CONTENTS

		Page
Title Page		i
Dedication		ii
Certificate		iii
Acknowledgemen	t	iv
Declaration		v
List of Symbols and Abbreviations	;	vi
Contents		ix
List of Tables		
List of Figures		XI
Chanters		AIV
Chapters		
1	Introduction	1
2	Review of Literature	7
2.1	The Bael Fruit	7
2.2	Preservation Techniques	16
2.3	Foams	20
2.4	Sorption Isotherms	26
2.5	Drying of Foam	28
2.6	Packaging and storage	32
2.7	Quality of Sugar-Acid Fruit Drinks	33
2.8	Response Surface Methodology (RSM)	35
2.9	FT-NIR spectroscopic analysis	36
3	Materials and Methods	37
21	Davy Matarial	27
3.1	Chamicals and Paagants	27
3.2	Analysis of Pay Material (Paol Pulp)	20
3.3	Sorption Studies	30 38
3.4	Forming of Pulp	50 41
3.5	Drying of Foam	41
3.0	Conditioning and Grinding	40 55
3.7	Analysis of Bael Powder	55
3.0	Storage Studies	59
3.10	Bael Powder Based Drink	50
3.10	Date rowur Dastu Dillik Development of Methods for Papid Analysis of	59
5.11	Moisture in Bael Puln	01
3.12	Analytical and Other Methods	63
J.14	mary near and Outer Methods	05

4	Results and Discussions	71
4.1	Raw Material	71
4.2	Chemical and Bioactive Composition of Bael Pulp	72
4.3	Sorption Isotherm of Bael Pulp and Powder	76
4.4	Foaming of Bael Pulp	83
4.5	Drying of Foamed Bael Pulp	95
4.6	Process Technology for Production of Foam-mat	133
	Dried Bael Pulp Powder	
4.7	Quality Characteristics of Bael Pulp Powder	135
4.8	Fuzzy Logic Analysis of Bael Powder based Drink	139
4.9	Storage Studies and Shelf Life Evaluation	143
4.10	Developed FT-NIR Method for Rapid Determination	151
	of Moisture	
_		150
5	Summary and Conclusions	159
5 5.1	Experimental	159 159
5 5.1 5.2	Experimental Results	159 159 162
5 5.1 5.2 5.3	Experimental Results Conclusions	159 159 162 170
5 5.1 5.2 5.3 References	Experimental Results Conclusions	159 159 162 170 171
5 5.1 5.2 5.3 References Appendices	Experimental Results Conclusions	139 159 162 170 171
5 5.1 5.2 5.3 References Appendices A	Experimental Results Conclusions List of Chemicals and Reagents	159 162 170 171
5 5.1 5.2 5.3 References Appendices A B	Summary and Conclusions Experimental Results Conclusions List of Chemicals and Reagents Experimental Data on Recirculatory Convective Air	159 162 170 171 191 192
5 5.1 5.2 5.3 References Appendices A B	Summary and Conclusions Experimental Results Conclusions List of Chemicals and Reagents Experimental Data on Recirculatory Convective Air Drying of Bael Pulp Foam	159 162 170 171 191 192
5 5.1 5.2 5.3 References Appendices A B C	Summary and Conclusions Experimental Results Conclusions List of Chemicals and Reagents Experimental Data on Recirculatory Convective Air Drying of Bael Pulp Foam Score Sheet Used for Sensory Evaluation	159 162 170 171 191 192 195
5 5.1 5.2 5.3 References Appendices A B C D	Summary and Conclusions Experimental Results Conclusions List of Chemicals and Reagents Experimental Data on Recirculatory Convective Air Drying of Bael Pulp Foam Score Sheet Used for Sensory Evaluation Changes During Accelerated Storage of Bael	159 159 162 170 171 191 192 195 196

Powder Samples in Metallised Polyethylene PouchesList of Publications from the Present Study197

List of Tables

Table	Title	Page No
2.1	Physical Characteristics of Bael Fruit	9
2.2	Chemical Composition of Bael Fruit	10
2.3	Food Products and the Most Suitable Dryer	17
3.1	Water Activity by Saturated Salt Solutions at Different Temperatures	38
3.2	Sorption Models Used for Fitting the Experimental Data	39
3.3	Coded and Actual Values of Independent Variables Included in CCRD Used in Foaming Experiment on Bael Pulp	44
3.4	CCRD with Actual and Coded Levels of Independent Variables for Foaming Experiment	45
3.5	Levels and Codes of Independent Variables for Drying of Bael Pulp Foam	49
3.6	Factorial Design for Drying of Foamed Bael Pulp	49
3.7	Models Used for Describing the Drying Process of Foamed Bael Pulp	54
4.1	Proportion of different Components of Bael Fruit (Aegle marmelos L.)	71
4.2	Important Physico-chemical Properties and constituents of Bael Pulp	72
4.3	Major Bioactive constituents detected from fruit pulp of Bael	75
4.4	Constants of Different Models Fitted to the Desorption Data of Bael Pulp	78
4.5	Constants of Different Models Fitted to the Adsorption Data of Bael Pulp Powder	79
4.6	Effect of Process Variables on Foam Density and Drainage Volume of Bael Pulp Foam	84
4.7	Regression Coefficients and ANOVA of the Second-order Polynomial Model for the Response Veriables (in Coded Units)	85
4.8	Constraints Set for Numerical Solution of Optimum Foaming Conditions	93
4.9	Numerical Solutions for Foaming of Pulp	93
4.10	The Optimum Foaming Properties Obtained Experimentally and Theoretically	94
4.11	Drying Time of Bael Foam-mat at Different Drying Condition	96

- 4.12 Regression Coefficients for ln MR as Function of Drying Time for *112* Foamed Bael Pulp under Varying Condition of Air Temperature, Velocity and Mat Thickness
- 4.13 Effective Moisture Diffusivity (D_{eff}) in Bael Pulp during Drying under *113* Varying Conditions
- 4.14 Regression Coefficients and ANOVA data showing Effect of Process *113* Variables on (D_{eff}) during Foam-mat Drying of Bael Pulp
- 4.15 Regression Coefficients for Moisture Diffusivity Model as Function of *118* Moisture Content for the Foamed Bael Pulp under Varying Condition of Air Temperature, Air Velocity and Mat Thickness
- 4.16 Average Effective Moisture Diffusivity and Activation Energy values for *119* Bael Pulp at Various Conditions of Foam-mat Drying
- 4.17 Values of Model Constants and Statistical Results for Drying of *120* Foamed Bael Pulp at Varying Air Temperatures and Mat Thickness (Air Velocity 1.0 m s⁻¹)
- 4.18 Values of Model Constants and Statistical Results for Drying of *121* Foamed Bael Pulp at Varying Air Temperatures and Mat Thickness (Air Velocity 1.5 m s⁻¹)
- 4.19 Values of Model Constants and Statistical Results for Drying of *122* Foamed Bael Pulp at Varying Air Temperatures and Mat Thickness (Air Velocity 2.0 m s⁻¹)
- 4.20 Drying Time and Retention of Ascorbic Acid in Bael Pulp Powder *124* prepared under varying Foam Mat Drying Conditions
- 4.21 ANOVA data for Drying Time and Retention of Ascorbic Acid During *127* Foam-mat Drying of Bael Pulp
- 4.22 Constraints Set for Numerical Solution of Optimum Conditions for 131 Foam-mat Drying Bael Pulp
- 4.23 First Twelve Numerical Solutions for Categorical Factor Levels for 131 Foam-mat Drying of Bael Pulp
- 4.24 Predicted and Experimental Values of Responses for Foam-mat Drying *132* of Bael Pulp Using Optimum Process Parameters
- 4.25 Physico-Chemical Composition of Prepared Bael Powder Samples 135
- 4.26 Comparison of Total Phenolics, Flavonoids, Carotenoids Contents and *138* Antioxidant Activity of Bael Pulp and Powder (Foam-mat and Freeze Dried)

4.27	Comparative Analysis of Phenolic Constituent in Fresh Pulp and Powder	139
4.28	Sensory Scores and Associated Triplets for different Quality Attributes of Bael Drinks	140
4.29	Sensory Scores and Associated Triplets for Sensory Scores and relative weightage for Quality Attributes of Bael Drinks in General	140
4.30	Similarity Values of Bael drink Samples and their Ranking	142
4.31	Similarity Values for Quality Attributes of Bael Drink in General	143
4.32	ANOVA Data for Chemical Changes in Bael Pulp Powder during Accelerated Storage	149
4.33	Linear Regression Analysis for Some Important Quality Attributes of Bael Pulp Powder Samples in Aluminium Foil Laminated Pouches Using Zero and First Order Reaction Kinetics	150
4.34	Analytical Features of the Different Regions and Preprocessing Methods for Best Calibration and Validation Models.	156
4.35	Average Moisture Content (% wb) of Bael Pulp by Different Methods	158
4.36	Results of ANOVA for the Moisture Content Determination in Bael	158

Pulp Samples by Three Different Methods

List of Figures

Figure	Title	Page No
2.1	Pictorial View of Bael Fruit	8
2.2	Cross section of Bael Fruit	9
2.3	Flow Diagram for Extraction and Preservation of Bael Pulp	12
2.4	Chemical structure of furanocoumarins (a) psoralen and (b) marmelosin	16
2.5	Classification of Dryer Types	18
2.6	Structure of Foam	21
3.1	Schematic View of Experimental Set-up for Foaming	41
3.2a	Pictorial View of Recirculatory Convective Air Dryer	48
3.2b	Schematic Diagram of Recirculatory Convective Air Dryer	48
3.6	FT-NIR MPA TM Spectrometer	62
4.1	Relationship between Total Soluble Solids (°Bx) and Total Solids (%) of Bael Pulp	73
4.2	HPLC chromatogram of (a) wall-bound and (b) soluble phenolics from fresh bael pulp. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.]	74
4.3	Desorption Isotherms of Bael Pulp at Different Temperatures	76
4.4	Adsorption Isotherms of Bael Pulp Powder at Different Temperatures	77
4.5	(a)Desorption and (b) Adsorption Curves for Bael Pulp and Powder at 30° C with Peleg Model	80
4.6	Residual Plots for Peleg's Model at 30 °C for (a) Bael Pulp and (b) Bael Powder	81
4.7	Variation of Isosteric Heat of Sorption with Moisture Content for a) Pulp and b) Powder	82
4.8	(a) Response Surface and (b) Contour Plot Showing the Effect of Glycerol Monosterate and Methyl Cellulose Concentrations on Foam Density	87
4.9	(a) Response Surface and (b) Contour Plot Showing the Effect of Pulp Concentration and Whipping Time on Foam Density	88
4.10	(a)Response Surface and (b)Contour Plot Showing the Effect of Glycerol Monosterate and Methyl Cellulose Concentration on Drainage Volume of pulp	91
4.11	(a) Response Surface and (b) Contour Plot Showing the Effect of Pulp Concentration and Whipping Time on DrainageVolume of bael pulp foam	92

4.12	Overlay Plot for Foam Density and DrainageVolume of bael fruit foam at varying (a) Glycerol Monosterate and Methyl Cellulose, (b) Pulp Concentration and Whipping Time Levels	94
4.13	Foamed Bael Pulp Samples at different stages of Drying	97
4.14	Drying Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 60°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	99
4.15	Drying Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 55°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	100
4.16	Drying Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 50°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	101
4.17	Variation in moisture content with drying time at different velocities a) 60 $^{\circ}$ C with 2mm thickness, b) 55 $^{\circ}$ C with 6mm thickness, c) 50 $^{\circ}$ C with 4mm thicknes	102
4.18	Drying Rate Vs Moisture content Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 60°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	105
4.19	Drying Rate Vs Moisture content Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 55°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	106
4.20	Drying Rate Vs Moisture content Curves for Foamed Bael Pulp at Varying Mat Thickness (Temp. 50°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	107
4.21	In MR vs Drying Curves for Foamed Bael Pulp at Varying Mat Thickness, (Tempareture 60°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	109
4.22	In MR vs Drying Curves for Foamed Bael Pulp at Varying Mat Thickness, (Tempareture. 55°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	110
4.23	In MR vs Drying Curves for Foamed Bael Pulp at Varying Mat Thickness, (Tempareture 50°C) and air velocity (a) 1 m s^{-1} , (b) 1.5 m s^{-1} and (c) 2 m s^{-1}	111
4.24	Response Surface and Contour Plots Showing the Effect of Drying Air Temperature (AT) and Air Velocity (AV) on Effective moisture Diffusivity (D_{eff})	115
4.25	Response Surface and Contour Plots Showing the Effect of Drying Air Temperature (AT) and Air Velocity (AV) on Effective moisture Diffusivity (D _{eff}	116
4.26	Arrhenious-type Relationship for Effective Diffusivity of Bael pulp Drying	119
4.27	Experimental and predicted Values of MR with drying Time	123

 4.28 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Sample Thickness and Air Temperature (Air Velocity 1.5 m/s) 4.29 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Air Temperature (Sample Thickness 4mm) 4.30 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.31 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.32 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm) 4.33 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change i	_			
 4.29 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Air Temperature (Sample Thickness 4mm) 4.30 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.31 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.32 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm) 4.33 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried Bael Pulp Powder 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.28	Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Sample Thickness and Air Temperature (Air Velocity 1.5 m/s)	127
 4.30 Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.31 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.32 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm) 4.33 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanilic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelera		4.29	Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Air Temperature (Sample Thickness 4mm)	128
 4.31 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C) 4.32 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm) 4.33 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.30	Response Surface and Contour Plots for Drying Time of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C)	128
 4.32 Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm) 4.33 Response Surface and Contour Plots for Vitamin C Rretention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4-hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches during Storage at 40 °C and 90% RH 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.31	Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Velocity and Sample Thickness (Air Temperature 55 °C)	129
 4.33 Response Surface and Contour Plots for Vitamin C Rretention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s) 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4-hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.32	Response Surface and Contour Plots for Vitamin C Retention per cent of Foamed Bael Pulp as a Function of Air Temperature and Air Velocity (Sample Thickness 4 mm)	129
 4.34 Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael 132 Pulp 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 133 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder 134 Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried 136 Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried 137 bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 144 Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.33	Response Surface and Contour Plots for Vitamin C Rretention per cent of Foamed Bael Pulp as a Function of Air Temperature and Sample Thickness (Air Velocity 1.0 m/s)	130
 4.35 Bael Pulp Powder Prepared using Foam-mat Drying Technique 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 4.43 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.34	Overlay Plot for Optimum Conditions of Foam-mat Drying of Bael Pulp	132
 4.36 Process and Material Flow Chart for Production of Bael Pulp Powder 134 Using Foam-mat Drying Technique 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried 136 Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried 137 bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 144 Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.35	Bael Pulp Powder Prepared using Foam-mat Drying Technique	133
 4.37 DSC Curve Showing Glass Transition Temperature of Foam-mat Dried 136 Bael Pulp Powder 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4-hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 144 Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.36	Process and Material Flow Chart for Production of Bael Pulp Powder Using Foam-mat Drying Technique	134
 4.38 HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4-hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.] 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 144 Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.37	DSC Curve Showing Glass Transition Temperature of Foam-mat Dried Bael Pulp Powder	136
 4.39 Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil 144 Laminated Pouches during Storage at 40 °C and 90% RH 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 		4.38	HPLC analysis of (a) wall bound and (b) soluble phenolics from dried bael powder. [Key to peak identity: 1, protocatechuic acid; 2, 4- hydroxybenzoic acid; 3, vanillic acid; 4, vanillin; 5, 4-coumaric acid; 6, ferulic acid; 7, caffeic acid. Detection wavelength: 254 nm.]	137
 4.40 Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil 145 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.39	Cumulative Moisture Gain by Silica Gel Placed in Aluminium Foil Laminated Pouches during Storage at 40 °C and 90% RH	144
 4.41 Water activity of Bael Pulp Powder Packed in Aluminium Foil 146 Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH) 4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH) 		4.40	Moisture Uptake by Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH)	145
4.42 Change in Colour of Bael Pulp Powder Packed in Aluminium Foil 147 Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH)		4.41	Water activity of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored under Accelerated Conditions (40 °C and 90% RH)	146
	_	4.42	Change in Colour of Bael Pulp Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions (40 °C and 90% RH)	147

4.43	Change in Total Polyphenols in Bael Powder Packed in Aluminium Foil Laminated Pouches and Stored Under Accelerated Conditions	148
4.44	NIR Absorption Spectra Used for the Calibration Data Set	152
4.45	NIR Absorption Spectra of Bael Pulp Powder	153
4.46	Effect of Number of PLS Factors on RMSECV for Various Pre processing Methods	155
4.47	Effect of Number of PLS Factors on R^2 for Various Pre processing Methods	155
4.48	Linear Regression Plot of Actual vs Predicted Moisture Content of the Calibrated Data Set.	157
4.49	Linear Regression Plot of Actual vs Predicted Moisture Content of the Validation Data Set.	157