
CIUPTER I

INTRODUCTION

livery solution of the equations of hydrodynamics 

or of hydromagnotics may not be realisable in practice. 

This is due to the fact that the flow may bo unstable to 

inf init esiraal or fin ite  amplitude disturbances. Linear 

stability  theory deals with the question of stability to 

infinitesimal disturbances, while the question of 

stability  to finite  amplitude disturbances falls in the 

domain of nonlinear stability theory.

The hydrodynamic or hydromagnetic system, whose 

stability  is being studied, can be described by a set of 

non-dimensional parameters. The stability  of the system 

depends on the numerical values of these parameters. The 

parameter space can be divided into stable and unstable 

zones. In the stable zone, any arhitrary disturbance to 

the system must tend asymptotically to zero as time tends 

to infin ity . In the unstable zone there must be at least 

one particular mode of disturbance which grows with time. 

The locus of points which separates the stable zone( s) 

from the unstable zone(s) defines the states of marginal 

stability  of the system. States of marginal stability 

( or marginal states) can be of two types. In the first 

type, transition from stability  to instability  takes
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pla~c via a marginal so.ite exhibiting a stationary 

pattern of motions. In this case the marginal state is 

said to be stationary and the principle of exchange of 

stabilities is said to be valid . In the second type, the 

transition from stability to instability takes place 

via a marginal state exhibiting oscillatory motion with 

a certain definite characteristic frequency. In this case, 

referred to as overstability (Chandrasekhar [l]) , a 

slight displacement provokes restoring forccs so strong as 

to overshoot the corresponding position on the other side 

of equilibrium. However, this classification of the 

marginal states is valid  for dissipative systems.

The total volume of scientific literature dealing 

with linear hydrodynamic and hydromagnetic stability is 

con. iderable. Hence the; discussion which follows is 

restricted to only those papers which have direct 

relevance to the problems investigated in this thesis.

(a) CENTRIFUGAL INSTABILITY

The stability of cylindrical Couettc flow of an 

incompressible inviscid fluid was first investigated by 

Rayleigh [ 2] who showed that a stratification of angular 

momentum about an axis is stable if  and only if it 

increases monotQnically outward. This necessary and 

sufficient condition for stability is known as Rayleigh 's
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criterion. The viscous stability of two-dimensional 

stagnat ion-point flow was investigated by Gortlcr [3 ] 

and HSmmerlin [4 ] who showed that the flow is unstable. 

This result may be related to Rayleigh's problem because 

in this case the circulation (product of local velocity 

and the local radius of curvature) increases as the local 

centre of curvature is approached normal to the curved 

streamlines.

(b) THERMAL BISTABILITY

The problem of the onset of thermal instability 

(referred to as Benard convection) in a horizontal layer 

of flu id , heated from below in a field of gravity was 

examined theoretically by Rayleigh [5] . His analysis was 

confined to the case of two free boundaries. He showed 

that the stability of trie layer is  determined by the 

numerical value of a non-dimensional parameter, referred 

to as Rayleigh number, which depends on the temperature 

gradient, the depth of the layer, the acceleration due 

to gravity and on the coefficient of thermal expansion, 

the thermal diffusivity  and the kinematic viscosity of 

the flu id . If the Rayleigh number is below a certain 

value, the layer is stable. Instability sets in as soon 

as the Rayleigh number exceeds this critical value. He 

also proved that the marginal state is stationary, Pellew 

and Southwell [6] extended Rayleigh 's analysis to include
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other types of boundary conditions and proved that even 

in these cases the principle of exchange of stabilities is 

valid . They also obtained a variational principle for this 

problem and used it for approximate calculation of the cri

tical Rayleigh number. Chandrasekhar [7] and Chandrasekhar 

and Elbert [8] extended Rayleigh's problem to include the 

effect of rigid rotation. They obtained a variational 

principle for this problem .and calculated approximate 

values of the critical Rayleigh number as a function of 

the Taylor number ( a non-dimensional parameter which 

gives a measure of the rotation rate ). They showed that 

in this case the marginal state may be oscillatory 

particularly for fluids with low Prandtl number.

The problem of thermp.l instability in spheres and 

in spherical shells, heated within, was examined by 

Chandrasekhar [9, 1 0 ] . Bisshopp [ll]  analysed the problem 

for spheres, heated within and subject to rigid rotation 

about a diameter as the a x is . His analysis, however, was 

confined to axisymmctric disturbances. The analysis for 

non-axisymmetric disturbances was carried out by 

Roberts [12] who showed th?„t except for the smallest 

Taylor numbers, instability  first sets in as a non- 

axisymmetric disturbance.

Horton and Rogers [1 3 ] and iapwood [14] considered 

the problem of thermal instability  in a horizontal layer
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of i l.uid in a porous medium, duo to a uniform adverse 

temperature gradient-. The problem of thermal instability 

in fluid-filled porous spheres heated -within was examined 

by Pradhan and Patra [15].

Hurle, Jakeman and Pike [l6] made the analysis of 

Pellow and Southwell [6] more realistic by considering, 

for the case of a fluid  layer bounded by two rigid surfaces, 

that the media bounding the fluid have a fin ite  thermal 

conductivity, so that the bounding surfaces are no longer 

at constant temperaturs as had been assumed by Pellow and 

Southwell [6], In fact the assumption of constant temper

atures at the boundaries is valid when their conductivities 

are very large.

(c) THERMQCONVECTIVE WAVES

Transverse thermal waves in an isothermal viscous 

fluid  are known to be strongLy damped even in the absence 

of gravity forces (Carslaw and Jaeger [17]) . It was first 

shown by Luikov and Berkovsky [18] that in a viscous 

liquid  heated from below, such that Benard convection 

does not set in, transverse plane waves may propagate 

almost undamped under certain conditions. These waves are 

known as thermoconvective waves. Subsequently, undamped 

propagation of thermoconvective waves was shown to be 

possible in the presence of a magnetic field  by

Cop
yri

gh
t 

IIT
 K

ha
rag

pu
r



r
U

Takashima [19] only und^r astrophysical conditions and in 

certain viscoelastic fluids by Gupta and Gupta [20].

Keck \nd Schneider [21J studied the cffect of compressibi

lity  on the propagation of thermoconvcctivo -waves. Moreover, 

they considered a horizontally bounded layer and showed 

that the horizontal walls do not prevent the existence of 

weakly damped thermoconvcctivo waves provided that the 

Rayleigh number is large.

(d) HYDROHA.GNETK STABILITY OF NON-DISSIPATIVE FLOWS

In a theoretical study of the inviscid stability of 

parallel shear flow of a density-stratified fluid ,

Miles [22] and Howard [23] derived a sufficient condition 

for stability of the flow in a gravity fie ld . They showed 

that if  a certain non-dimensional parameter, known as the 

Richardson number based on the density-gradient and the 

shear in the parallel flow everywhere exceeds 1 /4 ,  then 

the flow is stable to infinitesimal disturbances.

Howard [23] also derived a semicircle theorem which 

demonstrates that the complex wave velocity of any unstable 

mode must l ie  in a certain semicircle in the complex plane. 

Howard end Gupta [24] derived Richardson number type 

criteria and circle theorems for a number of cases of 

non-dissipativ e hydrodynamic and hydromagnetic helical 

flows. However, in most of their analysis, only axisymme- 

tric disturbances were considered. Barston [25] gave a
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gen'.r'T.l method of constructing circlc theorems which 

localize the complex eigenfroquencies arising in the linear 

stability analysis of conservative steady flows. As 

applications, he considered helical flow of an inviscid , 

incompressible fluid and rotating flow of an inviscid, 

incompressible, perfectly conducting fluid  permeated by 

an axial magnetic field . In his analysis axisymmetric as 

well as non-axisymmetric disturbances were considered.

Using Barst^n’ s technique Ganguly and Gupta [26] obtained 

a number of results for stability of non-dissipative 

hydro magnetic helical flows to all normal modes of distur

bances. Barston's technique, however, yields a circle 

theorem with the radius of the circle , in general, 

dependent on the wav cn umber s.

The effect of a radia.1 magnetic field  on the 

stability of viscous flow between two rotating electri

cally  non-conducting cylinders was studied by Antimirov 

and Kolyshkin [27]. They calculated the values of critical 

Taylor number as a function of wavenumber for different 

values of the Hartmann number.

The stability of combined radial and rotational flow 

(sp iral flow) of an inviscid fluid was studied by 

Kazlehurst [28] . Restricting his analysis to axisymmetric 

disturbances he found that the flow” is unstable or stable 

according as it is directed towards or away from the axis
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of symmetry. Bahl [29] examined the stability of viscous 

flow between two rotating porous concentric cylinders.

While studying the effects of suction on critical Taylor 

number, he fo und that injection at the outer cylinder 

improves stability but suction has an opposite effect.

Chang and Sortory [30] examined the stability of the flow 

of a viscous electrically-conducting fluid between two 

concentric rotating porous cylinders in the presence of an 

axial magnetic field both when the marginal state is 

st at ionary or o sc illat ory.

Gilman [?l] analysed the stability of a horizontal 

layer of a perfectly conducting inviscid gas in the 

presence of a horizontal magnetic fie ld . He showed that 

when the strength of the magnetic field  and the fluid 

density are functions of the vertical coordinate, instabi

lity  sets in by a mechanism known as magnetic bouyancy i f  

the basic magnetic field  strength decreases with height 

faster than the density. Ho also examined the effect of 

rigid  rotation on the stability of the system. Aches^n and 

Gibbons L 3 2 j extended Gilman's analysis to the case of a 

uniformly rot ating gas in a cylindrical geometry. However, 

in both these investigations infinite  thermal conductivity 

of the fluid was assumed. In an exhaustive study Aches011 [3 

considered the stability  of a rotating spherical body of 

compressible flu id  permeated by a toroidal magnetic fie ld
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taking into account all diffusive phenomena (viscous, 

thermal and ^h:nic) . Ko carried out local stability analys 

for 1 ow frequency disturbances. Gibbons [34] examined the 

validity of local stability analysis for a particular 

problem involving instability due to magnetic buoyancy in 

a rotating plane layur of compressible flu id . However, he 

retained the low frequency approximation in his analysis.

( e) HYDRO MAGNETE STABILITY OP DISSIPATIVE PLOWS

Taylor [35] extended the analysis of Rayleigh [ 2 ] 

to include the effect of viscosity and showed that 

viscosity has a stabilizing influence on the flow. He 

showed that, in this case, the stability of the flow is 

determined by the numerical value of a non-dimensional 

parp.neter, referred to as Taylor number, which gives a 

measure of the extent to which Rayleigh 's criterion is 

violated . He calculated, under certain simplifying 

assumptions, the numerical value of the critical Taylor 

number at which instability first sets in . The effect of 

a uniform axial magnetic field  on the stability of 

cylindrical Couettc flow of a viscous electrically- 

conducting fluid was studied by Chandrasekhar [36]. He 

found that the magnetic fie ld  tends to stabilize  the 

flow . Chandrasekhar [36 ] restricted his analysis to the 

case of a weakly conducting fluid (low magnetic Prandtl 

number approximation). Kurzweg [ 37] extended his analysis
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by considering fluids of arbitrary electrical conductivity.

Theoretical as well as experimental work has been 

done on the stability of hydrodynamic as well as hydro- 

magnetic flows in which the basic state is oscillatory. The 

st.ability of viscous cylindrical Couette flow, when the 

rotation rate of the inner cylinder is modulated sinusoi

dally, was investigated experimentally by Donnelly [38 ] .

Ee showed that the onset of instability can be inhibited 

by modulation. The theoretical analysis for this problem 

was carried out by Riley and Laurence [39 ] . The effect of 

an oscillatory magnetic field on the stability of parallel 

flow was examined by Drazin [40 ]. He carried out detailed 

stability  analysis for an inviscid, perfectly conducting 

f lu id . Instability  of a linear pinch in an oscillating 

magnetic field was studied by Tayler [4 l ] .

In the light of the above literature survey the 

folio wing p ro b1 em s hav e b e on inv e st ig at ed .

In chapter II the linear stability of steady two- 

dimensional boundary layer flow of an incompressible 

viscous fluid over a flat deformable sheet is investigated 

when the sheet is strctched in its own plane with an 

outward velocity proportional to the distance from a point 

on it , the analysis being confined to infinitesim al, non

propagating, Gbrtler type disturbances. The flow is sh^wn
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to he stable. The significance of this result in polyner 

processing applications is pointed out.

In chapter III the manner of the onset of thermal 

instability in fluid-filled porous spheres and spherical 

shells heatcd fron within is investigated. The first part 

of this chapter examines the effect of rig id  rotation of 

the system on the onset of instability . A general distur

bance is analysed into nodes in terms of spherical 

harmonics and the criterion for the onset of thermal 

instability is determined for the various modes. From the 

numerical results conclusions are drawn about the mode for 

which instability  first sets in . The critical Darcy- 

Rayleigh. number is obtained as a function of the Darcy- 

Taylor number. It is also found that for the most 

unstable mode, the marginal state is characterized by a 

very slow westward rotation of the entire convection 

pattern around the globe. The second part of this chapter 

examines the effect of a fin ite  thermal conductivity of 

the core on the onset of thermal instability  in a, fluid- 

fille d  porous spherical shell. It is sh^wn that as the 

conductivity of the core decreases, the critical Darcy- 

Rayleigh number decreases and the most unstable rn^de 

tends to shift towards a lower wavenumber associated with 

the polar angle in a system of spherical coordinates. The 

problem of the onset of thermal instability in fluid- filled
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porous spheres and sphcricnl shells is of relevance in 

connection with problems of g e o p h y s i c a l  nnd astrophysics! 

interest, e .g . ,  convection in. the earth's mantle.

In chapter IV the propagation of transverse therr.nl 

waves in a layer of binary mixture in the presence of 

uniform them al and concentration gradient is studied. It 

is shown that when the thermal d iffusivity  K^ is equal to 

the m ss  diffusivity Kg, undamped waves do not exist, but 

when K,p > Kg, these waves nay exist provided the layer is 

heated from below (such that thernohaline instability 

does not occur) and the concentration of the salute in the 

mixture decreases vertically upwards. The analysis also 

reveals the interesting result that when K^ < Kg, 

undamped waves can propagate even i f  the layer is heated 

from above provided the concentration increases vertically  

upwards. It is further shown that as in a homogeneous 

flu id , weakly damped loir frequency waves can propagate 

ond the regions in the parameter space whore such propa

gation is possible are delineated. High frequency waves 

are shown to be always strongly damped. This problem may 

have some relevance to oceanography e .g . the stratifica

tion of salt in oceans might affect the propagation of 

thermoconvective waves in the presence of variations in 

solar heating.
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In the first part of chaptcr V the linear stability 

of the f l^w of an inexp ressible , inviscid, perfectly 

conducting fluid between two nnn-por^us coaxial cylinders 

having an axial and an azimuthal component of velocity and 

permeated by a magnetic field  having radial, azimuthal and 

axial components is examined. It is shown that in such a 

flow kno-vjn as helical flow, the presence of a radial 

component of the magnetic field imposes certain restric

tions on the basic state. It is further shown that for any 

basic state consistent with the governing equations, the 

flow is stable even in the presence of non-axisymmetric 

disturbances. In the second part of this .chapter, the 

linear stability of the radial flow of an incompressible, 

inviscid , perfectly conducting fluid between two coaxial 

porous cylinders permeated by a radial magnetic field  is 

examined. It is found that the ratio of the local Alfven 

velocity and the flow velocity in the basic state must be 

constant over the entire flow fie ld . It turns out that i f  

the Alfven velocity exceeds the flovr velocity, then the 

flow is stable. The problem considered in the first part 

of this chapter has a bearing on l.JHD power generation and 

such a configuration occurs in magnetohydrodyn?„nically 

driven vortices. Radial magnetic field  also finds 

application in the study of magnetic flux  generation in 

the interior of planets and stars.
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In chn.ptcr V I the linear stability of non-dissipative 

hydro magnetic flow of an inconpressible density-stratified 

fluid  between two coaxial cylinders to non-axisy''.metric 

disturbances is studied. A sufficient condition for stabi

lity  is derived for rigidly  rotating fluid  permeated by an 

azimuthal magnetic field against a ll  disturbances. In the 

case of helical flow permeated by an axial magnetic fie ld , 

a bound on the growth rate independent of wavenumbers is 

obtained. ,

In chapter V II the hydro magnetic stability of a 

rotating compressible fluid is studied. In the first part 

of this chapter the linear stability of a plane layer of 

a perfectly conducting gas permeated by a vertically 

stratified horizontal magnetic field  is examined when the 

layer rotates about a horizontal axis perpendicular to the 

magnetic field . Using I7K3J approximation, it is shown that 

under adiabatic conditions the layer would be unstable to 

perturbations whose wav el en gth-al ong the magnetic fie ld  is 

much larger than a tj'pical wavelength along a horizontal 

direction provided the destabilizing influence due to 

magnetic buoyancy overcomes the stabilizing  influence of 

a positive entropy stratification . In the second part of 

this chapter the stability of a cylindrical rotating mass 

of a perfectly conducting inviscid gas in the presence of 

a toroidal magnetic field  is studied. It is shown that
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under i iabatic conditions, unstable low irequency waves 

propagate along the basic rotation outside a critical radius 

depending on the basic acoustic speed. Inside the critical 

radius, however, unstable waves propagate against the basic 

rotation. The hydromagnetic stability of a rotating compre

ssible fluid  is of importance in several geophysical and 

astrophysical problems concerning planetary and stellar 

atmospheres.

In chapter V I I I  the stability of cylindrical Couette 

flow of an electrically conducting incompressible viscous 

fluid in the presence of a modulated axial magnetic field 

is examined. With the usual simplifying assumptions of low 

magnetic Prandtl number and narrow gap approximation, it is  

shown that for low frequencies and for low values of the 

Chandre ekhar number, incr- ise in the amplitude of modula

tion tends to stabilize the system.
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