CHAPTER -~ I

*

INTRODUCTION




1.1 Introductory remarks

The study of Newtonian and non-Newtonian fluid flows
with or without free convection and mass transfer is of great
physical interest because of its varied applications in natural
sciences and engineering. An attempt has been made in this

thesis to analyze the influence of both free convective flow

-

and mass transfer on  the steady and unsteady flow

characteristics of viscous and elast
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different physical circumstances and also on the periodic flow

ico-viscous liquids under

due to an oscillating cylinder placed in a viscoelastic liquid.
Chapter I is of review nature and deals with the introduction

to the thesis. Chapter II is concerned with some problems of

steady and unsteady free convection flow and mass transfer of
viscous fluid in a rotating porous medium under various
physical situations. These problems are important due to their
applications in many fields of engineering and natural sciences ,
dealing with subjects such as oil recovery, so0il mechanics,
catalytic chemical reactions, material adsorption on solids,
filtration, polymer property measurements and agricultural
sciences and are discussed here to study the effects of
pertinent parameters, (rotation parameter, permeability
parameter, frequency parameter, Grashof number, modified

Grashof number, Prandtl number, Schmidt number) on the flow

characteristics under variety of situations. The problems are
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investigated in two parts : (i) Mass transfer and free

convective flow past a vertical porous plate in a rotating

porous medium considering the viscous dissipation and Darcy'’s

dissipation terms on the flow field and (ii) Unsteady free

convective flow and mass transfer during the motion of a

viscous incompressible fluid through a porous medium, bounded
by an infinite vertical porous surface, in a rotating system.
The study of the non-Newtonian fluid flows has become
essential due to their importance in modern industries and
various geophysical and engineering problems. In Chapter III we
study the steady/unsteady free convection flow and mass
transfer of a rotating incompressible elastico-viscous 1liquid
under varied configurations. This chapter is divided into two
parts. In ‘the first part, we discuss the free convective flow
and mass transfer of a rotating incompressible elastico~viscous
ligquid bounded by an infinite vertical porous plate when the
.plate is subjected to a constant suction velocity and heat flux
at the plate is constant. The temperature and -the species
concentration at the free stream are constant. The second part
of this chapter deals with unsteady free convective flow and
mass transfer of a rotating elastico-viscous 1liquid past a
vertical porous plate subjectéd to a constant suction velocity

and the plate temperature varies harmonically with time.

The last chapter is devoted to the study of a boundary



layer analysis of secondary flow induced by an oscillating

cylinder in a visccoelastic liquid. This type of problem is of

general and continuing interest and is discussed here to study
the flow characteristics of viscoelastic liquid which leads to

a considerable reduction in the drag co-efficient. A detailed

investigation of the steady secondary flow and its final decay

to zero are also analyzed.

Before we discuss various problems, we present below a

brief survey of relevant literature on rotating fluid flows,
flow through porous media, free convection flow and mass
transfer and non-Newtonian fluids so that the work presented in

this thesis could be seen in its proper perspective.

1.2 Rotating fluid flows

The stimulus for scientific research on fluid systems in
rotating environments is originated from geophysical and fluid
engineering applications. Many aspects of the motion of
terrestrial and planetary atmospheres are influenced by the
effects of rotation. The broad subjects of oceanography,
meteorology and atmospheric science all contain some important
and essential aspects of rotating flows. Rotating flow theory
is utilised in determining the viscosity of fluid and in the
construction of turbines and other centrifugal machines. The

complete literature pertaining to rotating fluids is enormous



and excellent review can be found in the monograph by Greenspan
[1]. Rotation in a fluid system produces two effects ,viz., the

coriolis and the centrifugal forces, on the fluid particles.

The balance between the coriolis forces and the pressure
gradient with correction for the viscous action at the
boundaries emerges as the back bone of the entire theory of the
rotating flows. In considering flows in rotating environments
we come across situations where the entire fluid is in a solid
body rotation or only the solid boundaries are rotating. In the
later case , it is preferable to use an inertial co-ordinate
system fixed in space. On the other hand the flow behaviour in
the former case can be described in a co-ordinate system which
rotates with the fluid, and in this frame of reference the
fluid is at rest.

In a steadily rotating system, a balance 1is struck
between coriolis and frictional forces in a thin layer over the
horizontal boundaries. This layer, called the Ekman layer, was
first noticed by Ekman [2] and plays a very fundamental role in
the rotating fluid flows. In this thesis we consider certain
problems in rotating systems due to their varied applications
in the fields of cosmical, technological and agricultural

sciences.

1.3 Flow through porous media

Research on fluid flow through porous media finds great



application in geothermy, geophysics and technology. But the
basic property of the porous media is very complex because of
the complicated pore structure of the porous medium and the
pores in the porous medium are, in general, interconnected
three dimensional network of capillary channels of non-uniform
sizes and shapes (3. To overcome certain inherent
difficulties, some of the successful practitioners in the field
of flow through porous media have tried, as much as possible,
to stick with the continuum approach in which no attention is
paid to pores or pore structure and a simplified model has been
adopted in most of the studies of fluid flow through porous
media [4,5,6)].

In the analysis of flow through porous medium, Darcy’s
law usually been assumed to be the fundamental eguation (7,8].
This law expresses that the (seepage) velocity is proportional
to the pressure gradient and it does not have a convective
acceleration of the fluid. This law is, therefore, considered
to be valid for 1low speed flows, whereas the speed in the
filter or the flow in the region where the velocity changes
abruptly are not always small and the convective force may be
important. For a high speed flow, we may also pay attention to
the force acting on the fluid by the porous medium. The force

may deviate from the usual Darcy drag which is proportional to

the velocity [3]. However, in the case of very porous media



such as filters, the deviation will be small enough to be
neglected. Brinkman (9] has proposed this convective force
assuming that the force on a particle situated in the cloud of
particles could be calculated as if it were a solid particle
embedded in a porous mass. He represented the porous mass by
modifying Stokes’ equation adding Darcy resistance term to it
so that the effect of all other particles is treated in an
average sense and the resulting equation is a modfication of
Darcy’s equation. Since the latter equation is emperical,
Brinkman’s result has not been generally regarded as a
completely rigorous theoretical model to the problem even
though by comparing with the experimental data the success of
Brinkman’s formula is indisputable. Tam [10] put Brinkman’s
method in better theoretical shape by treating the swarm of
particles as point forces in Stokes flow and ensemble averaging
over all particle position except that of primary particle.

The resulting generalized law is found to be .useful in
the study of flow in highly porous media such as pappus of
dendelion and fibres. Several studies [11-15] have been made on
the basis of generalized Darcy’s law accompanied by convection
term. Yamamoto and Yoshida [16] have made an analysis of
suction and injection flow through a plane porous wall giving
importance on the vortex layer attached to the surface in the

wall and on the flow outside the vortex layer. Later Yamamoto



and Iwamura [17] investigated the asymptotic behaviour of a

general suction flow into a porous medium with arbitrary but

smooth surface. Chawla and Singh [18] analyzed flow past and

against a porous bed when the free stream oscillates with or
without a non-zero mean.

In this thesis we study certain problems of fluid flows
in a rotating porous medium with the basic assumption that the
porous medium is regarded as an asseﬁblage of small identical
spherical particles fixed in space with ¢ and N representing
the radius of a particle and the number density of the
particles respectively. Since the porosity of the medium is
taken to be unity, ¢ is taken so that 0’N-->0 while oN remains
finite as N-->w. Then for a solid particle, the Reynolds number
R=0V, /v 1is very small even when V, is not small, where V, is
the reference speed and v is the kinematic viscosity. The drag,
on a sphere is given by Stokes’ formula F =6mnouV , where ¥  is
the filtration velocity and u is the viscosity of the fluid.
The swarm of these solid particles exerts a force 6nouUNT” per
unit volume on the fluid. Clearly this body force remains
finite in this limit. But the porosity of the medium (1= %HG3N)
tends to unity as N-->». If the representative length scale of
the macroscopic flow be L, which is, in general, much larger
than o¢. Then, the Reynolds number R, =V,L/v in the present

consideration is not necessarily very small so that convective



terms should be taken into account. Further for such a medium

where fluid occupies almost all parts of the porous medium, the

viscous stress T;; is given by T;; = u(V;, ;+V;,;), V; being the

component of velocity [17].

1.4 Free convection and mass transfer

There are many transport processes which occur in nature

and various experimental set-up in which flow 1is driven or

modified by density differences caused by temperature, chemical

composition differences and gradients, and material or phase
constitution. These processes are very important and have
received considerable attention in literature. Ostrach [19-22]
has analyzed the effect of viscous dissipative heat on steady
free convection and also on combined free and forced convection
flows between parallel plates ’under variety of situations.
Gebhart [23] and Gebhart and Mollendorf ([24] have shown that
the viscous dissipative heat in the natural convection flow is
important when the flow field is of extreme size or at
extremely low temperature or in high gravity field. Stuart ([25]
studied the flow past an infinite porous plate when the free
stream oscillates in time about a constant mean and also
discussed the unsteady temperature field by assuming that there
is no heat transfer between the plate and the fluid. The

unsteady free convective flows have also received attention of



many research workers. Notable works in this field are by Nanda

and Sharma ([26] and Pop ([27,28]. They have assumed that the

plate temperature undergoes time-dependent variation in
temperature, but the viscous dissipative heat is neglected in

these  works. Soundalgekar [29] analyzed unsteady free
convective flow past an infinite vertical porous plate with
constant suction on taking into consideration the viscous
dissipative heat. The flows past porous vertical plate subject
to uniform suction normal to the plate have been also discussed
by Soundalgekar [30-32].

However, there are other flow fields which arise from
differences in concentratién or material constitution alone and
in conjunction with temperature effects. Atmospheric flows, at
all scales, are driven appreciably by both temperature and H,0
concentration differences. Flows in bodies of water are driven
through the comparable effects upon density , temperature,
concentration of dissolved materials, and suspended particulate
matter. There are many interesting aspects of such flows, viz.,
resulting transport characteristics, results of the opposition
of the two effects, influence of the combined effect on the
stability of laminar flows, and the effects of values of the
relative transport parameters like Prandtl and Schmidt numbers.

The poineer works of Somers [33), Mathers et al. [34], Wilcox

[35], Gill et al. {36], Lowell and Adams (37], Adams and Lowell
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(38], Cardner and Hellums ([39], Lightfoot [40], Adams and Mc

Fadden [41], Den Bouter et al. [42], Manganaro and Hanna [43)

and Saville and Churchill ([44,45]) may be considered as the

origin of the modern research on the effects of mass transfer
on free convection flow. Fufther, Gebhart and Pera [46] studied
the laminar flows which arise in fluid due to the interaction
of the gravity forces and density differences caused by the
simultaneous diffusion of thermal energy and of chemical
species neglecting the thermal diffusion and diffusion-thermo
(Soret-Dufour) effects because the level of species
cgncentration is very low. Sparrow et al. [47,48) and Sparrow
{49] have analyzed the free convection flow with Soret-Dufour
effects. Further, Soundalgekar [50] studied the mass transfer
effects on. the free convection flow of an incompressible,
dissipative viscous fluid pas£ an 1infinite vertical porous
plate with constant suction. Soundalgekar and Wavre [51]
extended this problem considering the plate temperature
oscillates in time about a non-zero constant mean.

Forous media are very widely used to insulate a heated
body to maintain its temperature. They are considered to be
useful in diminishing the natural free convection which would
otherwise occur intensely on the vertical heated surface.

Further, the effect of free convection on the flow through

porous medium plays an important role in agricultural



engineering and in petroleum industry in extracting pure petrol

from the crude. Nield (52] was the first who analyzed the

problem of the onset of the convection, induced by buoyancy

effects resulting from vertical thermal and solute

concentration gradients, in a horizontal layer of saturated

porous medium considering the general form of Darcy’s law.
Later, under various physical considerations, Cheng and
Minkowycz (53], Rudraiah and Nagraj [54], Raptis et al.
(55-57), Raptis [58-63], Raptis and Kafousias [64-66] Raptis
and Perdikis [67;68], Raptis and Tzivanidis ([69], Horia and
Polisevski {70], Ramanaiah and Malarvizhi [71], Nield [72,73],
Nield et al. [74] and Manole et al. [75] have studied the free
convection flow through porous media and estimated the effects
on the heat transfer in order to make the heat insulation of
the surface more effective. The effect of rotation on the
convective flow and mass transfer in the porous medium does not
seem to have received much attention in the literature. Gupta
and Chakraborti [76] analyzed the nonlinear thermchaline
convection in a rotating porous medium. Raptis [77] discussed
the steady free convection and mass transfer through a porous
medium bounded by an infinite vertical porous plate f&r a fluid.
rotating with a constant angular velocity when the heat flux at
the plate is constant. Johri (78) gave a theoretical analysis

of two-dimensional steady free convection flow of an



electrically conducting and incompressible viscous fluid past
an infinite porous vertical plate in a rotating frame of
reference for a porous medium.

Chapter II of the present thesis is concerned with the
steady and unsteady free convective flow and mass transfer of
viscous fluid in a rotating porous medium under various

physical circumstances considering the fluid motion in the
porous medium governed by the generalized Darcy’s law in which
the convective acceleration of the fluid is taken into account.

This chapter consists of two parts. The first part deals with

mass transfer and free convective flow past a vertical porous
plate in a rotating porous medium. We have considered the
problem, formulated by Raptis [77), retaining the viscous
dissipation and Darcy’s dissipation terms in the energy
equation. The analytical solution for the velocity,
temperature, concentration and stress components are obtained.
The effects of the pertinent parameters on the flow field are
discussed. We find that the primary velocity gets retarding
effect due to increase in R but the secondary velocity
increases in magnitude with R. While both primary and secondary
velocities increase in magnitude with the values of Gr, Gm and
K. Further, it is observed that for constant Gr, Gm, K and R,

an increase in E leads to increase both primary and seondary

velocity profiles in magnitude. The results may be useful for



very fluffy foam metal material as well as fibrous material. In

the second part, the effects of the unsteady free convective

flow and mass transfer during the motion of a viscous

incompressible fluid through a porous medium in rotating system
are discussed. The porous medium is bounded by a vertical plane
surface which adsorbs the fluid with variable suction velocity.
The temperature on the vertical plane surface fluctuates in
time about a non-zero constant mean and the temperature at the
free stream is constant. Also, the species concentration on the
plane surface and the free stream are constant. The analytical
expressions for the velocity, temperature and concentration are
obtained and the effects of mass transfer, frequency of
temperature oscillation, rotation of the fluid, suction
parameter and the permeability of the porous medium on the flow
field are discussed. The present investigation is 1likely to

have bearing on the geothermal problem of ground water flowing

through a porous medium subjected to the earth’s rotation.

1.5 Non-Newtonian fluids

A ‘Newtonian’ is one for which a linear relation exists
between stress and the spatial variation of velocity. If
changes in fluid density are not important, the constant of
proportionality is viscosity, a characteristic constant of the

material at a given temperature and pressure. So a ‘Newtonian’
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fluid is characterized by a linear relation between stress and

rate of strain of the form

Il

Pi j (A0 = p) 855 + 21 e;

’ (1)

1
ey = —— (vy,; V

2 Jsi ) ' (2)

where P;;, e;;, p, A denote the stress tensor, strain-rate

tensor, pressure and dilatation respectively and A, u are

co~efficients of the medium. Its theory has been extensively

investigated during the last century. The relationship (1)
explains reasonably well, most of the phenomena like drag,
lift, skin-friction, seperation etc. occurring in the flows of

fluids. However, it fails to explain the occurrence of Poynting
effect [79]; Merrington effect [80] and Weissenberg effect
[81]). In order to explain these effects, the stress-rate of
strain relation shéuld be generalized so that the constitutive
equation becomes non-linear. The fluids under this category are
termed as non-Newtonian fluids. Non-Newtonian fluids form an
extremely wide class of different materials, whose only common
features are fluidity and a failure to obey Newtonian’s viscous
law [82). The exceptions to Newton’s viscous law are not of
rare occurance, in fact the so-called non-Newtonian fluids are

to be found close at hand everywhere. The fluids like blood,

honey, condensed milk, 1liquid 1lubricants, printing inks,



starch, resin, pastes, plastics, high polymers, salad
dressings, butter, whipped cream and doughs, egg white, paints,
certian varieties of oil and many other materials of industrial
importance fall wunder the category of non-Newtonian fluids
[83]. But the behaviour of such fluid is not so readily
amenable to theoretical analysis due to the hon—linearity of
the stress-strain rate relations governing the fluid model and
the dependence of the co-efficients occuring in them on

physical properties of the fluids. Moreover, experiments are

not many to throw sufficient light on the flow phenomena of
this type of fluids.

The study of non-Newtonian fluids has become essential
due to their importance in modern industries. This has led to
the formulation of various theories of non-Newtonian fluids.We
present below a brief discussion of the constitutive equations
for the models of non-Newtonian fluids, viz., Elastico-viscous
liquid (Model B due to 0Oldroyd) and Walters’ model fluid B’

which are directly related to our present thesis.

a) Elastico-viscous liguids (Model B due to 0Oldroyd)

The class of ligquids which possesses a certain degree of
elasticity in addition to viscosity is known as the elastico-
viscous 1liquid. Thus, when an elastico-viscous 1liquid is 1in
flow, a certain amount of energy is stored up in the material

as strain energy in addition to viscous dissipation. 1In an

16



inelastic viscous liquid we are concerned only with the rate of
strain, but in elastic liquids we cannot neglect the strain,
however small it may be, as it is responsible for the recovery
to the original state and for the reverse flow that follows the
removal of stress. Only in elastico-viscous liquid there is a
degree of recovery from the strain when the stress is removed
whereas in other liquids the whole strain remains.

Evidences of liquid elasticity in an 1.5 per cent starch
solution can be observed by Hess’s experiment [84] and by the
recoil of air bubbles in a mixture of Polymethyl Methacrylate
and Cyclohexanone (made by dissolving 3 gms perspex in 100 ml
of solvent) contained in a bottle which has been suddenly
turned and then brought to rest.

Oldroyd [85] formulated a non-linear theory of a class
of isotropic incompressible elastico-viscous liquids with the
following rheological equation of state between the stress

tensor p,;, with the rate-of-strain tensor e,

Pix = = PSix +P i«x ‘ (3)
where
D ’
! + M (5 C+ A - S Y VPR e +
pik 1 (5E) pik Ho pjj ik ! pi) 1k
[ ]
, ! i D
+ p’ e ) + vy p e &, =2m [ex + A2(—F g ) e«
Jx i) IR R

- 2Uy e;; ey, + vy ej; €5 §i¢] (4)



and e;; given by the eguation (2).

In equation (4) my, A;, A, denote the coefficient of
viscosity, stress relaxation time and strain retardation time
respectively. The other five material constants Mg, Ky, Mz, V,,
v, are all of dimensions of time. The quantity (D/Dt) denotes
the total derivative following a fluid element taking into

account its translational and rotational motion. For any tensor

b, , this derivative is defined by

(B5E)bix = —3g— * V) Pik,y F Wby v Wy byyy (5)

where the vorticity tensor w;; stands for
1
Wij o= —5=(Vj,s = Vi, 5 ) - (6)

It may be noted that the memory of the 1liquid is
accounted for through the stress relaxation time A; and
rate-of-strain retardation time A, and the 1linearity of the
Newtonian constitutive equation is broken through introduction
of quadratic terms in the strain rate components and the
product of the stress rate and strain rate components.

Oldroyd, in his paper ([86], considered two particular

types of liquid for the general model governed by the equation

(4) with
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Mo > 0, Ay = -Up > Az = =~ Wy 20,
(7)

which gives liquid A, and the equation (4) with

Mo > 0, Ay =y > Ay = Up 2 0,
(8)

“0=V1=V2:0

which gives B liquid.

It was observed by Oldroyd that the model represented by'
the constitutive equation (4) along with (8) exhibits
Weissenberg climbing effect when sheared at a finite uniform
rate between two co~axial cylinders and has a distribution of
normal stress equivalent to an extra tension along streamlines
with a isotropic state of stress in the plane normal to the
streamlines. Thus the constitutive equation (4) subject to (8)
retains essentially the rheological properties of a 1liquid.
This model can predict normal stress and time-dependent
visco-elastic behaviour which are 1in accord with physical
observation. However, this model fails to account for the
variation of apparent viscosity with rate of shear. Further,
the constitutive equation (4) along with (8) holds for low

rates of shear.

It was experimentally found by Oldroyd et al. [87] that
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a solution of a mixture of Polymethyl Methacrylate in pyridine

obeys the constitutive equation (4) subject to (8) and for this

solution A,=0.065 (sec) and A,=0.015 (sec) with my=7.9 poises

and density 0.98 gm/ml. Thus for a real elastico-viscous

liquid, the restriction A;>A, is a valid one.

b) Walters’ ligquid B’

The constitutive equation for the Walters’ 1liquid B’
[(88] (at small rates of shear) is given by
Pix = - P Jdix * Pix o (9)
. : t i X
P t)= 2 0 y(e-tr) B AX oW pyger, (10)
- dx’" dx’

ik : . .
where p" is the deviatoric stress tensor, p an arbitrary

isotropic pressure, g,, the - metric tensor of a fixed
co-ordinate system xi, x'' the position at time t’ of the
element which is instantaneously at the point x' at time t,

1) .
eik( the rate of strain tensor and

@ ’
po(e-t) =5 BEL o T(EE/T g (11)
T
0
N(t) being the distributive function of the relaxation times <T.

It may be noted that the elastico-viscous liquid of Mocdel B due

to 0ldroyd is the special case of Walters’ Liquid B’, obtained

rJ
=



by substituting

Ay (A =23) ‘
N(T) = mp S(T) + Mg ———— 8(T-Ay) , (12)
A A
in equations (10) and (11). &(t) denotes a Dirac delta
function.

It has been shown by Walters [89] that in the case of
liguids with short memories (i.e. short relaxation times), the

equation of state can be simplified to

p =21 QU)m -2 K, gt e (1)ik , (13)

is the limiting viscosity at small rates of shear,

«©

ke ( = J <=TN(T) dt )
0

is the elastic coefficient and denotes the convected

ol o
A

differentiation of a tensor.
It is interesting to note that the mixture of Polymethyl
Methacrylate in pyridine at 25°C containing 30.5 gm of polymer

per litre and having density 0.98 gm/ml fits well in the above



model. For this mixture, the relaxation spectrum as given by

Walters is

1-0

N(T) oNyd (T) +

.(14)

=0 for Tt >

where ¢=0.13, my=7.9 poises (gm/cm.sec) and =0.18 sec.

Very little is known, as far as we are aware, about the
dynamics of free convective flow and mass transfer of rotating
non-Newtonian fluids which is the subject of investigation

presented in Chapter III of this thesis. We consider two

problems of steady/unsteady free convective flow and mass
transfer of a rotating incompressible elastico-viscous liquid
under various configurations in order to make an entry into
this field of study.

In the first part of Chapter III, we discuss the free
convective flow and mass transfer of a rotating ‘incompressible
elastico-viscous liquid bounded by an infinite vertical porous
plate when the plate is subjected to a constant suction
velocity and heat flux. at the plate 1is constant. The
temperature and the species concentration at the free stream
are constant. We find that the presence of the elasticity

character of the ligquid increases the order of the equations of

motion to three from two which is for classical viscous case.

I
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.Also we observe that many researchers have analyzed the

solution by the method of successive approximation taking the

Newtonian solution as the initial solution following the method

of Beard and Walters [90] which is valid only for small values

of the elastic parameters. However, in the present

investigation we have considered the solution assuming the

viscous and elastic effects to be of equal importancde. The
analytical expressions for the velocity and stress components
are obtained and the results are presented graphically. The
second part of this chapter deals with the unsteady free

convective flow and mass transfer of a rotating
elastico-viscous liquid past a vertical porous plate subjected
to a constant suction velocity and the plate temperature varies
harmonically with time. The énalytical expressions for the
velocity, temperature and concentration are obtained and the
effects of the elastic parameters and other pertinent
parameters on the flow field are analyzed through the graphical
representation. It may remarked for the problems (Part one and
Part two) that both the primary and secondary velocity
components represent higher profiles than the viséous fluid for
small values of tﬁe elastic parameters («y=0.6, ap =0.2) while
as the elastic parameters («;, @) increase, the velocity

components decrease.



1.6 Oscillating visceoelastic liguid flows

There are many natural phenomana such that when a fluid

is set into oscillation, as in the presence of an acoustic wave

or an oscillating boundary, steady streaming motions are
created. These steady streaming belong to a class of secondary
flows. For a purely viscous ligquid this kind of phenomenon has
been reported over a century ago by Faraday [91]) and Rayleigh
{92]1. More recently, this steady streaminghas been considered
both theoretically and experimentally by authors like
Schlichting [93), Andres and Ingard ([94,95], Stuart [96] and

Glauert [97]. An extensive 1list of the more significant
contribution has been given by Riley [98]. Stuart [99] and
Riley [100] investigated the phenomenon of steady streaming
flow when a circular cylinder oscillates normal to its
generator in an unbounded Newtonian fluid. Problem of this
nature they have described by finding inner and outer
solutions; and then using some kind of matching process. Each
author employed a different method of solution: Stuart extended
a method due to Fettis ([101] while Riley developed a series
solution analogous to the Blasius series in classical boundary
layer theory. Each method leads, essentially, to the same
results following a similar amount of manipulative labour.

In spite of the numerous investigations of the steady

streaming phenomenon in purely viscous flows, there are



comparatively few investigations of this kind for elastico-

viscous flows [102-107]. Frater [104) has considered the effect
of elasticity of the liquid on the steady streaming produced by
an oscillating cylinder. Chang et al. {108~110) have
experimentally confirmed that the addition of small amount of

polymer solution to a Newtonian fluid can significantly reverse
the secondary flow. Chang [111] also made a theoretical study

of the problem using Walters’ 1liquid B’ as model for

viscoelastic liquid. However, he has enormously omitted the

3
—Q_E”E for his boundary layer equation.
at 38y

term -

In chapter IV of this thesis we have reconsidered the
problem of periodic flow due to an oscillating cylinder placed
in a viscoelastic 1liquid hsing the correct boundary layer
equations. As a result we find that the resulting flow field is
completely different from that obtained by Chang [111]. We have
also made a detailed investigation of the steady secondary flow
and its final decay to zero. The analysis is patterned on the
lines of Stuart [99] and Riley (100]. The problem of this
nature may find useful for relative characterization of

additives which reduce drag in turbulent flows.
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