Abstract

This thesis presents our work concerning dynamic slicing of object-oriented pro-
grams. We first develop a suitable intermediate representation for simple object-
oriented programs with inheritance and polymorphism. This intermediate represen-
tation is known as extended system dependence graph (ESDG). Then, we present an
efficient dynamic slicing algorithm, called edge marking dynamic slicing (EMDS)
algorithm for simple object-oriented programs using ESDG. Our EMDS algorithm
is based on marking and unmarking the edges of the ESDG as and when dependen-
cies arise and cease during run-time. Our algorithm marks an edge of the ESDG
when its associated dependence exists and unmarks an edge when the dependence
ceases to exist. Then, we present another dynamic slicing algorithm, called node
marking dynamic slicing (NMDS) algorithm for simple object-oriented programs
using ESDG as the intermediate representation. Our NMDS algorithm is based on
marking and unmarking the nodes of the ESDG appropriately during run-time. We
have shown that each of our proposed algorithm is more efficient than the related
algorithms. Also, we have shown that the NMDS algorithm is efficient than the
EMDS algorithm. The space complexity of both our algorithms is O(n?), where n
is the number of statements in the program. The run-time complexity of both cur
algorithms is O(n2S), where S is the length of execution of the program.

Next, we extend our intermediate representation (ESDG) to be able to represent
concurrent object-oriented programs. We have named this intermediate representa-
tion concurrent system dependence graph (CSDG). Our CSDG correctly represents
the concurrency aspects such as synchronization dependencies and communication
dependencies in object-oriented programs. Then, we extend our edge marking
dynamic slicing (EMDS) algorithm to handle these concurrency issues in object-
oriented programs. We have named our algorithm marking based dynamic slicing
(MBDS) algorithm for object-oriented programs. Our MBDS algorithm successfully
handles the concurrency aspects such as synchronization dependencies and commu-
nication dependencies while computing dynamic slices of object-oriented programs.
The space complexity of the MBDS algorithm is O(n3), where n is the number of
statements in the program. The run-time complexity of the MBDS algorithm is

O(n?S), where S is the length of execution of the concurrent program.

Next, we extend our intermediate representation (CSDG) to represent object-



oriented programs distributed on several nodes connected to a network. We add
some additional nodes and edges to the CSDG to represent communication issues
in distributed object-oriented programs. We have named this modified interme-
diate representation distributed program dependence graph (DPDG). We construct
the DPDG separately for each of the component program distributed on different
nodes. Then, we modify our MBDS algorithm to take care of communication issues
in distributed object-oriented programs. We have named our modified algorithm
distributed dynamic slicing (DDS) algorithm for object-oriented programs. We ap-
ply the DDS algorithm on the DPDG to compute dynamic slices of distributed
object-oriented programs. To achieve fast response time, our DDS algorithm can
run in a fully distributed manner on several nodes connected through a network,
rather than running on a centralized node. We use local slicers at each node in a
network. A local slicer is responsible for slicing the part of the program executions
occurring on the local machine. The space complexity of the DDS algorithm is
O(N?), where N is the total number of statements in the distributed program. The
run-time complexity of the DDS algorithm is O(N2S), where S is the total length

of execution of the distributed program.

We show that our dynamic slicing algorithms compute correct dynamic slices,
and are more efficient than the existing algorithms. Our algorithms neither use
trace files nor create any additional nodes during run-time, This saves the expensive
file handling and /O steps. Another advantage of our algorithms is that when a
request for a slice is made, it is already available. Our intermediate representations
at any time during program execution are annotated with the uptodate dynamic
slices. Thus computation of dynamic slice involves only examining all the marked
dependencies existing at a node for the instance of program in execution. As a result,
our algorithms extract dynamic slices in constant time. Besides the theoretical
analysis and studies that we have conducted, we have also implemented our dynamic
slicing algorithms to experimentally verify their correctness. Our experimentation
involving a large number of test programs convinces us about the correctness of our

proposed algorithms.



