled
PB, and the speulative and out-of-order proessor model PS.The operational semantis of the single-yle non-pipelined proessor modelis de�ned using TRS as follows. The proessor omprises of a program ounter(p), a register �le (rf ), and an instrution memory (im). The TRS term or-responding to the proessor is de�ned as Pro(p,rf,im). The proessor with thedata memory(dm) form the omplete system whih is suintly represented bythe following TRS term:Sys(Pro(p,rf,im),dm)The semantis of eah instrution is spei�ed as a rewrite rule speifying howthe state is modi�ed after eah instrution exeutes. Two of the instrutionssupported by the AX instrution set are Jz and Store. The branh instrutionJz (r1, r2) sets the program ounter to the target instrution address spei�edby register r2 if register r1 ontains value zero; otherwise the program ounter issimply inremented by one. The store instrution Store(r1, r2) writes the ontentof register r2 into the memory ell spei�ed by register r1. The semantis of aJz (jump on zero) and Store instrution is spei�ed as follows:Jz-Jump rulePro(ia, rf, im) if im[ia℄ = Jz(r1, r2) and rf [r1℄ = 0

→ Pro(rf [r2℄, rf, im)Jz-NoJump rulePro(ia, rf, im) if im[ia℄ = Jz(r1, r2) and rf [r1℄ 6= 0
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10 1. IntrodutionStore ruleSys(Pro(ia, rf, im), dm) if im[ia℄ = Store(r1, r2)
→ Sys(Pro(ia+1, rf, im), dm[a := rf [r2℄℄) where a = rf [r1℄In this desription, ia represents the Instrution address(PC), r1 and r2 are registerindexes, and dm[a℄ refers to the ontent of memory loation a, and dm[a := v℄represents the memory with loation a updated with value v.The speulative out-of-order pipeline model has two extra omponents whihinvolves (i) A branh translation bu�er - BTB and (ii) A reorder bu�er - ROB.The speulative instrution's address is determined by onsulting the branh targetbu�er (BTB) and ROB is a bu�er whih holds instrutions that have been deodedbut have not ompleted exeution. An instrution template bu�er (itb) in rob(theROB in the spei�ation) ontains the instrution address, opode, operands, andsome extra information needed to omplete the instrution. For instrutions thatneed to update a register, the Wr(r) �eld reords destination register r. Forbranh instrutions, the Sp(pia) �eld holds the predited instrution address pia,whih will be used to determine the predition's orretness. As an example ofinstrution feth rules, onsider the Feth-Op rule, whih fethes an Op instrutionand after register renaming simply puts it at the end of the rob as follows:Feth-Op rulePro(ia, rf, rob, btb, im) if im[ia℄ = r := Op(r1, r2)
→ Pro(ia+1, rf,rob � Itb(ia, t := Op(tv1, tv2), Wr(r)), btb,im)where t represents an unused tag, and tv1 and tv2 represent the tag or valueorresponding to the operand registers r1 and r2, respetively. � represents theassoiative operator, whih states that the Op instrution is added to the reorderbu�er(rob).They show that the speulative proessor produes the same set of behaviorsas a simple non-pipelined (sequential) implementation. They prove that the spe-ulative proessor is a orret implementation of the instrution set by showingthat PB and PS an simulate eah other with respet to some observable property,whih in this ase is the programmer visible state inluding the program ounter,the register �le, and the memory from the system. If model A an simulate modelB, then for any program, model A should be able to print whatever model B printsduring exeution.In [79℄, the authors verify a simple pipelined miroproessor in Maude, by im-plementing an equational theoretial model of systems. Maude is an equationally-based language, with an e�ient term rewriting implementation, and e�etivemeta-level tools. Velev[157℄ ombines rewriting rules and Positive Equality [38℄
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1.1. Related Work 11automatially and use it to formally verify out-of-order proessors that have areorder Bu�er, and an issue/retire multiple instrutions per lok yle. Theveri�ation is based on the Burh and Dill orretness riterion [40℄. Rewritingrules are used to prove the orret exeution of instrutions that are initially inthe Reorder Bu�er, and to remove them from the orretness formula. PositiveEquality is then employed to prove the orret exeution of newly fethed instru-tions. The formal veri�ation is done by orrespondene heking omparison ofan implementation pipelined proessor against a nonpipelined spei�ation (theInstrution Set Arhiteture), based on the Burh and Dill[40℄ ommutative prop-erty. The methodologies based on TRS also require detailed pipeline spei�ationsimilar to the Theorem Proving ounterpart.In the last setion we disussed the appliation of TRS for proving ISA equiv-alene, we present the other FSM and ADL driven methodologies in the followingsetions.1.1.1.4. ADL Driven Pipeline ValidationMost of the approahes used for pipeline veri�ation are bottom up methods[80℄,[86℄.A bottom up approah involves abstrating the pipeline behavior from an exist-ing implementation and omparing it with the ISA. Hauke et al. [80℄ ompareextrated ISA level desription with the given ISA level spei�ation. Arhite-ture Desription Languages (ADLs) are widely being used today for desriptionof proessor arhitetures. Reent work on language-driven Design Spae Explo-ration (DSE) ([77℄, [66℄, [76℄) uses Arhitetural Desription Languages (ADL)to apture the proessor and memory arhiteture, generate automatially a soft-ware toolkit (inluding ompiler, simulator, assembler) for that arhiteture, andprovides feedbak to the designer on the quality of the arhiteture. Mishra etal. [128℄ present a graph-based modeling of arhitetures that aptures both thestruture and the behavior of the proessor, memory and o-proessor pipelines.Based on the model, they proposed several properties that need to be satis�ed toensure that the arhiteture is well-formed. The graph model of the arhiteture isgenerated automatially from this ADL desription and has information regardingarhiteture's struture, behavior, and the mapping between them. They applythese properties on the graph model of the MIPS R10K, TIC 6x, ARM, DLX, andPowerPC arhitetures to demonstrate the usefulness of their approah.Mishra et al. [126℄ propose a approah whih leverages the system arhitet'sknowledge about the behavior of the pipelined proessor, through ArhitetureDesription Language (ADL) onstruts, thereby allowing a powerful top-downapproah to pipeline veri�ation.
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12 1. Introdution1.1.1.5. FSM Based MethodsTomiyama et al. [153℄ presented FSM based modeling of pipelined proessorswith in-order exeution. Their model an handle only simple proessors withstraight pipelines. Based on the modeling, they presented a set of propertieswhih are used to verify the orretness of in-order exeution in the pipeline. Ifa given pipelined proessor satis�es all the properties, its pipeline behavior isguaranteed to be orret. Mishra et al. [126℄ extend this model to handle morerealisti proessor features suh as fragmented pipelines and multiyle funtionalunits leveraging the system arhitet's knowledge of the pipeline behavior throughArhiteture Desription Language (ADL) onstruts. Iwashita et al.[89℄ and Urand Yadin [154℄ presented work where they model the pipelined proessor usingFSM. The di�erene is that they used the FSM model to automatially generatetest programs for simulation based validation of the proessors.1.1.1.6. Other MethodologiesMark Aagaard [13℄ presented a design framework for pipelines with strutural haz-ards. He reated a framework with four parameters that are used to haraterizeand verify pipelines. They are as follows:Protool shemes desribe how transations are transferred between stages inthe pipeline.Arbitration shemes speify how to prevent and or handle strutural hazards inthe pipeline.Control shemes determine how transations are routed through the pipeline andhow stages know what operation to perform.Ordering shemes desribe a method for mathing up transations as they leavethe pipeline with transations that entered the pipeline.In order to simplify the pipelining proof their framework whih has four param-eters that are used to haraterize pipelines. Eah parameter has an assoiatedspei�ation. They have proved that pipelines that onform to these spei�ationsobey the pipelining orretness riteria.Mark Agaard et al.[12℄ use ombinational equivalene veri�ation with themodular and omposable veri�ation strategy of ompletion funtions and ap-ply this tehnique to verify VHDL implementations of a 4-stage, in-order, 32-bitOpenRISC[136℄ proessor implementing 47 instrutions. In this work, the task ofthe veri�ation engineer was to write one ompletion funtion for eah in-�ightinstrution in the pipeline. The ompletion funtion for a given stage desribes the
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1.1. Related Work 13e�et on the arhitetural state of ompleting the partially exeuted instrutionin the stage. Exeuting a ompletion funtion for a stage has essentially the samee�et as �ushing the instrution in the stage. Exeuting all ompletion funtions�ushes the entire pipeline. The end result of veri�ation with ompletion funtionsis the same as veri�ation by �ushing.Levitt and Olukotun [108℄ present an automati formal veri�ation tehniqueto verify the pipeline ontrol logi alled unpipelining spei�ally developed totakle the omplexity due to pipelining. It eliminates the pipeline stages from animplementation while preserving the implementation's behavior, ollapsing it intoa single stage through a sequene of transformations. The added omplexity due topipelining is ompletely alleviated and the transformed and deonstruted pipelinean be ompared diretly to the ISA spei�ation. They present an indutive proofmethodology that veri�es that pipeline behaviour is preserved as the pipeline depthis redued via deonstrution. They laim that this indutive approah is lesssensitive to pipeline depth and omplexity than previous approahes. They presentexperimental results from the formal veri�ation of a DLX �ve-stage pipeline usingthis tehnique. Levitt and Olukotun [109℄ extend unpipelining, making it moregeneral, more automati and easier to use. The key bene�ts of unpipelining are: itveri�es a design against itself, thus removing the need for an external spei�ation;it an be used within the framework of hierarhial veri�ation; and it is salableto longer, more omplex pipelines. However, unpipelining has its limitations.Although more automati and salable than other methods, unpipelining is lessgeneral in its appliability. It is not suitable for verifying pipelines that implementinstrution set arhitetures (ISAs) whih use pipeline features suh as delayedloads and branhes. Also, unpipelining relies on the use of a standard design stylein order to deonstrut a pipeline.Manolios and Srinivasan [116℄ desribe an approah to bit-level pipelined ma-hine veri�ation that uses the tool UCLID[39℄ to reason about term-level mod-els and the theorem prover ACL2[92℄ to relate the term-level models to bit-levelmodels and to establish the orretness of the various abstrations used in theterm-level models. They use a re�nement based proof methodology to show thatan exeutable omplex pipelined mahine model, mostly de�ned at the bit-level,re�nes its instrution set arhiteture. The authors [115℄ introdue ompositionalproof rules that guarantee that this sequene of re�nement proofs implies that the�nal pipelined mahine has the same behaviors as the instrution set arhiteture.Mishra et al.[131℄ propose a top-down proessor validation approah usingsymboli simulation. Symboli simulation has proved to be an e�ient tehnique,bridging the gap between traditional simulation and full-�edged formal veri�a-tion. They de�ne a set of properties and verify the orretness of the proessor
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14 1. Introdutionby verifying if the properties are met. They applied their methodology to verifyseveral properties on a Memory Management Unit (MMU) of a miroproessorthat is ompliant with the PowerPC instrution-set arhiteture.It is evident from the presented related work that omparison with the ISA isa popular method to ensure pipeline orretness. One of the major drawbaks isthat the approahes require a detailed pipeline spei�ation whih is not alwaysavailable. We now disuss the related work in the domain of assertion basedveri�ation.1.1.2. Assertion Based Veri�ationAssertions speify the orretness riterion of a design in terms of pre-onditionsand post-onditions. Assertion Based Veri�ation(hene forth refereed to asABV)involves writing the orretness riteria in terms of assertions and using them toverify the orretness of a design. Assertions are employed for validation in bothstati and dynami methods. Assertions are represented in some form of spei�-ation logi (whih is often temporal) also known as formal properties whih haveto be veri�ed statially in Model Cheking and other Formal Property Veri�a-tion (FPV) methods. Purely formal methods of veri�ation fae apaity issuesand purely simulation based veri�ation fae overage related problems. Asser-tion Based Veri�ation tries to take the best from both of these worlds, where theassertions are spei�ed in some form of temporal logi and uses them to validatea simulation trae.1.1.2.1. Bene�ts of ABVDesigning at RTL level is the most popular level methodology adopted in indus-try. The assertions are onurrently written with the RTL design and they arelosely oupled with the RTL ode. There are signi�ant bene�ts of inorporatingassertions in the digital design and veri�ation proess. The primary bene�t isthat assertions help to detet funtional bugs earlier in the proess and enablee�ient fault loation as the assertions are tightly oupled. This in turn leads tofewer bugs propagating in the prodution proess resulting in shorter veri�ationtime and faster debugging.A seondary bene�t is that the very at of formulating and writing assertionsan give the designer a better understanding of the design. This in turn aidsin unovering bugs in the spei�ation and avoiding introdution of bugs intothe design in the �rst plae. One written, bound to the RTL ode and proven,the assertions play the role of formal omments. Unlike onventional ommentswritten informally, assertions are exeutable and ontinue to monitor the designfor funtional orretness through all levels of abstration of the design.
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1.1. Related Work 15Assertions assist the designer in formally de�ning a overage metri to theveri�ation proess. Assertions inrease the observability of the state of the de-sign during veri�ation. The overage of the assertions provide a measure of theperentage of ompletion of the veri�ation proess.Adopting an ABV methodology have led to signi�ant redution in simula-tion debugging time (as muh as 50% in Industry) due to improved observability[14℄. Moreover, a framework whih supports ABV is also adaptive to advanedveri�ation tehniques whih improves the over all veri�ation quality [65℄. ABVfailitates the reuse as the assertions reated for blok-level veri�ation are alsovalid and an be used at the hip-level [42℄. We now disuss some of the languagesused for the spei�ation of assertions.1.1.3. Languages for Assertion Based Veri�ationThe main hallenge here is to express key features of the design in terms of formalproperties. Formal properties are typially expressed by two di�erent lasses oftemporal logis, namely branhing time logi and linear temporal logis. Branh-ing time logis allow the spei�ation of properties over the omputation treereated by the state traversal of the state mahine. The basi notion is to unfoldthe state mahine into an in�nite tree where eah path of the tree is a run ora omputation of the state mahine. Linear time logis allow the spei�ationof properties over linear traes or runs of a �nite state mahine - intuitively, theproperty holds on the mahine if it holds on all runs of the mahine.Designers and veri�ation engineers typially express and interpret the RTLin terms of simulation semantis of the HDL. They are austomed to verifyingthe orretness of the RTL by heking ertain behaviors over simulation traes.Therefore, linear temporal logis have been the natural hoie for design validation,and the bakbone of most exiting property spei�ation languages, inluding PSL(Property Spei�ation Language) [3℄ and SVA (SystemVerilog Assertions) [5℄.In this thesis, we propose a spei�ation logi for suint representation andsimulation based veri�ation of data oriented spei�ations. We also provide aomparison of the logi with LTL and SVA in terms of expressive power. Thefollowing setions introdue LTL and SVA with examples. Most of the examplesand de�nitions in this setion have been taken from the book [55℄.1.1.3.1. LTL - Linear Temporal LogiThe formal syntax and semantis of LTL is de�ned over a Kripke struture. For-mally, we de�ne a Kripke struture as a tuple, K = 〈AP, S, τ, s0, F 〉, where:
• S is a �nite set of states,
• AP is a set of atomi propositions labeling of eah state s ∈ S,
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16 1. Introdution
• τ ⊆ S x S is the transition relation, whih must be total(for all states si ∈ S,there exists a state sj ∈ S suh that (si, sj) ∈ τ),
• s0 ⊆ S is the set of start states,
• F : S → 2AP is a labeling of states with atomi propositions true in thatstate.A path (alternatively a run or a trae), π, in the Kripke struture is an in�nitesequene of states, s0, s1, · · · , suh that for all i, si ∈ S, and (si, si+1) ∈ τ . s0 isalled the starting state of π. We use πj to denote the su�x of π starting from sj .The formal syntax of LTL an be reursively de�ned as follows:
• Eah atomi proposition in AP is an LTL formula.
• if f and g are LTL formulas, then so are ¬f, f ∧ g, X f , f U g, G f , and

F g.The Boolean operators have their usual meaning. There are four temporal opera-tors in LTL, these are X (next time), U (until), G(globally), and F (eventually).Given a run(path) π, we will also use the notation sk |= f to denote πk |= f .In other words, a property (say f ) is said to be true at an intermediate state ofthe run i� the fragment of the run starting from that state satis�es the property.Let f and g be LTL formulas; p is an atomi proposition and π = s0, s1, · · ·is a path in a Kripke struture K. Then the formal semantis of LTL may bede�ned as follows:
• π |= p i� p ∈ F (s0)

• π |= ¬f i� π 2 f

• π |= f ∧ g i� π |= f and π |= g

• π |= X(f) i� π1 |= f

• π |= f U g i� ∃ j, suh that πj |= g and ∀ i i < j, we have πi |= fF g is a short form for TRUEU g, and G f is a short term for ¬F ¬f . Wesay that the property f holds on a state mahine J, i� f holds on all paths of thestate mahine starting from its start state. To illustrate further, we provide anexample that illustrates the basi operators.Example: Consider the spei�ation of an arbiter that arbitrates between twomaster devies. Let the request and grant lines of the two master devies be r1, g1and r2, g2 respetively. The arbiter obeys the following spei�ation.
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1.1. Related Work 17
• P1:If master 1 requests (r1 is asserted), the arbiter must give the grant g1 inthe next yle.
• P2: If anytime the arbiter �nds that r1 is de-asserted, it (by default) parksthe grant on master 2 by asserting g2 in the next yle.
• P3: At any time, only one master should be granted.These requirements are expressed in LTL as follows:

P1 : G(r1 ⇒ X(g1))

P2 : G((¬r1) ⇒ X(g2))

P3 : G((¬g1) ∨ (¬g2))1.1.3.2. Appliations and ExtensionsLTL and its variants are used for spei�ation of assertions. These assertions areeither used for formal veri�ation or they are used for synthesize monitors whihassert those properties over a simulation trae either o�ine whih is post simu-lation and online whih is at par with simulation. Apart from verifying formallyand by simulation, assertions have also been synthesized to built hardware moni-tors and to synthesize behavioral models whih behave aording to the assertionspei�ation [62℄. A �nite state extension of LTL known as FLTL, whih de�nedthe semantis of LTL for �nite simulation trae as de�ned by Ho�man et al.[88℄.They extend the semantis of LTL for �nite simulation trae whih involves re-de�ning the unbounded operators in bounded form. A deterministi �nite stateautomata is synthesized from the FLTL spei�ation and the FLTL assertionsare heked on-the-�y with the simulation. LTL has been used in tools suh asTemporal Rover [59℄ and Java Pathexplorer [82℄.1.1.3.3. System Verilog AssertionsThis setion outlines the struture of SVA properties. The building bloks ofSVA properties are alled Sequene Expressions(SE), that are used to desribe thetemporal behavior of the system. The most basi sequene expressions are thesignals and Boolean expressions over the signals. Temporal sequene expressionsan be onstruted using the time range operators. The syntax of a sequeneexpression is de�ned as follows. SE denotes a sequene expression over a set ofatomi propositions AP .
• SE → SE TIME_RANGE SE | SEQUENCE_ABBRV |EXP BOOLEAN_ABBRV | SE SEQUENCE_OP SE | �rst_math(SE) |EXP throughout SE | EXP |(SE)
• TIME_RANGE → ##k |##[k1 : k2℄
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18 1. Introdution
• SEQUENCE_ABBRV → [*k℄ | [*k1:k2℄
• BOOLEAN_ABBRV → [*k℄ | [*k1:k2℄ | [*> k1:k2℄ | [*= k1:k2℄
• SEQUENCE_OP → and | or | interset |within
• EXP → (EXP || EXP) | (EXP && EXP) | !EXP | p, where p ∈ AP | ǫThe struture of a SVA property is as follows:PROPERTY → property PROP_EXP endpropertywhere PROP_EXP an be of two types, namely:[ CLOCK_EVENT℄ [disable i� EXP℄[not℄ SE

→ [disable i� EXP℄[not℄ SE or,[ CLOCK_EVENT℄ [disable i� EXP℄[not℄ SE
⇒ [disable i� EXP℄[not℄ SEIn the above forms:

• CLOCK_EVENT represents the name of the lok against whih theproperty is evaluated.
• disable i� EXP allows the user to speify asynhronous reset. if the EXPbeomes true then the evaluation stops and the property is aepted as true.
• Having a not operator before a sequene expression s implies that whenevers mathes, not s fails, and vie-versa.
• | ⇒ and → are the impliation operators. A property is said to math i�for every math of the anteedent part there is a orresponding math of theonsequent part. The start math of the onsequent part may start at thesame time stamp at whih the anteedent mathes or one time step later,depending on the impliation operator being | ⇒ or → respetively. Theproperty mathes vauously if the anteedent fails.A property de�nes a behavior of a design. A property an be used for veri�ationas an assumption, a heker, or a overage spei�ation. In order to use thebehavior for veri�ation, an assert, assume or over statement must be used.The assert statement is used to enfore a property as a heker. When theproperty for the assert statement is evaluated to be true, the pass statements ofthe ation blok are exeuted. Otherwise, the fail statements of the ation blokare exeuted. For example, �property ab" has been delared as a heker.
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1.1. Related Work 19property ab(a,b,);disable i� (a==2) not �lk (b ##1 );endpropertyenv_prop: assert property (ab(rst,in1,in2)) pass_stat else fail_stat;In this setion, we introdued SVA and indiated how it is used for spei�ationof desired behavior of systems. In this thesis we are interested in presenting a logiwhere one of the objetives is to allow the user to model data-oriented behavior.SVA also allows reasoning about data dependenies whih we desribe next.1.1.3.4. Data-Orientation in SVAData dependenies also form a part of design intent whih need to be spei�edand heked over a simulation trae or veri�ed formally. SVA inorporates loalvariables in order to manipulate data in a sequene and allows orrelating thedata values when the end of the sequene is reahed. The loal variables aredynamially reated when needed within an instane of a sequene and removedwhen the end of the sequene is reahed. The dynami reation of a variable andits assignment is ahieved by using the loal variable delaration in a sequeneor property delaration and making an assignment in the sequene. In brief, anSVA loal variable provides the bene�t of sampling and manipulating data in aproperty or sequene without requiring the property writer to de�ne auxiliarystate mahines to model the intended behavior.As an example given in SVA Language Referene Manual [5℄, if in the givenSVA sequenea ##1 b[->1℄ ##1 [*2℄it is desired to assign x = e at the math of b[->1℄, the sequene an be rewrittenas a ##1 (b[->1℄, x = e) ##1 [*2℄The loal variable an be reassigned later in the sequene, as ina ##1 (b[->1℄, x = e) ##1 ([*2℄, x = x + 1)For every attempt, a new opy of the variable is reated for the sequene. Thevariable value an be tested like any other SystemVerilog variable.We present a detailed example from SVA LRM [5℄ whih will demonstratethe usability of loal variables in SVA for handling data-orientation. Assume apipeline that has a �xed lateny of 5 lok yles. The data enters the pipe onpipe_in when valid_in is true, and the value omputed by the pipeline appears
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20 1. Introdution5 lok yles later on the signal pipe_out1. The data as transformed by thepipe is predited by a funtion that inrements the data. The following propertyveri�es this behavior:property e;int x;(valid_in,(x = pipe_in)) |− > ##5 (pipe_out1 == (x+1));endpropertyProperty e is evaluated as :1. When valid_in is true, x is assigned the value of pipe_in. If �ve yleslater, pipe_out1 is equal to x+1, then property e is true. Otherwise,property e is false.2. When valid_in is false, property e evaluates to true.One of the methodologies adopted for writing assertions is to use a set of tem-plates whih are de�ned in an assertion library. In this approah, the user hoosesthe template whih he/she is needed to use for veri�ation and �ll in the parametervalues appropriately. One of the popular libraries is OVL [11℄, the open Veri�a-tion Library, a set of assertion templates is de�ned using VHDL, Verilog, SVA[5℄and PSL[3℄. Usage of SVA has been reported in funtional veri�ation [135℄ ofSystemC [8℄ transation level models(TLMs). Researh e�orts have been reportedwhere a signi�ant subset of SVA is used to synthesize hekers in BlueSpe SystemVerilog[140℄ and to hardware [112℄.Apart from SVA, PSL is also used for spei�ation and veri�ation for designs.Boule and Zili present a tehnique for automata-based heker generation of PSLproperties for dynami veri�ation[36℄ [37℄. They de�ne a set of rewrite rulesthat aount for all the various PSL operators. A methodology to generate hard-ware assertion hekers for enhaning ABV apability for hardware emulation hasbeen proposed by Boule and Zili[35℄. Dahan et al. [52℄ developed a translationmehanism from PSL to SystemC [8℄ by using the FoCs (Formal Chekers) [14℄ en-vironment. FoCs take as input PSL/Sugar spei�ation and translates them intoassertion heking modules whih are integrated with the simulation environment.Habibi and Tahar [75℄ present a e�ient approah to verify PSL assertions addedon top of the SystemC [8℄ library.After the property spei�ation is done, the next task is to hoose one of thetwo broad methodologies for property veri�ation. These are Dynami PropertyVeri�ation (alternatively alled Dynami assertion based veri�ation) and FormalProperty Veri�ation. In the following setions we will outline these tehniques.
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1.1. Related Work 21
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Device under Test (DUT)Figure 1.2: Framework for Dynami Property Veri�ation1.1.3.5. Dynami Property Veri�ationA typial dynami property veri�ation setup is shown in Figure 1.2. In theassertion based veri�ation approah, a testbenh is written to model the behaviorof the environment for a design blok. The testbenh drives meaningful inputs intothe implementation. The properties at as monitors and report any violation thatours. The omplexity of modeling a testbenh depends on the design omplexity.There are two key advantages of dynami assertion based veri�ation. Firstly,it is built over the traditional existing simulation framework and requires lesse�ort from the validation engineer. Seondly, unlike the formal veri�ation oun-terpart, it does not have any major apaity onerns(in terms of spae), sine theveri�ation is done during simulation.The most important task of a veri�ation engineer in dynami property veri�-ation is to identify the set of interesting behaviors where they believe bugs mayremain undisovered. Sometimes the veri�ation engineer may desire to ensurethat a omplex sequene of events is overed during simulation. Current propertyspei�ation languages o�er onstruts to model these. These identi�ed senariosare alled overage points. Eah of these overage points are then modeled using astandard property spei�ation language. After the property spei�ation is over,the properties are stithed to the design under test. In this thesis, we present aspei�ation logi alled TAB logi and present algorithms to perform dynamiveri�ation of TAB logi spei�ations over a simulation trae.
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Figure 1.3: Framework for Formal Property Veri�ation1.1.3.6. Formal Property Veri�ationFormal Property Veri�ation (FPV)[44℄ popularly referred to as model hekingis an automati veri�ation tehnique for �nite state onurrent systems. In thisveri�ation approah, properties spei�ed in temporal logi are heked by anexhaustive searh of the entire state spae of the onurrent system.A typial formal property veri�ation set up is shown in Figure 1.3. The oreof this approah is the model heking tool. Formally, a model heking algorithm[44℄ has two main inputs - a formal property and a �nite state mahine representingthe implementation. The role of the algorithm is to explore all possible paths ofthe state mahine for a path whih refutes one or more properties. If suh a pathexists, then this path trae is reported as a ounter-example. In the absene of suha path, the model heker asserts that the property holds on the implementation.In model heking, the system to be veri�ed is formally represented by a �niteKripke Struture (refer to Setion 1.1.3). In essene a Kripke struture an bevisualised as a direted graph with the verties labeled by a set of atomi proposi-tions. The verties represent states and the edges represent the transitions. Thereould be a set of initial states.Given a Kripke struture K = 〈AP, S, τ, s0, F 〉 and a spei�ation ϕ in LTL,the model heking problem is the problem of �nding whether
K |= ϕA Kripke struture K |= ϕ i� ϕ is true along all paths starting from the initial
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1.1. Related Work 23state. An expliit state model heker is a program whih performs model hekingdiretly on the Kripke struture.LTL Model Cheking [110℄ algorithm �rst builds a Buhi automaton, alsoknown as tableau, orresponding to an LTL formula ϕ, whih subsumes everysatisfying run of the formula. Given a model M and an LTL formula ϕ, the stepsof the model heking algorithm are as given below:
• Build the tableau for ¬ϕ (all it T¬ϕ).
• Compute the produt of M and T¬ϕ.
• Chek the produt mahine for emptiness.If the produt is non-empty, i.e., it ontains a run, then the model M has arun whih satis�es ¬ϕ (and therefore, refutes ϕ). Hene the model heker reportsthe existene of a bug, and reports the run as he ounter-example. If the produtis empty, then it reports that M satis�es the property, ϕ.Capaity limitation is one of the major issues with model heking tehnology.The main apaity bottlenek observed is in representing the state mahine thatis extrated from the design. The number of states in the mahine typially growsexponentially with the number of onurrent omponents. Even for designs withmoderate size, this leads to state spae explosion.The omplexity of veri�ation [105℄ for linear temporal logi has been very wellstudied. For a given transition system of size n and a temporal logi formula ofsize m, model heking algorithms runs in time n2O(m). Sine LTL model hekingis PSPACE-omplete, the latter bound probably annot be improved.In this setion, we have presented related work in the domain of assertion basedveri�ation. We disussed spei�ation languages used for spei�ation of designintentions and the methodologies employed for verifying these intentions statiallyand dynamially. We now disuss methodologies adopted for generation of testases for pipeline proessors.1.1.4. Test GenerationIn this setion, we disuss the various methods of test generation for pipelined be-haviors. The approahes an be broadly lassi�ed into various ategories depend-ing on the following harateristis: (i) Type of spei�ation i.e., Graph based,language or ADL based or HDL based, (ii) Level of abstration of the spei�-ation i.e.,funtional, miro-arhitetural level, (iii) Methodology used - randomtest pattern generation, direted as is done with model heking and property de-omposition based methods or satis�ability based methods. We �rst present theworks whih use graph based input model of the pipeline spei�ation followed
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24 1. Introdution
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Figure 1.4: Graph Model of the Pipeline as proposed by Mishra et al. [121℄by ADL (Arhiteture Desription Language) and HDL (Arhiteture DesriptionLanguage) based methods of test generation ending with approahes using modelheking.1.1.4.1. Graph Model Based Test GenerationMishra and Dutt [121℄ present a graph overage based funtional test program gen-eration approah for pipelined proessors. In their approah, they generate theproessor model from the ADL spei�ation using funtional abstration. Thisis followed by extration of a graph model of the pipeline from the funtionalspei�ation. The graph G = (V, E) models the struture of the pipeline arhi-teture with the omponents as nodes and the onnetivity between the nodes asthe edges. Eah node V in the pipeline graph G orresponds to a funtional unit(module) or storage omponent in the proessor. There are two kinds of edgespipeline edges and data-transfer edges. A �gure representing the graph strutureof an example pipeline on�guration of the DLX pipeline is presented in 1.4. Thesolid edges in the �gure are pipeline edges and the dotted edges are data-transferedges. A pipeline edge transfers an instrution from a parent unit to a hild unit.A data edge is used to ommuniate data between two omponents in the pipeline.The behavior of eah node is desribed using SMV [2℄ language. They de�ne fun-tional overage of the pipeline in terms of the overage of nodes and edges of the
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1.1. Related Work 25generated pipeline graph. In order to over all senarios, they de�ne all possibleinterations between the instrution and pipeline stages through graph overage.The nodes in the graph ould be in 4 states namely ative, stalled, exeption and�ushed, and the edges ould be in 3 states ative, stalled and �ushed. They gener-ate test ases for overing the edge and node states using a test program generationalgorithm that traverses the pipeline graph to generate test programs based on theoverage metri. The algorithm breaks one proessor level property into multiplemodule level properties and applies them to the SMV model for every module.This led to signi�ant redution in memory and time requirements in omparisonto the ase where SMV of the omplete pipeline is desribed. They have appliedthis methodology on the DLX proessor to demonstrate the usefulness of theirapproah.Mishra and Dutt [123℄ propose a general graph-theoreti model that an ap-ture the struture and behavior (instrution-set) of a wide variety of pipelinedproessors and a funtional fault model that is used to de�ne the funtional ov-erage for pipelined arhitetures whih is similar to that presented in [121℄. Thestruture of the pipeline arhiteture is aptured as a graph model as desribedabove. Additionally, the behavior of the instrutions present in the ISA, are mod-eled as a behavior graph. The behavior models the operation and internal exeu-tion semantis of the instrution. In the behavior graph, there are two types ofnodes: opode and argument nodes. There are two kinds of edges operation andexeution. The operation edges link the �elds of the operation and also speifythe syntatial ordering between them and the exeution edges speify the exeu-tion ordering between the �elds. They ategorize the various omputations in apipelined proessor into the following ategories (i) register read/write, (ii) opera-tion exeution, (iii) exeution path and (iv) pipeline exeution. They de�ne faultmodels for eah of these funtions. They present test generation proedures thataept the graph model of the arhiteture as input and generate test programsto detet all the faults in the funtional fault model. We use this graph baseddesription of the pipeline as the input to the test generation framework as it anbe used to speify a wide range of pipeline behavior.1.1.4.2. Spei�ation Language Driven Test GenerationCon�gurable proessor ores are beoming inreasing popular with SoC designsbeause of their apability to quikly adapt to the hanging designer requirements.Xtensa [68℄, a fully on�gurable and extensible proessor ore, allows users toadd new instrutions to the proessor ore optimized for their appliation. Theinstrution set and the pipeline model of the proessor is no more �xed. Thenew register �les for the data, new opodes and instrution implementation is
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26 1. Introdutionspei�ed using Tensilia Instrution extension(TIE) language [6℄. This requiresnewer methods of veri�ation of suh proessors. After the user adds new featureslike register �les, funtional units and instrutions, the pipeline implementationneeds to be veri�ed. These additions leads to new data and ontrol hazards whihare not known apriori. A veri�ation methodology has been presented in [29℄whih tests ritial miro-arhitetural features of a proessor without any aprioriknowledge of the instrutions, or spei� implementation details. They generatetest sequenes whih overs all ontrol-hazard and data-hazard ases. Controlhazard ases omprise of all ases where the ontrol �ow of an instrution is a�etedas in the presene of branh and exeptions. Data hazard ases omprise of read-write dependenies between in-�ow instrutions present in the pipeline. The testsare automatially derived from the ISA desription and sheduling information ofthe instrutions.1.1.4.3. SAT based methodsWith the inreasing apability of modern SAT solvers [134, 117, 67, 160℄, handlinglarge state spae problems has beome possible. The omplexity of modern dayproessor pipelines is inreasing onsiderably making it di�ult to handle the largestate spaes using existing tools. SAT based approah is inreasingly being usedfor test generation of omplex pipelines as it an handle large designs. Mishraet al. [130℄ address the hallenges in language-based validation in the domain oftest generation and equivalene heking using satis�ability heking. In order togenerate test ases for omplex situations like multiple exeption senarios, theypresent a SAT-based bounded model heking (BMC) approah. The basi ideabehind this approah is to restrit the searh spae to states whih are reahablewithin k transitions from the initial state. They unwind the model k times andbuild a SAT instane out of it. The value of the bound is not known apriori.They have also proposed a method to determine the bound for eah property,whih is the longest temporal distane from the Feth unit to the nodes underonsideration. They have shown that SAT based bounded model heking (BMC)performs well for �nding shallow ounterexamples for test generation.In [96℄, Koo and Mishra present a similar approah for e�ient test generationusing SAT-based bounded model heking (BMC). The di�erene being that theytranslate the funtional fault Si in the fault model to a temporal logi property
Pi. The �rst step is similar to above whih involves determining a bound ki forthe property Si. SAT-based BMC takes proessor model M , negated property
¬Pi and bound ki as input and generates a ounter-example, whih serves as atest-program for the fault. They applied their methodology on a simpli�ed MIPSarhiteture and used Cadene SMV [2℄ as a model heker and zCha� [134℄ as
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1.1. Related Work 27a SAT solver. They observed that the bound for eah property redues the testgeneration time by 90% ompared to using BMC with maximum bound, whihis the depth of the pipeline. In this thesis, one of the methods presented forgenerating test ases uses a SAT based approah to generate test ases from theuser given senario.1.1.4.4. Property Cheking based methodsIn [120℄, Mishra et al. propose a model heking based approah to automatiallygenerate funtional test programs for pipelined proessors. Firstly, the proessormodel is extrated from the ADL spei�ation. The user spei�es ertain prop-erties whih the proessor arhiteture should satisfy. The proessor model andthe properties are written in SMV language. They lassify test ases into variousategories inluding pipeline �ow, feedbak paths, branh predition, exeutionmode et. They write properties for eah ategory of the test ases. The proper-ties are then applied to the proessor model using the SMV Model heker [2℄. Infat, they negate the property and apply it to the proessor model thereby gettinga ounter-example whih an be used as a test ase whih violates the property.They apply their approah on a single-issue DLX proesor to demonstrate theusability of the approah.Koo et al. [97℄ present a direted test generation tehnique at miro-arhiteturallevel for funtional validation of miroproessors. A proessor model is desribedin a temporal spei�ation language at miro-arhiteture level. They target di-reted test generation towards miro-arhitetural faults. Like the previous ap-proah, they also use a SMV model of the proessor. In their ase, the miro-arhitetural faults are spei�ed as properties. These properties are then brokeninto sub-properties (deomposed properties) whih represent the interation be-tween instrutions and the respetive units. Eah of these properties are thenapplied to appropriate modules and the result omposed to form the �nal testase. They take are of temporal ordering of the various instrutions in the in-dividual test programs while omposing them to form the omplete test ase. Asimilar methodology whih uses deompositional model heking with some addi-tional results have been presented by Koo and Mishra [95℄.1.1.4.5. FSM based methodsOne of the methods of abstration used by designers is to abstrating out thestate transition behavior of the pipeline in terms of a Finite State Mahine(FSM).This FSM is then used an input representing the pipeline model for test asegeneration. Shen and Abraham [147℄ have proposed an abstration tehniquefor miro-arhitetural validation. Firstly, the FSM is extrated from the Ver-ilog/VHDL followed by generation of all transition paths in the FSM of a given
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28 1. Introdution�nite length. They use path overage as a measure of overage of a given test-suite.The unovered paths are then used to guide the generation of direted test ases.Although they demonstrate through results that they ahieve 100 % path over-age, the number of paths grow non-linearly often exponentially with the pipelinedepth, making this method unsuitable for handling omplex pipeline behavior.However, sine the designer view starts from a funtional spei�ation and thereafter evolves into the miro-arhitetural level after going through several phases,this approah annot be used for test generation in the initial phases of the design.Ho et al. [86℄ use a similar methodology to extrat FSM model from thestrutural HDL desription, building the omplete state graph with all the validtransitions. They over all the transition edges in the state graph to generatetransition tours and generate sequene of instrutions whih enables the transitionsin the transition tour. Their system works from a verilog desription of the originalmahine and is used to validate an embedded dual-issue proessor in the nodeontroller of the Stanford FLASH Multiproessor. In order to expose bugs, theyexerise all ontrol edges in the state transition graph and enumerate those overededges on the implementation thereby listing the bugs present.1.1.4.6. Other methodsApart from the methodologies listed above, a gamut of other test generation teh-niques have been applied to pipeline validation. We disuss the various methodolo-gies here. In [125℄, the authors present a test generation and funtional overageestimation framework for pipelined proessors using Speman Elite [10℄. The in-put spei�ation is in the form of an ADL, from whih an �e�[10℄ spei�ationis extrated. Speman Elite is used to generate random and onstrained-randomtest programs. They ompute funtional overage of a pipelined proessor for agiven set of test programs as the ratio between the number of faults deteted bythe test programs and the total number of detetable faults in the fault model.The fault model adopted is same as the one de�ned in [123℄. They have appliedthis methodology on a VLIW DLX arhiteture to demonstrate the usefulness oftheir approah. They analyze the ause for the low fault overage in pipeline ex-eution for the random and onstraint-driven test generation approahes. Thesetwo approahes overed all the stall senarios and majority of the single exeptionfaults. However, they ould not ativate any multiple exeption senarios in theirase.Constraint Solving is one of the methodologies adopted by IBM where the testsenario is generated by solving a onstraint satisfation problem. Piparazzi [16℄,the test ase generator from IBM, generates test ases at the arhitetural andmiro-arhitetural levels. The main inputs to the framework are: a model of the
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1.2. Motivation and Objetives 29miro-arhiteture and the user's spei�ation of a required event. A CSP problemis onstruted from these inputs and this problem is solved to generate a testsequene. IBM built on the model-based test generation methodology supportedby CSP to built Genesys[111℄, Genesys-Pro[15℄. Aharon et al. [17℄ present amodel based test generator whih omprises of an arhitetural model, a testingknowledge data-base, a behavioral simulator, arhiteture independent generatorand a graphial user interfae for user inputs. Ur and Yadin [154℄ use Genesys [111℄in their overage driven test generation framework. They use FSM abstrationand the tours on the FSM are translated to arhitetural onstraints whih is thenprovided as input to Genesys [111℄.Fine and Ziv[63℄ address one of the main hallenges of simulation based veri�a-tion (or dynami veri�ation), by providing a new approah for Coverage DiretedTest Generation (CDG) based on Bayesian networks and omputer learning teh-niques. The approah provides an e�ient way for losing a feedbak loop fromthe overage domain bak to a generator that produes new stimuli to the testeddesign.In this setion, we have presented researh work related to the fous of thisthesis. We present the motivation behind this work and the objetives of thisthesis in the next setion.1.2. Motivation and ObjetivesSimulation Based Veri�ation(SBV) involves building an exeutable of the systemand providing the exeutable with test stimulus and observing that the outputonforms to the spei�ation. This validation is done by omparing the output ofthe simulation against an existing golden output or by heking the output traeswith assertions. Cheking assertions over traes is widely known as AssertionBased Veri�ation (ABV), whih ould be done o�ine or post-simulation as wellas online or at par with simulation. Additionally, test stimulus form an integratedpart of the simulation based veri�ation proess. Test stimulus provided to thesimulation framework an be absolutely random or direted towards a ertain userspei� senario, or towards meeting ertain objetives like overage. We explorethe appliability of the above mentioned SBV methodologies in the domain ofpipelined proessors.The three objetives of our work involve: (i) Exploring tehniques for veri-�ation of a pipeline simulator against the goldenized funtional simulator, (ii)Investigating the usage of Assertion Based Veri�ation in Pipeline Validation,and (iii) Developing methods for Direted Test generation for pipelined proes-sors. The �rst two objetives are veri�ation methods de�ned on a simulationtrae. The �rst approah uses the simulation traes of both the funtional and
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30 1. Introdutionpipeline simulators while the seond objetive requires the exeution trae of justthe pipeline simulator and a set of assertions. The third objetive is to allowthe user to generate test ases for user given senarios. We now desribe theseobjetives in detail.1.2.1. Trae Equivalene:Simulation based Veri�ation methods for proessor validation involve tehniquesproposed to ut down on the number of tests [71℄, for validating pipeline interloks[58℄, and also for simulation-based veri�ation using bu�er-oriented approahes[155℄, [156℄. Utamaphethai et al. [155℄, [156℄ systematially generated test pat-terns and used bu�er-oriented miro-arhiteture validation (BMV) models for re-name bu�ers, reservation station, and branh-predition. All the above approahesrequired detailed pipeline spei�ations. Austin [24℄ introdued a dynami imple-mentation veri�ation arhiteture (DIVA) tehnique in whih the ore proessoris augmented with a lightweight heker before the ommit stage whih orretserroneous results produed by the ore proessor. In his model, the formal veri�-ation task is hene lightened to the funtional veri�ation of the simple hekeronly. Mneimneh et al. [132℄ demonstrated the use of DIVA arhiteture to for-mally verify an ISA by reduing the burden of verifying a ore proessor. Thismethod requires additional hardware and the overhead of verifying it.The designer builds a funtional simulator for the ISA, goldenizes it usingbenhmarks[25℄ and random instrution test sequenes [10℄. A onsiderable amountof time is thus spend in validation of the funtional simulator. This goldenizedfuntional simulator is passed onto the pipeline design phase. The proessorpipeline design, as we have already mentioned in Setion 1, is a feedbak basediterative proess, where the iterative proess ontinues till the performane spe-i�ation is satis�ed. Verifying the orretness of the pipeline implementation atevery step is a very important task as it is used for performane evaluation at ev-ery iteration. Sine, the designer has a fully tested funtional simulator at hand,it ould serve as a golden referene model for the pipeline simulator. Most of thereported approahes employed for pipeline validation require detailed spei�ationof the pipeline(white box ). It is often the ase that the validation engineer has anexeutable model of the pipeline whih needs to be validated. The absene of thedetailed pipeline design makes the appliation of known validation tehniques dif-�ult. However, the exeutable model of the pipeline generates exeution traes.It would be interesting to do a omparative analysis of the simulation traes ofthe pipeline and funtional simulator and dedue a notion of orretness and on-tainment. We investigate the existene of an equivalene relationship between thesimulation traes generated by the funtional and pipelined implementation of
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1.2. Motivation and Objetives 31the ISA, whih does not require a detailed arhiteture spei�ation(blak box ).Hene, our �rst objetive is to leverage the existene of a fully tested funtionalsimulator and use it for verifying the orretness of a pipelined implementation ofthe ISA. Next, we examine tehniques for pipeline validation from the perspetiveof assertion based veri�ation.1.2.2. Assertion Based Veri�ation of Pipeline:Assertion Based veri�ation is rapidly gaining aeptane in the design ommu-nity. Assertions are spei�ed using some form of temporal logi or their extensionsand are heked on simulation traes online or o�ine. LTL(Linear temporal Logi)and CTL (Computational Tree Logi) are the de-fato standards used in spei-�ation of design intentions[113℄,[114℄. In [104℄, non-deterministi automata arebuilt from LTL to hek violations of formulas over �nite traes and the om-plexity of these problems are analyzed. In tools suh as the Temporal Rover [59℄and Java Pathexplorer [82℄, LTL based spei�ations have been used. There aretwo major limitations of onventional temporal logi, namely: (i) inorporatingdata-orientation espeially in the presene of timing onstraints and (ii) modelingand assoiation of timing onstraints in design intentions. Consider the followingspei�ations of a bus integrated pipelined proessor system given below:Example 1:(a) The address �oated on the system bus should not inrease by more than 4from its value at the immediately previous time the bus was ready.(b) The system allows the address to inrease by more than 4, but keeps a ountof how many times suh a violation has ourred. That is, this ount shouldinrease by one after suh a violation has ourred and stay so until anotherviolation.() The system does not allow 5 suh violations to our within 100 time units.We examine suh pipeline spei�ations and other related timing properties ofinstrutions and interrupt proessing from the point of view of assertion basedveri�ation. There is no onvenient way to express these assertions in onventionaltemporal logi owing to their inability to model data dependenies aross varioustemporal ontexts. PSL(Property Spei�ation Language)[3℄ and SVA(SystemVerilog Assertions)[5℄ are two industry standard property spei�ation languages.Both languages primarily use free variables for data orientation and manipulatedata in assertions using auxiliary state mahines written by the user. These ma-hines are often ompliated and beome a soure of error. Moreover, the asser-tions for data orientation turn out to be more proedural in nature than delara-tive. Hene, it is important to provide an elegant, essentially delarative solution
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32 1. Introdutionto spei�ation of data-oriented assertions, whih is also a suint representationin a manner similar to ontrol-oriented assertions. Additionally, it is neessaryto provide a loosely oupled framework that enables easy automated veri�ationaross various levels of spei�ation without the user having to write additionalassertions. The seond objetive of this thesis is to develop a spei�ation logiwhih ould suintly represent data-orientation and timing onstraints in designintentions, and investigate its appliability in the domain of pipelined proessors.1.2.3. Test GenerationTypially, a ombination of random and direted test programs are applied forperforming simulation based validation of miroproessors. Test ases are an in-herent omponent of a omprehensive Simulation Based Veri�ation(SBV) frame-work. The e�etiveness of SBV depends heavily on the quality of test ases usedas test stimulus. The input spae of omplex pipelines is quite large and testingthem for eah input is a di�ult task to be aommodated within the alreadyonstrained time-to-market. Random test pattern generation ould prove to be aostly validation tehnique in terms of time as overage is not guaranteed. Hene,designers prefer methods for direted or targeted test generation. Using theirdetailed design knowledge, they test the proessor for ritial onditions whereertain kind of instrutions interat with eah other i.e. ases where there an behazards, exeptions et. and there would be situations, where they would wantto test the register renaming protool et, or an entirely user spei� senario,extensively. Piparazzi [16℄ is a test generator, developed at IBM that generates(arhitetural) test programs for miro arhitetural events using onstraint sat-isfation. Test generation for proessors has been reported using FSMs [89℄,[94℄,overage of pipeline behavior [121℄, funtional fault model of the pipeline[123℄.Iwashita et al. [90℄ generate behavioral level test environments in VHDL for spe-i� proessor mehanisms.All of the known test generation approahes for pipelined proessors generatetest ases for standard senarios like hazards and exeptions. Many a times thedesigner would want to test the design for a partiular type of senario of his orher hoie, like a strutural hazard at the MEM stage or a RAW hazard or animpliit hazard or any spei� orner ase senario. One of our objetives is toprovide the designer �exibility to speify the senarios for whih he/she requiresthe test ases to be generated. Corner ase senarios in the pipeline are often om-plex and require multiple events to be triggered. A typial example is a senariowhere multiple exeptions or multiple hazards or a ombination of both our inthe pipeline. The senarios that are onsidered ritial to the pipeline exeutionare when instrutions interat with eah other like when hazards, exeptions, or
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1.3. Contribution of this Thesis 33interrupts our and so on. Consider this senario: a designer desires to validatethe logi of the pipeline when a multi-yle hazard, whih is a spei� ase of astrutural hazard, ours. The user desribes this senario as an instane wherean instrution `I' is waiting to oupy a unit `U', but the instrution `J' in `U'oupies `U' in the next yle too. Now `I' would get stalled in its urrent unit.Generating test ases for suh senarios is a di�ult task. Also, it is important toprovide the user with a framework whih ould generate test ases at all levels ofdesign granularity. This would enable reuse of test senarios and seamless testingaross all design levels. Our third and �nal objetive is to provide the user witha �exible framework whih enables the user to speify suh types of senarios andexhaustively generate test ases for the spei�ed senario.1.3. Contribution of this ThesisThe ontribution of this thesis in the domain of simulation based veri�ation ofpipelined proessors is three fold. The �rst important problem that this thesissolves is the problem of funtional equivalene between pipeline and funtionalsimulator using the register aess traes. The thesis then presents a spei�ationlogi(TAB logi) for assertion based veri�ation of a pipelined proessor. The �nalontribution is in the domain of direted test pattern generation of pipelined pro-essors. The thesis presents a �exible framework for senario driven test patterngeneration for funtional validation of pipelined proessors. The �rst approah isa blak box veri�ation methodology and the last two approahes are white boxmethodologies for verifying pipeline designs. We summarize the ontributions ofthe thesis in this setion. All experimental results reported have been taken on a1.7GHz CPU with 1GB of RAM.1.3.1. A systemati framework for Validation and Debuggingof Pipelined SimulatorsWe propose a simple yet versatile model with whih we an validate the orret-ness of a pipelined simulation with respet to a funtional simulation based ona data �ow analysis approah. Unlike methods based on formal veri�ation, ourapproah does not require as input detailed spei�ation of the pipelined arhi-teture. It is based on the availability of simulators that produe sequenes ofread/write operations of instrutions. Unlike pure simulation-based approahesthat math �nal data values, we present a new equivalene approah that not onlydetets errors as soon as possible, but also attempts to debug the error soure. Weallow the pipelined simulator to use more registers than the funtional simulator,perform out-of-order exeution, speulative instrution exeution, and register re-naming. We indiate how this approah aptures arhitetures that use methods
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34 1. Introdutionlike Tomasulo's algorithm[84℄. In our framework, the veri�er reeives streams ofregister aesses by instrutions from both the funtional and pipelined simula-tors. Based on the shedule of instrutions exeuted by the two simulators andthe registers read and written, we propose a de�nition of semanti equivalenealled D∗ equivalene of two suh instrution shedules. We propose an algorithmwhih under ertain reasonable assumptions veri�es the aforementioned semantiequivalene in time polynomial in the number of instrutions exeuted and thenumber of registers. We present some extensions to the algorithm to handle somemore generi ases. Another important aspet of our work is debugging errorsduring simulation. We demonstrate that the proposed approah an be used toloate faults in the soure ode of the pipeline simulator.Given an exeutable ode in the ISA, we exeute the ode on both the simu-lators. In an in-order un-pipelined exeution of the ode, as in a funtional simu-lator, an instrution will perform all its register aesses (reads/writes) before thenext instrution starts exeution. However, in an out-of-order pipelined simulator,multiple instrutions may be aessing the registers without waiting for anotherinstrution to �nish. A sequene of read/write operations to registers by instru-tions will be alled the shedule produed by the partiular simulator. Thus, inthe shedule produed by a funtional simulator, we will have a sequene of all therequisite aess operations to the registers by a partiular instrution stritly be-fore the sequene of aess operations of the subsequent instrution. On the otherhand, the pipeline simulator an produe a shedule in whih aesses to registersby multiple instrutions is interspersed. It is to be noted here that suh a sequeneof operations indues a data �ow graph among the instrutions. In our framework,the veri�er is a module, separate from the simulators, whih reeives the shedulesprodued by both the simulators. The spei� problem we formulate and solve inthis work is whether the data �ow among the instrutions indued by the sheduleprodued by the pipeline simulator is semantially equivalent to the shedule pro-dued by the funtional simulator. For sake of experimentation, we have used thefuntional and pipeline simulator for pisa arhiteture available with simplesalartool suite[26℄. We present the veri�ation results for various appliation from theMibenh benhmark[25℄ test suite. We exeuted all of the tests mentioned andolleted the register dumps. We observe that the proposed method has a lineartime omplexity in pratie. The heker validated the pipeline simulator withrespet to the funtional simulator for eah of the tests. We also introdue faultsinto the soure of the pipeline simulator and demonstrate that eah of these faultsare deteted very early during simulation thereby saving a signi�ant number ofsimulation yles on the part of the designer, up to > 99% for ertain benhmarkappliations. For example, in ase of the Blow�sh appliation, the bug deteted
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1.3. Contribution of this Thesis 35was at yle - 7, and the total number of simulation yles reported is 7878162.We also show that this leads to improved methods of fault loation as we an mapthe failure type of the algorithm to the possible error loations.1.3.2. Simulation Based Veri�ation using Temporally At-tributed Boolean LogiWe propose a spei�ation logi alled Temporally Attributed Boolean(TAB)Logi whih allows us to: (i) represent assertions suintly, (ii) inorporate data-orientation and (iii) assoiate timing to design intentions. TAB Logi enables usto write spei�ations funtionally linking system variables from di�erent tem-poral ontexts. Temporal logis have onstruts(temporal operators) to qualifypast, present and future time instants. These temporal operators are assoiatedwith properties, propositions or events. Similarly, in TAB Logi, there are threekinds of operators whih register events in the past, present and future. The basidi�erene being that the TAB logi operators evaluate to a time instant in past,present or future, whereas temporal operators as in LTL, CTL in general signifythe existential truth of the proposition or event quali�ed by the temporal operator.For example, if the LTL formulae Fq holds in some state it implies that q is truein some state in the future. In TAB logi, N [q] evaluates to the immediately nexttime instant when q is true in the future. The three basi TAB logi operators are(i) Previous, (ii) Current; and (iii) Next. One suh time instant that a temporaloperator in TAB logi evaluates to is alled a temporal ontext. The signal valuesattributed by already de�ned temporal ontexts are alled temporally attributedsignals, and are used in the de�nition of newer temporal ontexts, thus allowingnesting in the de�nition of temporal ontexts. We illustrate this by expressing thespei�ation in Example 1 using TAB logi. We mentioned in Setion 1.2 that oneof the objetives of TAB Logi is to inorporate data-orientation in spei�ations;the onditions monitored by the temporal operators of TAB Logi are data depen-denies that are modeled as funtions. These funtions are de�ned over temporallyattributed signal values as operands with arithmeti and logi operators. Finally,sets of assertions are de�ned whih assert high level data dependenies utilizingtemporally attributed signal values. In the nomenlature used in TAB logi, thetemporal ontexts are known as Temporal Expressions and the data dependeniesand onditions are modeled in the form of TAB or Temporally Attributed BooleanExpressions. We ombine example 1(a), 1(b) and 1() into a single TAB Logispei�ation.
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36 1. IntrodutionExample 1(a,b,). system variables : bus_address, bus_ready,ountertime t_pb = P [bus_ready == TRUE];time t_v = P [bus_address > bus_address(t_pb) + 4];time t_n100 = C[ ] + 100;assertion a1: (bus_address ≥ bus_address(t_pb))

∧ (bus_address ≤ bus_address(t_pb) + 4);assertion a2: counter == counter(t_v) + 1;assertion a3: counter(t_n100) ≤ counter + 5;Explanation: The temporal variable, t_pb, orresponds to the temporal ontextin the immediate past when the bus was ready, signi�ed by the TAB expression,
bus_ready == TRUE. The assertion states that if the urrent address on the bus,signi�ed by the variable bus_address is greater than the value of bus_address attime t_pb, then the inrease in value of bus_address is at most 4. The number ofviolations signi�ed by the value of the variable counter inrements every time theaddress on the bus inreases by more than 4 from the value of the address whenthe bus was ready the last time. The time instant is signi�ed by the temporalvariable t_v. The temporal variable t_n100 signi�es the temporal ontext 100time units from the urrent instant. The total number of violations within thisinterval is signi�ed by the value of the variable, counter at t_n100. This valueshould be within 5 units of the value of counter, 100 time units in the past.One of the important results that we arrive at is that TAB logi is at leastas powerful as LTL in terms of expression apability. We also show how data-oriented spei�ation an be spei�ed in TAB whih is not easy to do in LTL. Weformally de�ne TAB Logi, formulate the problem of veri�ation on a simulationtrae and present e�ient algorithms to hek TAB assertions, both o�ine andonline. We present results of appliation of TAB Logi for Instrution Semantis,Bus Transation Veri�ation, and Interrupt mode behavior of a bus integratedpipelined proessor ore implementation. We also demonstrate the e�etivenessof TAB Logi in fault detetion, typially of data-oriented faults. As an o�-shoot,we investigated the appliability of TAB Logi for simulation based veri�ationof analog iruits like Operational Ampli�ers and DC-DC Converters and we ob-tained some interesting results. We illustrate through examples, the kind of as-sertions that an be spei�ed using TAB logi in the domain of reasoning aboutoutput waveforms whih is one of the primary neessities in ase of simulationbased validation of analog iruits.
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1.3. Contribution of this Thesis 371.3.3. A Framework for Senario Driven Test Case Genera-tion for Funtional Veri�ation of Pipelined ProessorsWe propose a �exible direted test generation framework to generate test ases formiroproessor pipelines targeted towards user de�ned senarios. There has beensigni�ant amount of researh in this domain and there are results reported inrandom test pattern generation [15℄, fault model based test generation[123℄, spe-i�ation driven test generation [29℄,[124℄ and overage driven test generation[121℄.It is important to provide a systemati test generation framework whih will pro-vide the designer the �exibility to ontrol all the omponents of the test generationproess. There are three important independent omponents of a test generationframework for pipeline proessors: (a) Senario Desription, (b) Pipeline Spe-i�ation, and () Test Generation Algorithm. Control over these omponentsenable e�ient test ase generation for pipelined proessors. It is neessary forthe designer to generate test ases aross all levels of abstration of design. Mostof the reported methodologies lak the �exibility to work aross various levels ofabstration and generate test ases either only at funtional level or at the arhi-tetural level. Along with this, the designer would also be interested in extensivelytesting the funtionality of a new pipeline methodology he/she had designed us-ing minimal arhitetural details of the pipeline. In order to failitate this thetest generation proess should be aware of the granularity of the pipeline spei-�ation. Another important aspet of the pipeline test generation proess is thetest generation algorithm employed. It is often a requirement of the test engineerto evaluate various algorithms for generating test ases direted towards a givenlass of targeted senarios. This an be failitated if the pipeline test generationframework is �exible enough to allow test generation algorithms to be plugged in.We present a framework whih will address these issues and provide the designerwith the adequate amount of �exibility to perform e�ient testing of the pipelinedesigns.We propose a Senario Desription Language (SDL) where the user an de-sribe the senarios using simple prediates pertaining to the pipeline. This wouldenable generation of test programs for omplex user de�ned senarios. An abstratmodel of the pipeline similar to the model proposed by Mishra and Dutt[121℄ isused as input for test generation in our ase. Mishra and Dutt [121℄ use thebehavioral knowledge of the pipelined arhiteture spei�ed in an ArhitetureDesription Language (ADL). However, in our approah we also have the shemeof speifying the hazards/exeptions as inputs to the test generation frameworkwhih enables the test generation framework to generate multiple hazard basedtest ases. We present two test generation algorithms whih take the senario and
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38 1. Introdutionpipeline spei�ation as input and generate hazard free and exhaustive hazardbased test ases respetively. In our �rst approah, we present a fast algorithm forhazard free test ase generation using the pipeline spei�ation and the user givensenario as input. In order to generate the hazard based test ases, we presenta method to model the pipeline as a SAT instane. In this ase, the hazard andexeption onditions form a part of the pipeline spei�ation whih is not thease in the �rst approah. The desired senario of the pipeline is automatiallyonverted into a state of the pipeline, whih is translated into an equivalent set ofboolean propositions whih is used to generate minimal test ases using an ALL-SAT approah. We generate test ases for three di�erent on�gurations of theDLX pipelines for various well known hazard senarios.1.4. Thesis OrganizationThis thesis presents three enhanements in the �eld of proessor pipeline veri�a-tion. Firstly, the thesis de�nes a data �ow orrespondene relationship betweenpipeline and funtional register aess traes and presents equivalene hekingalgorithms for the same. Seondly, the thesis presents a spei�ation logi alledTemporally attributed boolean logi for assertion based veri�ation of timing prop-erties of instrutions and interrupt proessing in the proessor pipeline. Lastly,this thesis presents a framework for direted test pattern generation of pipelinedproessors. The rest of the thesis is organized as presented next:Chapter 2 proposes a onept of semanti equivalene between two arhiteturalsimulation register aess traes and enumerates algorithms to hek theequivalene relationship.Chapter 3 presents a spei�ation logi alled TAB Logi whih allows us towrite spei�ations funtionally linking system variables from di�erent tem-poral ontexts and algorithms for heking the same.Chapter 4 presents a �exible framework for senario driven test generation forfuntional validation of pipelined proessors.Chapter 5 presents onlusions and sope for future work.


