Contents

Title Page	1
Certificate of approval	ii
Declaration	iii
Certificate from supervisors	iv
Acknowledgement	v
Dedication	vii
Nomenclature	viii
Greek Symbols	xi
Abbreviations	xii
List of figures	xiv
List of tables	xix
Abstract	XX
Contents	xxi
Chapter 1 Introduction	1-29
1.1 Introduction to laser forming process	1-7
1.2 Literature Review	7-27
1.2.1 Continuous wave (CW) laser bending	8-20
1.2.2 Pulsed laser bending	20-22
1.2.3 2D and 3D laser forming	22-26

1.3	1.3 Research gaps and motivation of the study					
1.4	1.4 Aims and Objectives					
1.5	1.5 Contributions made in this thesis					
1.6	1.6 Outline of the thesis					
1.7	1.7 Summary					
Chapter	Tools and techniques used	33-57				
2.1	1 Finite element analysis of laser forming process	33-43				
2.2	2 Statistical regression analysis	43-48				
	2.2.1 Statistical design of experiments	43-45				
	2.2.2 Response surface methodology	45-47				
	2.2.3 Desirability function analysis	47-48				
2.3	3 Soft computing-based methods	49-56				
	2.3.1 Neural network-based analysis	49-52				
	2.3.2 Neuro-fuzzy system-based analysis	52-55				
	2.3.3 Cross validation method	55-56				
2.4	4 Summary	56-57				
Chapter :	3 Finite element analysis and experimental study on laser	bending				
	process	61-86				
3.1	Experimental set up and procedure for laser bending	61-63				
3.2	2 Continuous wave laser bending	63-77				
	3.2.1 Finite element modeling	63-69				

	3.2.2 Analytical models of bending ang	gle	70
	3.2.3 Results and discussion of CW las	er bending	70-73
	3.2.4 Metalurgical study on CW laser b	pent samples	74-77
3.3 Pu	sed laser bending		77-84
	3.3.1 Mathematical theory of pulsed la	ser forming	78-79
	3.3.2 Effects of gap and overlap on ber	ading angle in PLB process	79-80
	3.3.3 Metalurgical study on pulsed lase	er bent samples	81-84
3.4 Co	mparison between continuous and pulse	d laser bending	84-85
3.5 Su	mmary		85-86
Chapter 4	Modeling and analysis of CW laser be	ending process	89-118
_	Modeling and analysis of CW laser be perimental data collection	ending process	89-118 89-90
4.1 Ex		ending process	
4.1 Ex	perimental data collection	ending process	89-90
4.1 Ex	perimental data collection tistical regression analysis	ending process	89-90 90-100
4.1 Ex 4.2 Sta	perimental data collection tistical regression analysis 4.2.1 Modeling of bending angle		89-90 90-100 90-99
4.1 Ex 4.2 Sta	perimental data collection tistical regression analysis 4.2.1 Modeling of bending angle 4.2.2 Optimization of bending angle		89-90 90-100 90-99 99-100
4.1 Ex 4.2 Sta	perimental data collection tistical regression analysis 4.2.1 Modeling of bending angle 4.2.2 Optimization of bending angle ft computing-based analysis	bending angle	89-90 90-100 90-99 99-100
4.1 Ex 4.2 Sta	perimental data collection tistical regression analysis 4.2.1 Modeling of bending angle 4.2.2 Optimization of bending angle ft computing-based analysis 4.3.1 Forward analysis or modeling of	bending angle thesis to predict the process	89-90 90-100 90-99 99-100

Chapter 5	Modeli	ing and analysis of pulsed laser bending process	121-144
5.1 I	Experime	ntal data collection	121-122
5.2 \$	Statistical	regression analysis	122-129
5.3 \$	Soft comp	outing-based analysis	130-144
	5.3.1	Forward analysis or modeling of bending angle	130-137
	5.3.2	Inverse analysis or process synthesis to predict the proce	SS
		parameters	137-144
5.4 \$	Summary		144
Chapter 6	Modeli	ing and analysis of 3D laser forming process	147-167
6.1 I	Experime	ntal set up and procedure	147-150
	6.1.1	Materials and equipment	147-148
	6.1.2	Eperimental procedure and plans	148-150
6.2 \$	Statistical	regression analysis	150-154
	6.2.1	Response surface modeling and analysis of dome height	151-153
	6.2.2	Optimization of dome height using desirability function	
		analysis	153-154
6.3 \$	Soft comp	outing-based analysis	154-167
	6.3.1	Forward analysis or modeling of dome height	154-162
	6.3.2	Inverse analysis or process synthesis of 3D laser	
		forming	163-167
6.4 \$	Summary		167

Chapter 7 Conclusions and scope for future study	171-176
7.1 Concluding remarks	171-174
7.2 Scope for future works	174-176
References	179-188
Appendices	191-201
APPENDIX A	191-195
APPENDIX B	196-199
APPENDIX C	199-201