CONTENTS

Sections	Description	Page No.
Title Page		i
Dedication		ii
Approval of	the Viva-Voce Board	iii
Certificate		V
Declaration		vii
Acknowledg	ement	viii
Biodata		ix
List of Table	rs	xiv
List of Figur	es	xvii
List of Symb	ools and Abbreviations	xxi
Abstract		xxiv
Chapter 1	Introduction	1
Chapter 2	Review of Literature	7
	2.1 Composition of Onion	7
	2.2 Processed Onion	8
	2.3 Onion Varieties Suitable for Dehydration	9
	2.4 Dehydration Practices for Onion	12
	2.5 Vacuum Drying as a Potential Drying Method	16
	2.6 Pretreatments	18
	2.7 Quality Characteristics	19
	2.7.1 Non-enzymatic browning	19
	2.7.2 Flavour or pungency	20
	2.7.3 Rehydration ratio	20
	2.7.4 Scanning electron microscopy	21
	2.7.5 Texture	21
	2.7.6 Thermo-physical properties	21
	2.8 Fuzzy Sensory Analysis	22
	2.9 Storage Study	23
	2.10 Mathematical Modelling	23
	2.10.1 Modelling used for onion dehydration	24

	2.10.2 Modelling used for vacuum drying	27
	2.10.3 Computational fluid dynamics modelling for drying	28
	2.10.4 CFD on vacuum drying	29
Chapter 3	Theoretical Considerations	33
	3.1 Determination of Moisture Transport Mechanism	33
	3.1.1 Constant diffusivity approach	35
	3.1.2 Variable diffusivity approach	37
	3.2 Modelling of Thin Layer Vacuum Drying	39
	3.3 Numerical Modelling of the Vacuum Drying Process for Onion	41
	3.3.1 Description of the system	41
	3.3.2 Physical model	42
	3.3.3 Mathematical model	44
	3.3.4 Computational fluid dynamics model formulation	49
	3.3.5 Computing the solution	55
	3.3.6. Model validation	55
Chapter 4	Materials and Methods	57
	4.1 Sample Preparation	57
	4.2 Vacuum Dryer	57
	4.3 Experimental Set Up and Design	60
	4.3.1 Design of experiment	60
	4.3.2 Data analysis and optimization	61
	4.4 Quality Evaluation of Dehydrated Onion	64
	4.4.1 Determination of moisture content	64
	4.4.2 Determination of colour	65
	4.4.3 Determination of flavour	65
	4.4.4 Determination of rehydration ratio	66
	4.5 Sensory Evaluation of Vacuum Dried Onion Slices	67
	4.5.1 Preparation of score card and training of the judges	67
	4.5.2 Fuzzy comprehensive modelling of Sensory scores	68

	4.6 Scanning Electron Microscope Analysis	74	
	4.7 Texture Analysis	76	
	4.8 True Density	77	
	4.9 Thermal Conductivity	78	
	4.10. Storage Study	79	
Chapter 5	Results and Discussion	81	
	5.1 Drying Kinetics of Vacuum Dried Onion Slices	81	
	5.1.1 Moisture profile analysis	81	
	5.1.2 Drying rate variation	82	
	5.1.3 Moisture ratio variation	92	
	5.1.4 Modelling of drying characteristics	94	
	5.1.5 Determination of diffusivity value	101	
	5.2 Numerical Simulation of Drying Process of Onion Slice	109	
	5.2.1 Temperature profile of onion slice during drying	109	
	5.2.2 Pattern of isotherm in the slice	112	
	5.2.3 Moisture profile of onion slice during drying	114	
	5.2.4 Moisture concentration contour at different time of drying	117	
	5.2.5 Comparison of experimental and simulated data	119	
	5.3 Quality Analysis of Dried Onion Slices	122	
	5.3.1 Moisture content	122	
	5.3.2 Colour development	123	
	5.3.3 Flavour content	131	
	5.3.4 Rehydration ratio	137	
	5.4 Optimization of the Parameters of Vacuum Dried Onion Slices	138	
	5.4.1 Statistical analysis	139	
	5.4.2 Optimization	142	
	5.5 Fuzzy Sensory Analysis	145	
	5.5.1 Triplets for overall sensory scores of onion - tomato paste samples	145	
	5.5.2 Overall membership functions of sensory	147	

		scores on standard fuzzy scale	
		5.5.3 Similarity values of onion-tomato paste samples and their ranking	147
		5.5.4 Quality attributes ranking of onion-tomato paste samples in general	149
		5.5.5 Quality factor ranking of individual onion- tomato paste samples	149
		5.6 Characterization of the Final Vacuum Dried Onion	151
		5.6.1 Microstructure analysis	151
		5.6.2 Texture analysis	153
		5.6.3 True density	155
		5.6.4 Thermal conductivity	156
		5.7 Storage Study	158
Cł	hapter 6	Summary and Conclusions	163
Re	eferences		171
A	ppendix A	Specifications of the instruments used for study	183
Aj	ppendix B	ANOVA for Quality Parameters	186
Al	ppendix C	MATLAB Program for Sensory Analysis using Fuzzy Logic	188
Aj	ppendix D	Drying Data for Vacuum Drying of Onion	192
Al	ppendix E	Sensory Score Card for Fuzzy Logic Modelling	197

LIST OF TABLES

Table	Description	Page No.
1.1	Yearwise Status of Area, Production, and Yield of Onion in India	2
2.1	Proximate Composition and Energy Values of Raw and Dehydrated Onion	8
3.1	Models for Predicting Vacuum Drying Characteristics of Onion Slices	40
3.2	Boundary Conditions Applied to the Vacuum Drying Model for Heat Transfer in COMSOL	49
3.3	Boundary Conditions Applied to the Vacuum Drying Model for Mass Transfer in COMSOL	49
3.4	Various Process Constants Assigned to the Drying Model in COMSOL	53
3.5	Variable Expressions Assigned to the Drying model in COMSOL	54
4.1	Experimental Design for Vacuum Drying of Onion Slice	61
4.2	Triplets Associated with Different Sensory Scales	69
5.1	Model Coefficients and Coefficient of Determination of Polynomial Model for Drying Rate Data	92
5.2	Statistical Results Obtained from Various Thin Layer Drying Models for Untreated Onion Slice	98
5.3	Statistical Results Obtained from Various Thin Layer Drying Models for Treated Onion Slice	99
5.4	Estimated Values of Parameters of Page Model Used for Thin Layer Drying Modelling of Onion Slices at Different Sample Thicknesses and Temperatures	100
5.5	Values of Constant Moisture Diffusivity for Vacuum Drying of Onion Slices	103
5.6	Percentage Error Values for Diffusivity Models	104
5.7	Reaction Rate Constant for NEB Kinetics and R^2 Values for VDOS	126
5.8	Activation Energy Values for Browning Kinetics of VDOS	129
5.9	Percentage Error in Predicted Optical Index	129
5.10	Reaction Rate Constant for Thiosulphinate Loss Kinetics and R ² Values	134

5.11	Activation Energy Values for Flavour Kinetics of VDOS	135
5.12	Percentage Error in Predicted Flavour Loss	136
5.13	Experimental Results for Vacuum Drying of Onion Slices	138
5.14	ANOVA for the Selected Model and the Responses	140
5.15	Regression Coefficients of the Selected Polynomials Relating the Responses with Variables	141
5.16	Sensory Scores and Triplets Associated with the Scores for Quality Attributes of Onion-Tomato Paste Samples in General	145
5.17	Triplets for Sensory Scores for Each of the Quality Attributes of the Samples	146
5.18	Similarity Values for the Three Samples Under Different Scale Factors	148
5.19	Similarity Values for the Quality Attributes of Onion-Tomato Paste Samples in General	149
5.20	Similarity Values and Ranking of Quality Attributes for Individual Onion-Tomato Paste Sample	150
5.21	Textural Property of Untreated and Treated VDOS	155
5.22	True Density of Vacuum dried 5 mm Thick Treated Onion Slices	156
5.23	Thermal Conductivity of Onion Slices Dried Under Optimized Condition	157
5.24	Coefficient of Determination of the Fitted Model and Reaction Rate Constants for Colour and Flavour Kinetics During Storage	159
B1	ANOVA for Moisture Content (Untreated)	186
B2	ANOVA for Moisture Content (Treated)	186
B3	ANOVA for Colour (Untreated)	186
B4	ANOVA for Colour (Treated)	186
B5	ANOVA for Flavour (Untreated)	187
B6	ANOVA for Flavour (Treated)	187
B7	ANOVA for Rehydration Ratio (Untreated)	187
B8	ANOVA for Rehydration Ratio (Treated)	187
D1	Moisture Content for 1 mm Thick Untreated Onion Slice	192
D2	Moisture Content for 1 mm Thick Treated Onion Slice	192
D3	Moisture Content for 3 mm Thick Untreated Onion Slice	192
D4	Moisture Content for 3 mm Thick Treated Onion Slice	193

D5	Moisture Content for 5 mm Thick Untreated Onion Slice	194
D6	Moisture Content for 5 mm Thick Treated Onion Slice	195

LIST OF FIGURES

Figure	Description	Page No
3.1	Drying Rate versus Free Moisture Content Curve	34
3.2	Falling Rate Drying Plot for Diffusion Mechanism and Capillary Mechanism	34
3.3	Domain Geometry of Onion Slice Developed in COMSOL	50
3.4	Meshing of the Geometry in COMSOL with Triangular Elements	51
4.1	Schematic Diagram of the Vacuum Dryer System	58
4.2	Pictorial View of Vacuum Dryer Set Up	59
4.3	UV-VIS Spectrophotometer (Model UV-1601)	66
4.4	Values of Triplets Associated with Triangular Membership Distribution Function for Five-Point Sensory Scale	69
4.5	Graphical Representation of Triplet (a b c) and its Membership Function	71
4.6	Representation of Standard Fuzzy Scale	72
4.7	Scanning Electron Microscope (Model - JSM-5800LV)	76
4.8	Texture Analyser (Model TA-XT2i, UK)	77
4.9	Air Comparison Pycnometer	78
4.10	Thermal Conductivity Meter (Kemtherm QTM-D3)	78
5.1	Variation of Moisture Content for Different Thicknesses	83
5.2	Variation of Moisture Content for Different Temperatures	84
5.3	Variation of Drying Rate with Time for Different Thicknesses	85
5.4	Variation of Drying Rate with Time at 60 °C	86
5.5	Variation of Drying Rate with Moisture Content at Different Thicknesses	87
5.6	Variation of Drying Rate with Moisture Content for Different Temperatures	90
5.7	Moisture Ratio with Time at Different Slice Thicknesses for VDOS	93
5.8	Variation of Moisture Ratio with Time at 60 °C Temperature	94
5.9	Moisture Ratio versus Time Plot for 1 mm Thick Onion Slices	95
5.10	Moisture Ratio versus Time Plot for 3 mm Thick Onion Slices	96
5.11	Moisture Ratio versus Time Plot for 5 mm Thick Onion Slices	97

5.12	Comparison of Experimental and Predicted Moisture Ratio for Untreated and Treated Slices by the Page Model	101
5.13	ln(MR) versus Time Plot for 3 mm Thick Untreated Onion Slices Dried at 50 $^{\circ}$ C	102
5.14	ln(MR) versus Time Plot for 3 mm Thick Treated Onion Slices Dried at 50 $^{\circ}\mathrm{C}$	102
5.15	Diffusivity of Onion Slices versus Moisture Content at Different Thicknesses	107
5.16	Diffusivity versus Moisture Content at 70°C Temperature	108
5.17	Temperature Profile at the Bottom Surface of the Onion Slice	110
5.18	Temperature Profile at the Side Surface of the Onion Slice	110
5.19	Temperature Profile at the Centre of the Onion Slice	111
5.20	Temperature Profile at the Top Surface of the Onion Slice	112
5.21	Temperature Profile after 30 min of Drying (1800 s)	113
5.22	Temperature Profile after 90 min of Drying (5400 s)	113
5.23	Temperature Profile after 180 min of Drying (10800 s)	114
5.24	Temperature Profile after 240 min of Drying (14400 s)	114
5.25	Moisture Concentration at Bottom (mid point) of Onion Slice	115
5.26	Moisture Concentration at Top (mid point) of Onion Slice	115
5.27	Moisture Concentration at Side (mid point) of Onion Slice	116
5.28	Moisture Concentration at Central Mid Point of Onion Slice	116
5.29	Moisture Concentration after 30 min (1800 s)	117
5.30	Moisture Concentration after 90 min (5400 s)	117
5.31	Moisture Concentration after 180 min (10800 s)	118
5.32	Moisture Concentration after 240 min (14400 s)	118
5.33	Diffusive Flux after 240 min of Drying (14400 s)	119
5.34	Temperature Profile at the Central Surface of 3 mm Thick Untreated Onion Slice	119
5.35	Temperature Profile at the Top Surface of 3 mm Thick Untreated Onion Slice	120
5.36	Temperature Profile of at Side Surface of 3 mm Thick Untreated Onion Slice	120
5.37	Moisture Concentration of 3 mm Thick Untreated Onion Slice During Drying at Central Mid Point	121
5.38	Moisture Concentration at Different Locations of 3 mm Thick	122

Untreated Onion Slice During Drying

5.39	Moisture Content of VDOS at Different Operational Conditions	123
5.40	Colour Change (OI) of VDOS at Different Operational Conditions	125
5.41	NEB (OI/g sample) in 1 mm, 3 mm and 5 mm Thick Untreated VDOS at Various Temperatures	127
5.42	Arrhenius Plot for NEB in Untreated VDOS	128
5.43	Actual and Predicted Optical Index (OI/g sample) for VDOS	130
5.44	Thiosulfinate Concentration (µmol/g sample) in VDOS	131
5.45	Thiosulfinate Loss (µmol/g sample) in VDOS	132
5.46	Change in Thiosulfinate for Untreated VDOS	133
5.47	Change in Thiosulfinate for Treated VDOS	134
5.48	Arrhenius Plot for Thiosulfinate Loss (μ mol/g sample) in Untreated VDOS	135
5.49	Actual and Predicted Flavour Loss for 3 mm Untreated Onion Slices	136
5.50	Actual and Predicted Flavour Loss for 3 mm Treated Onion Slices	136
5.51	Rehydration Ratio of VDOS at Different Operational Conditions	137
5.52	Contour Plots of Moisture Content for (a) Untreated and (b) Treated VDOS	143
5.53	Contour Plots of Colour Change for (a) Untreated and (b) Treated VDOS	143
5.54	Contour Plots of Flavour Content for (a) Untreated and (b) Treated VDOS	144
5.55	Contour Plots of Rehydration Ratio for (a) Untreated and (b) Treated VDOS	144
5.56	Microstructural View of Onion Slices Produced Using SEM	152
5.57	Texture Profile for 5 mm Thick Untreated Onion Slices Dried at 60 °C under 50 mm Hg Pressure	154
5.58	Texture Profile for 5 mm Thick Treated Onion Slices Dried at 60 °C under 50 mm Hg Pressure	154
5.59	Variation in True Density with Moisture Content	156
5.60	Thermal Conductivity Variation of Onion Slices with Moisture	158

Content

5.61	Colour Change in Dried Onion Slices During Storage	158
5.62	Flavour Change in Dried Onion Slices During Storage	159
5.63	Colour Change Behaviour of Actual and Predicted Optical Index at a Water Activity of 0.33	160
5.64	Flavour Loss Pattern of Actual and Predicted Thiosulfinate Content at a Water Activity of 0.33	161

LIST OF SYMBOLS AND ABBREVIATIONS

%	Percentage
°C	Degree Celcius
2D, 3D	Two dimensional, Three dimensional
А	Absorbance
a, b, c, d, A, B, C	Coefficients of the equations
Adeq	Adequate
Adj	Adjusted
ADOGA	American Dehydrated Onion and Ginger Association
ANOVA	Analysis of variance
ASHRAE	American Society for Heating Refrigeration and Air Conditioning
avg	Average
a_{w}	Water activity
b	Cell path used, cm
С	Moisture concentration of the domain at any instant, mol.m ⁻³
c_0	Initial moisture concentration of onion slice, kg.m ⁻³
c_b	Bulk moisture concentration in the ambient, kg.m ⁻³
C_m	Specific moisture capacity
C_p, C_p	Specific heat of onion
c _b	Bulk concentration, mol.m ⁻³
CFD	Computational Fluid Dynamics
CV	Coefficient of variation
CZ	Concentration gradient components dc/dz
D	Diffusion coefficient, m^2/s
D_m	Surface moisture diffusivity, m ² .s ⁻¹
db	Dry basis, kg water.(kg dry solid) ⁻¹
De	Effective moisture diffusivity, m ² .s ⁻¹
DOF	Degrees of freedom
e.g.	Exempli gratia, for example
Ea	Activation energy, kJ.mol ⁻¹
et. al.	Et alibi, and others
exp	Exponential
eqn	Equation
F ₀	Fourier number
FAO	Food and Agriculture Organisation
FEM	Finite element method
FMC	Final moisture content
g	Grams
h	Heat transfer coefficient, W.m ⁻² .K ⁻¹
h_m	Mass transfer coefficiemt, kg.m ⁻² .s ⁻¹
h_Ta	Heat transfer coefficient of chamber air, W.m ⁻² .K ⁻¹
Hg	Mercury
i.e.	Ed set, that is
ICAR	Indian Council of Agricultural Research
ITC	International Trade Centre

	Κ	Kelvin
	k	Thermal conductivity tensor, W.m ⁻¹ .K ⁻¹
	k_c	Mass transfer coefficient, m.s ⁻¹
	k m	Moisture conductivity of onion slice, kg.m ⁻¹ .s ⁻¹
	k T	Thermal conductivity of vacuum dried onion
	kc	Reaction rate constant for colour kinetics
	kcal	Kilo Calorie
	k ₄	Drving rate constant
	k _c	Reaction rate constant for flavour kinetics
	ko	Kilo Grams
	kPa	Kilo Pascal
	l x	Thickness of slice m
	lda	Latent heat of vaporization $I k g^{-1}$
	m	Meter
	M Mo	Initial moisture content kg water (kg dry solid) ⁻¹
	M ₁	Moisture content at any instant in dry basis kg water (kg dry solid) ⁻¹
	M	Fauilibrium moisture content ka water (ka dry solid) ⁻¹
	min	Minutes
	mm	Millimeter
	MP	Moisture ratio
	M	Mass flux vector mol $m^{-2} s^{-1}$
	m	Wet basis moisture content, kg water (kg, total matter) ⁻¹
	M	Moisture content in percent wet basis
	N	Force kg m s ⁻²
	n	Normal vector of the boundary
	n No	Number of observation taken
	M _o	Inward mass flux normal to the boundary mol $m^{-2} s^{-1}$
	NAFED	National Agricultural Cooperative Marketing Federation of India
	NEB	Non-Enzymatic Browning
	NHRDF	National Horticultural Research and Development Foundation
	nm	Nanometer
	OI	Optical index
	PDE	Partial differential equation
	PE	Percentage error
	pred	Predicted
	q	Heat flux vector, W.m ⁻²
	$\stackrel{1}{0}$	Heat source (or sink), W.m ⁻³
	q ₀	Inward heat flux vector normal to the boundary, $W.m^{-2}$
	R^2	Coefficient of determination
	rho, ρ	Bulk density of vacuum dried onion
	RMSE	Root mean square error
	RR	Rehydration ratio
	Rt	Reaction rate, $mol.m^{-3}.s^{-1}$
	S	Seconds
	SEM	Scanning electron microscopy
	abla T	Temperature difference

t	Time, s
Т	Temperature at any instant, K
T_0	Initial temperature of onion slice, K
T_a	Chamber air temperature, K
T_b	Bottom temperature of onion slice, K
TC	Thiosulphinate concentration of the solution, μ mol.g ⁻¹
Theo	Theoretical
T _{inf}	External temperature of domain, K
TL	Thiosulphinate loss
T _r	Transmittance
VDOS	Vacuum drying of onion slices
viz.	Videlicet, namely
W	Weight of sample, g
wb	Wet basis, kg water.(kg total matter) ⁻¹
Ye	Experimental values of response
Y _p	Predicted value of the response
Z	Number of constants in the model (eqn 3.18)
3	Molar absorptivity of thiolsulphinate solution at 254 nm, g.µmol ⁻¹ .cm ⁻¹
λ	Characteristics roots of the corresponding regression equation
μ	Micro
χ^2	Reduced chi-square