CHAPTER 1
INTRODUCTION

In the early years of computer development, as

computer generations succeeded one another, the
hardware performance-price ratio kept climbing at an
average rate of about 25 percent a year; it was still
advancing rapidly in the wearly 1980s. Programming
productivity, on the other hand, while hard to measure,
gained at a much slower rate - something like 7 - 9
percent per year. The continuing hardware improvement
created a series of computer systems on which it was
economically feasible to run even larger programs, but
the slower rate of® improvement in programming led to
progressively ' larger programming organisations
requiring more levels of management. Some software
systems approached a million instructions and absorbed
5000 man-years of development time. By the mid 1960s
the fact that program development almost defied the
effective management control was becoming evident.

Programs of this era were not only extremely large but
frequently lacked clarity as well. They were typically
all in one piece, that is, not modularised. The
sequence of program execution from one instruction to
the next in line would jump instead to an instruction
that was pages away in the program listing. A reader
could track one or two of these jumps or branches, but
scores of them made the program logic hard to grasp.

Since the product being developed was something of a
mystery, it was nearly impossible for managers to
find out enough about it to supervise th; work of the
programmers,. to co-ordinate them with other groups, or
to estimate how much time such poorly defined tasks
would take or how many prbgrammers were needed. It was

under these circumstances that the 'NATO Software
Engineering Conference (1968) pointed out directions in
which solutions to the software crisis should be
~ sought.

Since then several attempts have been made to transform
software development from an artistic endeavour to a
sound engineering diséip]ine. Within this discipline
efforts have been made to didentify 'the desirable
properties of quality software and to provide
programming methodologies and language features which
can be readily applied to the production of quality
software. However, in order for this undertaking to
result in a true engineering discipline, it s
necessary that tools, techniques and measures be
developed for software analysis. Unfortunately,
scientific knowledge available on which to base such an
important discipline is still very small.

This dissertation therefore attempts to study the
following aspects of software engineering in order to
develop new techniques and measures for quality
software development. They are

1. Regular expression representation of programs,

2. Complexity measures based on program text and
regular expression,

3. Flowgraph decomposition, and

4. Path generation for program testing.

1.1 STRUCTURAL REPRESENTATION OF PROGRAMS

Regular expressions provide a compact representation of
programs. Several authors 1like Magel [1981], Oulsnam
[1982] and others have proposed the regu]%r expression
representation of programs. Their regular expression
representation 1is, however, not capable of <clearly

identifying the components of a program and their
nestedness. It 1is also not possible to find out
whether a program corresponding to a regular expression
~is structured or not.

In the present work a modified form of a regular
expression representation is introduced which overcomes
the above problems. The modified regular expression
(MRE) representation is first defined for structured
programs and then extended to unstructured programs.
Woodward et al. [1979] have introduced the concept of
knots to measure program complexity. A similar
concept of knot at program and flowgraph level s
introduced to charaéterise unstructuredness of a
program. '

For obtaining a structured representation of an
unstructured program or flowgraph, the concept of
local-structuring is introduced. To perform 1local
structuring Partial-regions (P-regions) of a flowgraph
are defined with reference to a data structure called a
Binary Interval Search Tree (BIST). A traversal of
this tree gives an ordered set of P-regions. The knots
in the P-regions can then be eliminated with respect to
a basis set to obtain a structured MRE (SMRE)
representaion. The concept of a graph grammar is used
to convert a program into the equivalent MRE form.
Using these concepts the following four algorithms are
developed: '

i) To convert a flowgraph into an MRE,

ii) To convert a program into an MRE,
iii) To convert an MRE into a flowgraph, and
iv) To convert an MRE into a program.

