
SYNOPSIS

The investigations presented in the thesis have been 

classified into two parts, A and B, dealing with some physi­

cal distributions in Einstein's and Sen-Dunn theories of 

gravitation.

The problems considered in Einstein theory, in part A, 

pertain to the interactions of gravitational and scalar me'son 

fields (with or without mass) in the presence of either 

electromagnetic field or perfect fluid distribution. These 

may be looked upon as tentative and partial attempts towards 

the problem of combining the gravitational theory and the 

quantum theory into a unified structure. In fact, we are 

interested to find out physically significant models repre­

senting scalar meson fields in the framework of Einstein 

theory. The importance of the study of interacting fields 

(gravitational and zero-mass scalar fields) in presence of 

perfect fluid distribution with different equations of state 

is well-known. The relevance of the equation of state, v iz ., 

pressure = mass density, (which we have considered in some 

of the investigations) is consistent with the limiting velo­

city of sound wave equating the velocity of light. These 

studies might be helpful In knowing different situations 

involving ‘ white holes’ lagging core of a big bang cosmology
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or rotating neutron-stars (pulsars). In the literature these 

fluids with p = D are called * Zel'dovich fluid* or ’ stiff 

flu id *.

The studies carried out in part B deal with the finding 

out of physical viable models representing different distri­

butions in the framework of Sen-Dunn theory of gravitation.

This theory is one of the scalar-tensor theories which attempt 

to fully take into account the Machian effects. The studies 

would help in comparing the new theory with Einstein and Brans- 

Dicke theories of gravitation and decide among them which 

theory is in accordance with observational data.

The thesis contains eight chapters of which the first 

chapter is introductory. Chapters II to V dealing with 

Einstein theory form the Part A and the remaining chapters 

forming part B concerns Sen-Dunn theory.

In chapter I, we have surveyed various topics centering 

round the problems we have tackled v iz ., the concept of symme­

try, in particular, axial and plane symmetries, perfect fluids, 

scalar fields (complex and real) and the Sen-Dunn scalar tensor 

theory of gravitation. We have reviewed the relevant work of 

some of the authors bringing forth, in proper perspective, the 

motivation of the investigations carried out and the results 

obtained by us.

In chapter II , we have studied the problem of inter­

acting complex scalar fields with gravitational field in the
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presence of perfect fluid distribution for eylindrically 

symmetric Einstein-Rosen metric. It has been observed that 

the mass-pararneter associated with complex scalar field 

vanishes and perfect fluid distribution reduces to Zel’ dovich 

fluids where the rest-mass density is equal to the proper 

pressure. This result, has also been found to be true when 

the Einstein field  equations are considered in its more general 

form including the cosmological term IS , for interacting 

gravitational and relativistic magneto fluids. Consequently, 

we have solved the relativistic f i d d  equations representing 

Zel'dovieh fluid coupled with zero-mass scalar fields for the 

Einstein-Rosen metric.

Chapter II I  deals with the physical interpretation of 

the solutions obtained in the earlier chapter. The solutions 

obtained have been studied with the special reference to 

singular behaviour, the CPT (Charge Conjugation, Change in 

Parity and time reflection) transformation and the G-energy 

contribution. The nature of the complex field  is also 

discussed.

Einstein field equations corresponding to plane- 

symmetric interacting zero-mass scalar fields and perfect 

fluid  distributions have been solved in chapter IV, obtaining 

exact solutions for the following physically important cases:

a) Disordered distribution of radiation (D = 3p).

b) !Zel! dovich fluid ’ distribution (D = p ).
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c) Perfect fluid distribution (D > p).

d) Matter distribution in internebular space (D = 3p /2).

It has been observed, for the case (a ), that the only possible 

distribution that can exist is that asymptotically tending to 

plane-symmetric vacuum solution. Some general features of the 

solutions v iz ., the behaviour of a test particle, the distri­

bution characteristics such as the stress, scalar of expansion 

and rotation, and the reality conditions have been discussed.

In chapter V, we have presented a class of exact solu­

tion to Einstein's field equations for interacting self- 

gravitating irrotational fluids and sourcefree electromagnetic 

fields considering a time-dependent plane symmetric metric.

One of the solutions has been obtained by reducing the ori­

ginal metric with the help of ’ Characteristic co-ordinates1.

It has been observed that one of our solutions, in the absence 

of electromagnetic fields, is identical with the solutions 

obtained by Sistero (1976) for plane symmetric zero-rest mass 

scalar field  distributions.

In chapter VI, a class of exact solutions has been 

obtained corresponding to vacuum field equations of the 

Sen-Dunn (1971) theory of gravitation, for the non-static 

eylindrically symmetric Harder’ s metric. It has been observed 

that, given any solution of the vacuum field  equations of 

Einstein theory, it is possible to generate tao solution of 

the corresponding field equations of Sen-Dunn theory. The
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solutions have been found to preserve the wave character as 

in Einstein theory. Continuing our search for exact solutions 

in the Sen-Dunn theory of gravitation, we have solved in 

chapter VII the corresponding non-vacuum (Tj_j £ 0) field 

equations representing charged perfect fluid distributions. 

When the scalar interaction function x° = 1, one of our 

solutions is found to be identical with the corresponding 

solution of Einstein theory as obtained by Singh and Uppadhyay 

(1974).

In the concluding chapter, by assuming a relation 

between the g ^-  Component of the metric tensor, the electro­

magnetic potential ^ and the scalar interaction function x°, 

we have obtained an exact solution for plane-symmetric static 

charged dust distribution in the framework of Sen-Dunn theory 

of gravitation. It has been observed that, for the solution 

obtained, the ratio of charge density to mass density is 

related to the scalar interaction function x° such that for 

small values of x° the charge density far exceeds the mass- 

density.

-  V  -
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