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Chapter 1

Introduction

Architecture of a software system defines its high-level design structure [2]. With increased complexity
and size of software products [11], architectural design modelling has become crucial. No wonder
then that this area is, of late receiving increased attention from researchers as well as practitioners.
Besides serving as a blueprint for implementation, a few of the important uses of an architectural design
model include evaluation, understanding, and testing of architectures. An architectural design model
allows an architect to reason about various system properties (e.g., concurrency, complexity, reliability,
performance, etc.) at a considerably high level of abstraction.

The increased significance being attributed to models has given rise to the concept of model-driven
engineering (MDE). MDE is essentially a software engineering approach with the primary focus on
models, rather than on source code. The ultimate goal of MDE is to raise the level of abstraction, and
to develop as well as evolve complex software systems by analyzing their models. MDE is being looked
upon as the solution to the “complexity blow up” that occurs with increased code size [74]. MDE is still
at a nascent stage and there is an urgent need for developing appropriate techniques and tools to support
the different model-driven engineering activities.

In recent times, Unified Modelling Language (UML) is being extensively used for representing
the architectural models of software systems [19, 20], and has become a standard in MDE. Originally,
UML was conceived primarily for modelling object-oriented software systems. However, the elegance of
UML has made the applicability of UML to grow beyond software systems. UML is now being used for
modelling many other systems such as businesses, hardware, and so on. This can possibly be attributed
to the support for a wide range of visual artifacts and views to model different aspects of a system.

Since the sizes of UML architectural models of systems themselves are increasing, efficient ways
to analyze these models is needed. However, the task of analyzing UML architectural models poses a
formidable challenge since the system information is distributed across several model views. To further
complicate the task, models typically undergo changes throughout the design as well as during system
evolution. A change to a model element may impact other model elements, or even other model views.
In such a situation, it turns out to be tedious on one hand and equally valuable on the other to determine
the impact of such model changes. In this context, several issues require investigation. It is desirable that
the direct and indirect effects of a change to any design model should be automatically identified. This
can help to assess the potential impact of an architectural change on the system. Such a technique can,
in turn, be used to help predict the cost and complexity of a change.

Precise analysis of the impact of a change to one model element on other elements, however,
is a non-trivial problem. A part of the complexity arises due to the fact that, for large architectures,
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1.1 Program and Architectural Model Slicing

determining the impact of a change would require taking into account various types of dependencies that
might exist among different model elements. For example, if an operation returning a value changes, then
several classes may get affected either due to the variables being used in guard conditions associated with
various interactions, or because of operation invocations. This analysis can become even more complex
when one tries to consider the relations existing among objects that dynamically form and dissolve during
a run of the system. On the other hand, availability of UML impact analysis techniques can be valuable
for many software engineering tasks such as understanding, testing, re-engineering, maintenance of large
software products.

Slicing is a promising impact analysis technique. The slicing technique was originally used for
code analysis. However, due to a paradigm shift from code to the design models, slicing of models has
been considered promising. Slicing at the design and analysis stage attempts to compute slices from
model architectures, and is termed as model slicing. A common notion on system specification suggests
two types of models namely, ADL (Architecture Description Language) and UML. This is in contrast to
the use of UML as an ADL [49, 50].

ADLs have been a general topic of research in recent years when it comes to architectural
modelling. The necessity for modelling through an architecture description has been recognized by
Shaw and Garlan [18]. It is commonly understood that an ADL comprises three essential constituents:
components, connectors and configurations [48]. Using these constituents, models of software systems
need to be given in a textual representation in case of ADL architectural modelling. Such form of system
modelling differs from UML architectural modelling where the software architecture is modelled through
a graphical representation comprising various diagrams. In addition to a difference in representation
between commonly used ADLs and UML, it is known that ADLs have difficulty in modeling dynamic
aspects of software systems [47, 49]. However, this is not the case with UML architectural modelling.
This also acts as an incentive for the use of UML models in architectural modelling.

There has been increasing importance on UML design models to support the evolution of large
software systems. Design models such as UML architectural models are being maintained and updated
from initial development as well as being reverse engineered to more accurately reflect the state of
evolving systems. Viewing the entire UML model at one time is impractical and typically of little use
for a particular maintenance task. To overcome these shortcomings, model slicing is being advocated
by researchers to decompose large architectures into manageable portions. A straightforward benefit of
such model slicing would be to automatically extract relevant parts from a very large model.

1.1 Program and Architectural Model Slicing

In this section, we present an overview of the concepts of program and architectural model slicing.

Program Slicing

Program slicing is a program analysis technique. It can be used to extract statements of a program
that are relevant to a certain part of a computation. The concept of program slicing was introduced by
Weiser [71–73]. A program can be sliced with respect to some slicing criterion. A slicing criterion is
a pair < p, V >, where p is a program point of interest and V is a subset of the program’s variables.
If we attach integer labels to all the statements of a program, then a program point of interest could
be an integer i representing the label associated with a statement of the program. A slice of a program

P with respect to a slicing criterion < p, V > is the set of all the statements of the program P that

2



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

CHAPTER 1. INTRODUCTION

might affect the slicing criterion for every possible input to the program. The program slicing techniques
introduced by Weiser [71–73] is now called static backward slicing. It is static in the sense that the slice
is independent of the specific input values to the program. It is called backward because the control flow
of the program is considered in reverse while constructing the slice.

Static and Dynamic Slicing

Static slicing techniques perform analysis of a static intermediate representation of the source code to
compute slices. The source code of the program is analyzed and slices are computed which hold good
for all possible input values [73]. A static slice contains all the statements that may affect the value
of a variable at a program point for every possible input. Therefore, we need to make conservative
assumptions which often lead to relatively larger slices. That is, a static slice may contain some
statements which might not be executed during an actual run of the program.

Korel and Laski [31] introduced the concept of dynamic program slicing. Dynamic slicing makes
use of the information about a particular execution of a program. A dynamic slice with respect to a slicing

criterion < p, V >, for a particular execution, contains those statements that actually affect the slicing

criterion in the particular execution. Therefore, dynamic slices are usually smaller than static slices and
are more useful in interactive applications such as program debugging and testing. A comprehensive
survey on the existing dynamic program slicing algorithms has been reported in Korel and Rilling [32].

Consider the example program given in Figure 1.1. The static slice with respect to the slicing
criterion < 8, sum > is {1,3,4,5,8}. Now, consider a particular execution of the program with the
input value i = 15. The dynamic slice with respect to the slicing criterion < 8, sum > for the particular
execution of the program is {3}.

int i, sum, prd;

1: read(i);
2: prd = 1;
3: sum = 0;
4: while i < 10 do
5: sum = sum + i;
6: end while
7: prd = prd * i;
8: i = i + 1;
9: write(sum);
10: write(prd);

Figure 1.1: An example program

Backward and Forward Slicing

As already discussed, a backward slice contains all parts of the program that might directly or indirectly
affect the slicing criterion. Thus, a static backward slice can be considered to provide the answer to
the question: “Which statements affect the slicing criterion?”. On the other hand, a forward slice with
respect to a slicing criterion < p, V > contains all parts of the program that might be affected by the
variables in V which have been used or defined at the program point p [7]. A forward slice provides the
answer to the question: “Which statements will be affected by the slicing criterion?”.
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1.1 Program and Architectural Model Slicing

Architectural Model Slicing

Architectural model slicing is a decomposition technique that identifies relevant model parts from across
diverse model views that affect a specific model element. In this context, a slicing technique for
software architectures should take into account various classifiers and their relations, and objects and
their interactions. The UML metamodel extends support to describe structural and behavioral aspects
of an architecture. For instance, a structural model such as class diagrams can be used to describe
various relations among classes such as aggregation, association, composition, and generalization /
specialization. On the other hand, behavioral models such as communication and sequence diagrams
can depict a sequence of actions occurring in an interaction through which a use case is realized.
Traditional slicing (or program slicing) is usually performed solely based on data and control dependency
relationships existing among program statements. However, in architectural slicing of UML design
models, several other types of model relations existing between various classifiers such as class-class,
class-operation, operation-operation, class-object, object-object, etc. have to be taken into account.
Therefore, to perform architecture slicing, it is necessary to first formulate an appropriate intermediate
representation that can capture various types of dependencies that may exist among classes, sub-classes,
operations, and attributes, and call sequences. These dependencies are termed as view dependencies.
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Figure 1.2: Dependencies among different model views for an example UML model

Figure 1.2 illustrates an example of a set of dependencies among different views in a UML model
describing a simplified car rental system [61]. The figure shows three types of diagrams. The class
diagram shows a Customer and a RentalCenter managing a set of Vehicle entities (i.e. a Car
and Truck). The interaction diagram shows an anonymous instance of a Customer renting a car from
RentalCenter. The RentalCenter sets a Car instance reserved and returns it to the Customer.
The statechart diagram shows three states for Car. The dependent parts among the diagrams are shown
in black while the independent parts are in gray.

Consider that a model slice for the car rental scenario with respect to an anonymous instance of
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CHAPTER 1. INTRODUCTION

Customer is to be computed. This specification of a condition based on which the slice is computed is
termed as a slicing criterion. Therefore, all the parts marked black do not contribute to the required model
slice. This also illustrates the role of a slicing criterion in the formation of the model slice. Based on this,
the model slice can be given by the set of model elements {objects : Customer and : RentalCenter,
operations rent() and setReserved(), and state Reserved}.

1.2 Motivation for Our Work

Any efficient and precise technique for analysis of UML models has a scope of wide applications. For
example, it can be used to construct partial model views to understand large and complex systems.
Further, it can not only be used to understand software system scenarios but also to understand complete
systems displaying dynamic behavior (e.g., Business Process Modeling, or Manufacturing Systems). In
this context, the following critical observations motivate our present research.

• Typical software systems of today are inherently large and complex. The importance of modeling
the architecture of such systems is well recognized by practitioners. UML has rapidly established
itself as a standard modeling language for such applications.

• While architectural models are playing significant parts in software engineering, model analysis
tools have not kept pace, and lack maturity as compared to even the tools for program analysis.

• The trend of growing sizes of software architectures is making them less amenable to manual
analysis. It, therefore, has become difficult to distinguish parts of contemporary architectures
for reuse, debug, impact analysis, maintenance, and critical system component identification.
Therefore techniques to automatically analyze large architectures are urgently needed.

• Slicing can help to decompose and identify dependencies across architectural model views. This
can help to perform cause-effect analysis when certain changes are required to an architecture.

• Most of the work reported in the literature address development of techniques based on slicing the
architectural description of a system given in different architecture description languages (ADLs)
such as Aesop, C2, Darwin, Meta-H, Rapide, UniCon, and Wright [3]. The research work on
slicing UML architectural models has scarcely been reported in the literature, though UML is
popular as an ADL [49, 50].

From the above observations, it is clear that, there is a pressing necessity to devise slicing algorithms
for UML architectural models. With this motivation, we identify the major objectives of our work.

1.3 Objectives of Our Work

In this section, we present the main objectives of the work presented in this thesis. The primary goal of
our work is to develop efficient and precise slicing algorithms for UML architectural models. Towards
this broad goal, we identify the following objectives.

1. We plan to develop an intermediate representation for a software architecture by extracting relevant
information from UML structural and behavioral models into a single system model.
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1.4 Objectives of Our Work

2. We plan to investigate the development of a suitable framework for computing static slices for
UML architectural models using the proposed intermediate representation.

3. Next, we plan to extend our framework to compute dynamic slices for UML architectural models.

4. Further, we plan to improve upon the precision of the computed dynamic slices by considering the
state information of objects.

5. In addition to investigating our static and dynamic model slicing algorithms theoretically, we wish
to implement them to experimentally verify their performance, correctness and preciseness.

6. Finally, we plan to carry out an analysis of our experimental studies to draw broad conclusions
about the realized static and dynamic model slices, time and space requirements, as well as about
scalability, and other relevant issues.

Figure 1.3 presents a conceptual schema of our work targeted towards meeting the aforementioned
objectives. It shows that a key component of our work focuses on coming up with a representation of
UML models that is suitable for model slicing. The conceptual schema depicted in Figure 1.3 comprises

Interactions

UML Model

Metamodel Design

Model Slicing

Proposed Methodology Prototype Tool

Metamodel Construction

Model Slicer

Input Algorithm Implementation

Intermediate
Representation

Static Model
Slice

Dynamic Model
Slice

Output

Classes

States

Slicing
Criterion

Figure 1.3: Conceptual schema of the planned work

four blocks viz., Input, Algorithm, Implementation and Output respectively. The Input
block depicts the different inputs to be given, namely, a UML model and a slicing criterion, that can be
given to the Algorithm block. Moreover, a UML system design is supposed to be given using the class,
interaction, and state models. Next, the box titled “Proposed Methodology” represents the Algorithm
block depicting that this thesis deals with proposing Metamodel Design and Model Slicing

algorithms. Further, the Implementation block indicates that the experimental studies presented in
this thesis are carried out through the development of different prototype tools. This is represented using
a box titled “Prototype Tool” for the corresponding methodologies proposed in the Algorithm block.
Subsequently, the Output block shows the expected outcome from the thesis work viz., intermediate
representation, static and dynamic model slice. In the context of the above identified objectives for our
work, the block marked Algorithm in the conceptual schema corresponds to the objectives 1−4 while
the Implementation block corresponds to the objectives 5− 6.
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CHAPTER 1. INTRODUCTION

1.4 Overview of the Work Done

Our work mainly focuses on proposing appropriate slicing techniques for UML architectural models.
However, the distribution of related information in diverse model elements makes slicing of UML models
a complex problem. In this section, we present an overview of the work carried out to meet the thesis
objectives set in the previous section.

We have proposed an algorithm ModelGraph to construct a metamodel by first extracting all
relevant information from a UML model specifying a software architecture into an intermediate
representation which we call a Model Dependency Graph (MDG). This is followed by our model slicing
algorithms. The first of these proposed algorithms computes a static model slice and has been named
as Static Slicing of UML Architectural Models (SSUAM). However, such a static model slice is large
and comprises more number of model elements. To compute a model slice with fewer model elements
we need to consider specific values for class attributes, fragment parameters, guard conditions etc.
during slice computation. Such a dynamic model slice is computed using our second model slicing
algorithm. Our proposed dynamic model slicing algorithm has been named as Dynamic Slicing of

UML Architectural Models (DSUAM). For a given slicing criterion, our slicing algorithms traverse the
constructed MDG to identify the relevant model elements that are directly, or indirectly affected during
the execution of a specified scenario. One novelty of our approaches is computing a model slice based on
a single model synthesized from various structural and behavioral UML models, as against independently
processing separate UML models, and determining the implicit inter-dependencies among the different
model elements distributed across model views. Further, to improve the precision of the computed
dynamic model slices, we have proposed the use of state model information. This necessitates to consider
state models during construction of our metamodel MDG. To realize this objective, we have proposed
our modified ModelGraph algorithm which incorporates object’s state information in our metamodel and
makes MDG capable in using it to compute more precise slices. Finally, we have proposed our model
slicing algorithm which improves the precision of DSUAM slices and which has been named State-based

Dynamic Slicing of UML Models (SDSUM). We have also developed four prototype tools to implement
our proposed algorithms and perform experimental studies.
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ArchliceDE
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Methodology

State−based
Model Slicing 
using SDSUM
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Dynamic Model 
Slicing using 
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Static Model 
Slicing using 

SSUAM

UML Model 
Slicing

Intermediate
Representation

Software Architect

<<implements>>

<<implements>>

<<implements>>

<<implements>>

Slicing
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Slicing
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Slicing
Criterion

Figure 1.4: Use case model of the work done
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1.4 Overview of the Work Done

A use case model for our accomplished work is shown in Figure 1.4. The use case model
comprises two subsystems viz., Methodology and Implementation. The Methodology subsystem consists
of proposing the metamodel for UML models, and its subsequent use in our different static and dynamic
model slicing algorithms. In the use case model of Figure 1.4, the use cases have been labelled similar to
the names given to each of our proposed algorithms. On the other hand, the Implementation subsystem
deals with the prototype implementation of the algorithms proposed in the former subsystem, and its
use in carrying out our experimental studies on model slicing. The implementation of our proposed
algorithms involves development of four prototype tools namely, MDGConstructor for UML metamodel
construction, and ArchliceS, ArchliceD and ArchliceDE for static, dynamic, and state-based model slicing
respectively. These prototype implementations have been depicted in the model of Figure 1.4 using the
use cases labeled similar to the names given for each of the developed tools in the Implementation

subsystem. Furthermore, each of those use cases have been associated with one of our proposed
algorithms in the corresponding Methodology subsystem using a stereotype <<implements>> .

The use case model depicts an actor which is shown to be a Software Architect. It also shows that
an architect can take a UML model and construct its metamodel representation using our ModelGraph

algorithm. Further, after a UML metamodel is obtained, using appropriate slicing criterion an architect
can compute model slices using our static and dynamic model slicing algorithms. In addition, an architect
can use the computed model slices for different applications listed in Section 1.5. However, the use of
model slices in different applications has not been depicted in the use case model of Figure 1.4.

Construct model 
dependency graph(MDG)

Associate state model 
information into MDG

Dynamic model slice DAMS

Algorithm 1 : ModelGraph
         ( Chapter 3 )

Associate model 
data into MDG

Select a UML model

Slicing UML Models

Algorithm 4 : SDSUM
        ( Chapter 6 ) 

Algorithm 3 : DSUAM
        ( Chapter 5 )

Algorithm 2 : SSUAM
         ( Chapter 4 )

Traverse MDG

Slicing criterion SC

Traverse MDG

Static model slice SAMS

Slicing criterion SC

d

s

Figure 1.5: Activity diagram representation of work done

Our work concerning computation of slices from UML models has schematically been shown in
Figure 1.5 using an activity diagram. The activity diagram in Figure 1.5 shows how the different parts
of our work are presented in the thesis. The different parts depicted as thesis chapters have been shown

8



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

CHAPTER 1. INTRODUCTION

separated through a dashed line. Our proposed algorithms namely, ModelGraph, SSUAM, DSUAM, and
SDSUM shown in different parts of the activity diagram also indicate the corresponding Chapters 3-6 in
which they have been presented. This organization is elaborated further in Section 1.6. It should be noted
here that, in comparison to an informal diagram, we have preferred to use UML diagrams in Figures 1.4
and 1.5 respectively to convey a simplified picture of our work carried out in this thesis.

1.5 Applications of Model Slicing

Model slicing is an extension of program slicing concepts to architectural models. From a modest
beginning, program slicing techniques have now ramified into a powerful set of tools for use in such
diverse applications as program understanding, program verification, debugging, software maintenance
and testing, metric computation, dead code elimination, reverse engineering, parallelization of sequential
programs, software portability analysis, reusable component generation, program integration, compiler
optimization, etc. [8, 66]. Excellent surveys on applications of program slicing are reported in
[8, 22, 32, 44, 52, 66]. The wide range of applications of program slicing can induce a plethora of similar
as well as novel applications in hitherto uncharted area of model slicing. We can classify these diverse
applications of model slicing into the following broad areas.

• Metrics for UML models.
• Understanding large architectures.
• Early reliability prediction
• Impact analysis of design changes.
• Regression test case selection.
• Identifying critical model elements.
• Test Case Generation and Testing Effort Estimation.
• Animation.

1.6 Organization of the Thesis

The rest of the thesis is organized into chapters as follows.

Chapter 2 discusses few basic concepts that have been used in the subsequent chapters of this
thesis. We first briefly discuss the relevant UML 2.0 concepts. This is a followed by a brief review of
few basic definitions and essential concepts on program and model slicing.

Chapter 3 presents our framework to synthesize UML models into our MDG metamodel. We first
discuss a few concepts that are used in describing our metamodel along with its structural design. Next,
we present our ModelGraph algorithm to construct the MDG along with its pseudocode. This is followed
by an analysis of the complexity of our ModelGraph algorithm. Subsequently, we describe a prototype
tool implementation MDGConstructor based on our ModelGraph algorithm for constructing MDG for
UML models. Finally, we present the results of the experimental studies carried out using our prototype
tool.

Chapter 4 presents a technique for static slicing of UML architectural models. We first present
a few definitions pertinent to static model slicing. We then present our proposed technique SSUAM
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1.6 Organization of the Thesis

for static slicing of UML models based on the metamodel MDG (discussed in Chapter 4) along with
its pseudocode. The complexity analysis of SSUAM is next discussed. Subsequently, based on our
SSUAM algorithm we describe a prototype tool implementation named ArchliceS. We also present the
experimental results obtained in slicing several UML models using ArchliceS.

Chapter 5 presents a technique for dynamic slicing of UML models. We first discuss some issues
which are necessary for understanding dynamic model slicing. We then present a few definitions related
to dynamic slicing. This is followed by a description of our proposed technique DSUAM for dynamic
slicing of UML architectural models along with its pseudocode. A complexity analysis for DSUAM
is next presented. Finally, we present an implementation of our prototype tool ArchliceD based on
our DSUAM algorithm for dynamic slicing of UML architectural models and the experimental results
obtained using the prototype tool.

Chapter 6 reports our approach to improve the precision of model slices. We first present a
few concepts for synthesizing the state information into the MDG and its outcome on precision of the
computed dynamic slices. Next, we present our proposed technique SDSUM for state-based dynamic
slicing of UML models along with its pseudocode. An analysis of complexity of SDSUM is then
reported. This is followed by a discussion on the correctness and precision of dynamic slices computed
using SDSUM in comparison to DSUAM. Finally, we describe a prototype tool implementation
ArchliceDE that implements our SDSUM algorithm for state-based dynamic slicing of UML models.
The implementation of ArchliceDE, in fact extends ArchliceD (discussed in Chapter 5) to consider state
information in the model slicing process. We finally present the experimental results obtained using our
prototype tool.

Chapter 7 concludes the thesis with a critical evaluation of our work. We also highlight the
important contributions made by our work. Finally, we discuss the possible future extensions to our
work.
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