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1. Preliminary Remarks and Governing RKquatbions

The study of the dynamics of fluids in rotating systems
constitutesan important branch of theoretical fluid mechanics

and has developed rapidly in recent years. The rotation gives

ot

rise t0 a range of new phenomena which are important in a wide
variety of problems - from the flow in a biochemistt's centri-
fuge +to the large-scale circulations in the atmosphere and

oceans.,

The hydrodynamic phenomena which occur in rotating
fluids can be conveniently studied in a rotating frame of
reference, The equations governing the motion of an incompre-

ssible viscous fluid in a coordinate system rotating with
O
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Here ﬂ; is the particle velocity in the rotating frame
ana * , t , P, P , ¥ are respectively, the position
vector, time, pressure, density and kinematic viscosity.

The second and third terms on the right hand side of (1) are



respectively the centrifugal and coriolis forces. The cen-
trifugal term can be combined with P because it can be

expressed as the gradient of a scalar,
b - - — —!— Q'L "P’ 2)
n X (.{z‘x ¥ ) = —V ( 5 ,

where ’V, is the distance from the axis of rotation.

Thus the first two terms on the right hand side of (1) can be

replaced by — -—;5- AV lo where to =P - li Fﬂ'i_ (P,z-

Equations (1) and (2) are to be solved satisfying appro-

priate boundary and initial conditions,

2. Non-dimensionalization scheme

TIdeally, the set of equations (1) and (2) together with
the boundary conditions constitute a well-posed system for
which a solution should be obtainable, Practically, however,
this solution is difficult to obtain., It is thus necessary
to resort to a wide variety of ingenious‘methods by which some
simplifications may be introduced. The technigue of non-
dimensional analysis and ordering is one such method. In
addition to pointing out the parameters influencing the flow,
the non-dimensionalization of a differential system highlights
the importance of certain physical effects, relative to others.
It thus becomes possible to have some mathematical simplifica-
tion by neglecting various terms which are considered to be

relatively small in comparison with other terms.
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If L., t, and |J characterize the length, time
and relative velocity of any phenomenon under study the
replacement of variables by their scaled counterparts reduces
the equations (1) and (2) to
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In contrast to the non-rotating case where the Reynolds
number governs the flow, rotating fluid flows involve two
parameters: the Ekman number | = E%%E*f ~and the Rossby
number R, = 5—%— . They indicate the ratios of respectively
viscous to coriolis forces and inertial to coriolis forces.

A general inspection of the basic equations and a comparison
of the magnitudes of various terms can reveal a great deal

about the characteristic features of rotating filuid flows.

When the Ekman number is small we have a typical situa-
tion in which highest order derivatives multiply a small para-~
meter. Consequently there arise thin frictional boundary layers

along the bounding surfaces based on a balance of coriolis and

T In our thesis we have found it convenient to use the recipro-
cal of the Ekman number as the appropriate parameter instead

of E .



viscous forces. These boundary layers were first noticed by
Ekman ZT?_7 in his study of wind stress on the ocean surface,
and are found to play an important role in the spin-up process
in rotating fluids 273,4,5_7. An excellent review of the spin-
up problem is given by Benton and Clark 176_7. & good deal of
literature on rotating fluids is devoted to the study of vari-

ous variants of the problem considered by Ekman 1_7,8,9,10_7.

Another type of boundary layers that arise in rotating
filuids are associgted with small Rossby number based on a
balance of the coriolis and the convective accelerations
Lfll,12;7. These are commonly referred to as inertial boun-
dary layers. At any solid boundary these inertial layers will
themselves be accompanied by a narrower frictional layer

[ 13,14_/.

When both R, and E are small the dynamic balance,
in steady flows, must be between the coriolis acceleration and
the pressure gradientjy in such motions the pressure variation
will clearly be of order P-Q- wL . For unsteady flows

d9 '

the acceleration Tt will contribute to this balance
provided t, is of order fi or smaller. Such flows are

called geostrophic flows,

Geostrophic flows display some remarkable features
which are not encountered in non-rotating fluids. Taylor-

Proudman theorem is perhaps the most striking feature of



geostrophic flows. #Another property of such flows becomes

evident from the momentum equation for steady flows viz.
o T = L
ok x q =-— PVP. (5)

From this it follows that the pressure gradient is perpendi-
cular to the flow direction and hence the pressure is constant
along a stream line (In non-rotating systems it is usual to
think of pressure variations along a stream line.) This feature
of geostrophic flows is particularly useful in weather fore-

casting / 15,16_/.

Rotating fluids have an intrinsic stability in the
sense that if a fluid particle is displaced from its equili-
brium position of rigid body rotation, the coriolis force acts
as a restoring force, If a fluid particle is displaced from
its eguilibrium radius, it will oscillate with twice the angu-
lar veloeity of rotation about its equilibrium position. This

freguency of oscillation is called the inertial frequency.

A rotating fluid subjected to an oscillatory disturbance
will give rise to interesting physical phenomena. Owing to the
oscillations, Stokes - Ekman layers will be formed along the
bounding surfaces. These layers can be viewed either as cla-
ssical Ekman layers modified by the imposed oscillations or
as Stokes layers modified by rotation. If the forced frequency

is equal to the inertial frequency the thickness of one of the



layers becomes infinitely large and this presents difficul-
ties in finding solutions for flow in semi-infinite expanse

of fluids, satisfying all the boundary conditions Zf17,18,19,
20_7. This difficulty can however, be overcome by consideririg

finite domains 172147.

Looking back one can say that most of the features of
rotating-fluids arise as a result of delicate balance and
interplay of coriolis force, pressure gradient and viscous
diffusion, The two key parameters are the Rossby number and
the Ekman number. Another parameter which appears in the
study of oscillatory flows is the frequency parameter o(=g¥§
where O is the frequency of oscillation, The mechanics of

any phenomena in rotating fluids will depend upon which para-

meters control the flow,

3. Literature survey and summary of the present work

The present thesis is divided into two parts. Part-A
of the thesis is devoted to the study of oscillating source
flow between rotating disks. Part-B deals with the study of
flow in rotating pipes of arbitrarily varying gap. This
section is devoted to a brief review of the literature direc-

tly related to problems studied in this thesis.,

(a) Source Flow
Laminar source flow between two parallel disks has

been studied theoretically and experimentally by a number of



workers in view of its application in the design of heat
exchangers, gaseous diffusion, Iubrication of bearings,
leakage flow over the shroud of centrifugal pump or compres-

ssor, acoustics and biomedical engineering.

The study of this problem may be sub-divided into two

groups?

(1) Source flow between stationary disks.

(2) Source flow between rotating disks.

Source flow between parallel stationary disks has been
investigated by Livesey [722_7, Peube 4723“7, Savage 2—24;7,
Sourieau 1725_7 and Moller 1726;7.

Livesey used the momentum integral method with a para-
bolic velocity profile while Peube, Savage and Sourieau used
an expansion procedure valid for large values of T , the
radial co-ordinate., The expression for the radial velocity

component turns out to be a series in ascending powers of

m
E%% where Re = SR 1s the Reynolds number based on the

flow rate ™M ., Their theoretical results are in better
agreement with the experimental data of Moller than those of

Livesey.

Source flow between two parallel disks rotating with
the same angular velocity has been considered by Pohlhausen
and Breitner AT27_7 and Kreith and Peube [T28_7, while the

source flow between two parallel disks rotating with different



angular velocities has been studied by Kreith and Viviand
/ 29_7. The method of solution in these studies is basically

Re
,T;2

“the seme viz. eXpansion in powers of

Surprisingly all these authors were unaware of the work
of 8oo [730_7 who used an entirely different approach. He
considered the case when one disk is rotating with angular
velocity @ while the other is at rest. By assuming the
strength of the source M to be small such that squares and

higher powers can be neglected the flow field i1s assumed as

{
! U
= —R.roW(E) — MU
W Re Pz (6)
w6 = 2Re®zo W 73
(8)
Vv = V()
wzd
where Ro = > y T = 2/ 2 and Z, . is the

distance between the plates, The resulting ordinary nonlinear
differential equations for U , V and W are integrated

nunerically,

In all these investigations it was assumed that the
strength of the source is constant, A different class of
problems arise when the flow rate oscillates harmonically in
time. The only available work published on oscillatory radial

flow is due to Na, Nielsen and Grossman 2"31_7 and Elkouh 2732_7



for flow between stationary disks. Na et al.considered the
case when the flow rate has a small oscillatory component
superimposed on a finite non-zero mean value, Their analysis
is, however, restricted to small frequencies only. Elkouh

on the other hand considered the case when the flow vafies
harnmonically about a zero-mean value. The flow functions are
expanded in terms of Reynolds number based on the amplitude a@

of the source. The solution is valid for all frequencies.

In the present thesis we have studied the problem of
oscillatory source flow between two disks rotating with angu-
lar velocity .Ei about an axis perpendicular to their plane.
In the absence of the source the fluid and the disks will be
in a state of rigid body rotation., The oscillatory radial
diffusion gives rise to a complicated flow field which dis-
plays several interesting features. In particular the inter-
action of the coriolis, viscous and inertia forces gives rise
to modified Stokes and Ekman layers adjacent to the two

plates,

The problem in non-dimensional form involves three
parameters: the Reynolds number, R = 6, /L{?Y))(L )
the rotation parameter, Kz-:_ _f—?.O_?‘/ by and the frequency para-
meter o = @ 0?‘/)) , where @, is the amplitude and
the frequency of oscillation of the source, . ) the kinematic
viscosity and 20. is the distance between the disks. The

solution is obtained by assuming R  to be small and expanding
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the flow functions in powers of R . The first order

harmonic and second order steady mean velocity is obtained
2

and the effect of the parameters K and ol on the flow

characteristics is studied.

Asymptotic solutions when K* or o is large
are derived, For large l(z' the steady mean flow near the
disks has a three layered structure: one of which is pure
Ekmen layer of thickness of () (j%) and the other two

may be identified as modified Ekman layers of thickness of

{ (|~—)} and O{ (|+4—‘z)} .

On the other hand for large o{ the mean flow near the
disks has a two layered structure. These layers may be

referred to as the modified shear layers of thickness of

ofF(+E)} = of(-¥).

(b) Flows in rotating ducts

When a viscous incompressible fluid flows in a channel
rotating about an axis perpendicular to the axis of the
channel, the coriolis force gives rise to a secondary flow
in a direction perpendicular to both the axls of rotation
and the primary flow., (The primary flow may be due ﬁo a
prescribed pressure gradient or flow rate), As a result of

the triangular interaction of the coriolis force, pressure
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gradient and viscous diffusion the flow field displays many
interesting features., In particular for small Ekman number
there arise thin boundary layers near the boundaries which
partly control and are partly controlled by the geostrophic

core,

Barua 1733_7 was the first to show that, when a
straight pipe of circular cross-section through which liquid
is flowing under a constant pressure gradient rotates with é
constant angular velocity @2 about an axis perpendicular
to its own, secondary motion is set up and the fluid parti-
cles move in spirals relative to the pipe. The solution is
obtained by expanding the flow functions in a series of
ascending powers of the Taylor number ‘20.2_9./1) and is
valid only for small values of the speed of rotation. It
is found that (i) secondary flow is qualitatively similar
to that observed in a stationary curved pipe [T34,35;7
(ii) pressure gradient remaining the same rotation tends to

decrease the flux through the pipe.

Benton [TS6_7, waware of the work of Barua, considered
the same problem and arrived at similar conclusions. In a
subsequent paper Benton and Boyer [/ 37_/ considered the more
interesting problem of flow in a rapidly rotating pipe of

arbitrary cross-section, Their main results are:

- (i) there arise well developed thin boundary layers of the

Ekman type along the channel walls in which viscous effects
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are important.
(ii) the flow in the interior is geostrophic, and

(iii) inertia effects are negligible in the whole of fluid

region.

Benton and Bover however did not consider the shear
layers parallel to the axis of rotation, Recently Hocking
5738;7 has carried out a detailed analysis of the structure
of shear layers on boundariss parallel to the axis of rota-~
tion. The specific problem considered by him is the flow in
a pipe of rectangular cross-section with its axis curved in
a ¢ircle- - and rotating with angular velocity NS about
an axis normal to the plane of ¢ circle. His main results

are:

3 3 o fe Fal : 'la
(1) There are two shear lavers of thickness C)(E )
1
and O (E "1) .

(i1i) The function of these layers is to reduce the axial
fiow to rest at the wall, to stop the outward flow and turn it
into a vertical flow (parallel to the axis of rotation) and

finally to reduce this vertical flow to rest at the wall.
In the terminology of Hocking these layers may be
referred to as Stewartson - Proudman layers Z~89,4047.

. A relatively simple problem was considered by Vidya-

nidhi and Nigam Z~4l”?. They analysed the flow under a constant
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pressure gradient in a rotating chanmel formed of two infinite
parallel nlates, The importance of their solution lies in

the fact that it constitutes an exact solution of the Navier-
Stokes equations, Vidyanidhi, Bala Prasad and Ramana Rao
L~42_7 have precently extended it to inelude suction and injec~

tion at the plates,

In all these studies mentioned above the flow is assumed
to be steady and fully developed. The study of oscillatory
flows in rotating ducts has not received attention. As men-
tioned earlier, oscillatory flows in rotating fluid can give

rise to interesting physical phenomena.

In the present thesis we have initiated the study of
oscillatory flows in rotating ducts. The specific problem
considered is the rotating flow in a symmetric duct of varying
gap when the flow rate oscillates harmonically in time with
freguency € . We assume that the channel gap varies slowly
with the longitudinal coordinate 9¢ . The equations of
motion are simplified by using standard boundary layer appro-
ximations. The solution is obtained by a process of successive
approximations, The first-order harmonic and the second-order
steady mean velocity are obtained. Nunerical results are given
for a diverging channel given by

€x

|+ e ™

e

%} = %

The interaction of the imposed oscillations and corio-

1lis force gives rise to Stokes-Ekman layers near the walls.
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The structure of these layers is examined in details. The
solutions for the following problems are deduced as parti-

cular cases of the general results:

() Oscillatory flow in a non-rotating duct of

varying gap.

(ii) Oscillatory flow in a rotating duct of cons-

tant gap-width,
(iii) Steady flow in a rotating duct of varying gap.

In the last chapter we have considered the problem of
steady flow in an asymmetric duct of varying gap. The walls

of the duct are given by

Y = ali+t & ge]

and

’% = - G«[} + GZEEFID]

where € and ’H are respectively the co-ordinates along
t0
and perpendicular,the axis of the duct. €, and €, are
the rate of divergence parameters and G0 and 3 (x)
. ! 2
are the upper and lower wall variations relative to the mean
half width of the channel denoted by Q. . In addition to
€
three other parameters: R, the Rossby number, [{z the

and € the problem in its non-dimensional form involves

\ 2

rotation parameter and § a measure of the slope of the
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channel. The effect of the wall deformations on the secon-
dary flow is studied., It is found that in a rapidly rotating
system the core velocity depends on the gradients of the wall
deformation. For the purpose of illustration numerical

results are given for the following particular cases:

() Channel with sinusoidal wall deformations

out of phase (8ymmetric channel).

(ii) Channel with sinusoidal wall deformations in

phase (Asymmetric channel).

(iii) Channel with sinusoidal wall deformations
having a phase difference qb (Asymmetric

channel).



