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1.1 Introduction to Bond Graphs

The present work 1is aimed at studying dynamic systems
through substructuring and bond graph techniques. In this
work, attempt has been made to enhance the art of bond graph
simulations in the analysis of complex dynamic systems, taking
advantage of the nature of subsystems and their interactions.

The instances of application of bond graphs in system model-

ling are continuously increasing. At the same time, the
geographical territories, over which bond graphs are gaining
popularity, are also expanding. However, there are still some

places where bond graphs have just appeared on the horizon of
system analysis. Thus, to improve readability of the thesis,
bond graph mnemonics are briefly explained alongwith suitable
references in Appendix A.

Bond graphs are used to represent pictorially the energy
exchange, storage and dissipation among interacting physical
systems in an efficient manner. They are also extended to non-
energetic systems. Usefulness of bond graphs 1in system mode-
Iling and simulation lies in the precise way the assumptions
of system model and their modifications are incorporated. They
are used to model, with the help of a small number of basic
elements, systems over different energy domains, namely, elec-
trical, mechanical, hydraulic, pneumatic, magnetic, Tfluid,
thermal and others 1in a unified manner. Tht bond graph techni-

gues give rise to selection of state variables, derivation of



system equations and their solution systematically. The whole
procedure may be automated if advantage 1is taken of the exis-
ting computer programs such as ENPORT C67,683. Computer prog-
rams like TUTSIM 051,883 and CAMP C21,35J, which are based on
continuous system simulation languages, may also be used for
ethis purpose. The growing acceptance of bond graph techniques,
for their power in modelling, analysis and simulation of
physical systems, may be observed from the updated

bibliography by Bos and Breedveld C4D.

1.E Substructure Synthesis

In analysing a systen, very often it is advantageous to
regard it as an assemblage of subsystems or substructures (in
the present work both terms will be used interchangeably).
These substructures are analysed separately and later coupled
to give the overall system model which may be studied for the
required dynamics of the system. This technique of analysing a
system considering it to be a collection of subsystems, each
represented suitably, 1is referred to as substructure synthesis
C54D.

The usefulness of such an approach 1is increasing with the
advent of small computers and that capable of parallel proces-
sing. This 1is because subsystems may be analysed independently
and their reduced order models may be used 1in studying the
overall system. This 1is also suitable for re-analysis inco-
rporating changes in subsystems, which 1is a very significant
facet of computer aided design of engineering systems.

There are different techniques of substructure synthesis,



depending on the mode of representation of the subsystems.

Meirovitch C54D discussed these principles. Meirovitch and

Hale £23,24,551] proposed the use of admissible functions of

the subsystems for analysing complex systems. Grief and Wu
\

C22D summarised different such techniques and their applica-

tions to a wide range of systems.

1.3 Bond Graph Adapted Subsrtucturing

Kron C36U introduced the concepts of substructuring for
piecewise analysis of large systems. Paynter C643 and Karnopp
C29D discussed the relationship between bond graph methods and
Kron®"s concepts of diakoptics.

Karnopp and Rosenberg C27D and Margolis C410 presented
methods to study the interconnected distributed and lupmed-
systems using normal modes and bond graphs. Margolis and Young
C42D proposed a technique of reducing the system equation
obtained from bond graphs to the conventional second order
form suitable for eigenanalysis. In Ref. C44D Margolis discus-
sed the method of analysing distributed systems with mixed
causal 1inputs (in bond graph sense). Margolis C453 also prese-
nted an algorithm for synthesis of subsystem models to obtain
the overall system representation exploiting the causal infor-
mation of the subsystem bond graphs. This approach of bond
graph adapted substructuring was illustrated in Ref. C46D by
considering a large scale structural model . Pastrnak ce1ll
presented a procedure for simulating dynamics of large distri-
buted structure through bond graph modelling techniques wusing
experimental modal analysis data of the substructures.

Margolis and Karnopp C4313 presented a bond graph based techni-



que of analysing multibody disrtibuted systems with geometric
nonlinearities. Margolis C48D summarised such bond graph based
investigations on the analysis of systems consisting of both

distributed and lumped subsystems.

1.4 Classification of Dynamic Systems Studied 1in this Work

In the present work linear dynamic systems have been
studied through substructuring and bond graph techniques. In
this, a system is regarded as an assemblage of subsystems
(substructures) each of which can be modelled suitably. The
subsystems are assumed to have definite interactions. The
systems are classified according to the type of subsystems and
their 1interactions.

The types of systems considered in this work may be
broadly divided 1into two groups. The first group consists of
systems with identical subsystems, and for the second, the
subsystems may not be identical. Systems with 1identical subsy-
stems are referred to as "repeated systems". Repeated systems
are  further classified as "parallel systems" which consist of
identical subsystems connected in a topologically identical
manner with long-range and non-identical interactions. They
are different from the "periodic systems™ in a sense that the
interconnections may not be 1identical and they need not be
restricted to the immediate neighbourhood.

Parallel systems may be Tfurther classified on the basis
of interactions among subsystems. When the ineractions are
such that they can be derived from a set of potential fun-

ctions, they are referred to as "potential interactions",



otherwise they are called "non-potential interactions". The

potential interactions are divided into two groups. They are
"commutative", when the interactions are such that the opera-
tors or matrices representing them commute. The interactions

are "non-commutative'", when the corresponding matrices do not
commute. The "commutative potential” interactions have some
special relations that they are amenable to simultaneous
decoupling (diagonalisation) by a single transformation. This
property 1is fully made use of in the present study. The ™"non-
commutative potential™” interactions have been studied using
the technique of operator perturbations. In the category of
non-potential interactions, only the commutative case has been
discussed.

The systems with non-identical subsystems and a general
kind of interactions have also been considered 1in this work.
This category of systems are studied by a technique known as
dual formulation. The dual formulation 1is based on the momen-
tum coordinates unlike the usual Newtonian formulation based
on geometric coordinates. In this, subsystems are modelled

individually with proper boundary conditions at the inter-

faces. They are later coupled utilising the constraints of
continuity and equilibrium at the interfaces. Here the subsy-
stems may be from different energy domains. In the present

study two important representative classes are considered.
They are structural-structural and structura l-acoustic systems
respectively. The difference between the two classes lies in
the method of dualisation of the subsystems. However, the
procedure may be extended analogously to other systems.

Figure 1.1 shows the classification of systems studied
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in this work, according to the subsystems and their interac-
tions. Periodic systems are not considered in the present
investigation and are shown with a different boundary in Fig.
1.1. In the following sections a brief review of relevant
literature on above systems 1is presented. This helps in

identifying the scope of present work.

1.5 Survey of Relevant Literature

In this section a brief survey of literature on relevant
topics is presented. This helps in identifying the scope of
the existing methods and, in turn, the need for new techni-
ques. However, to improve readability of each chapter, the

references are cited again at proper places in the text.

Periodic Systems

Periodic systems have been studied by many investigato/s.
Brillouin C53 initiated the study of the .propagation of harmo-
nic waves through periodic structures 1in discrete crystal
lattices. Mead £4911 introduced a general theory of wave propa-
gation in linear periodic systems with multiple coupling. This
was subsequently enhanced in a two-part work C503 to study the
relationship between the bounding frequencies of the propaga-
tion zones and natural frequencies of the individual substruc-
tures for both "mono"- and "mullicoupied systems. Denke et
al. Cc141 presented a matrix difference technique to obtain
harmonic response of the system. Meirovitch and Engles exten-
ded this technique, to study periodic systems, by using method
of Z-transform and modal analysis £18,533. SenGupta £76,773

summarised theoretical and experimental work on this subject.



However, there exists a class of repeated systems in
which the interconnections may not be identical and they need
not be restricted to the immediate neighbourhood. The 1interac-
tions may be elastic, elastic with damping or visco-elastic.
In such systems, termed here "parallel” systems, the periodic
structure theory will not be applicable as such. Assumption of
existence of harmonic solution 1is also a restriction in the
present case. It is desirable to adopt a suitable method of
analysis for these systems taking advantage of the identical

subsystems and nature of their 1interactions properly.

Parallel Systems with Potential Interactions

In parallel systems with multiple interactions among the

subsystenms, the method of analysis depends on the nature of
interactions. Parallel systems with commutative, potential
interactions between substructures have been studied by

Samanta and Mukherjee C713. Turbine blades interconnected with
shrouds and lacing wires are among the examples of parallel
systems with non-commutative, potential 1interactions. Natural
frequencies of banded group of turbine blades were studied by
Prohl C663, and Weaver and Prohi C893 considering the discre-
tised blades coupled through rnassless elastic shrouds and
adapting the procedure to digital computation. Thomas and
Belek [1843 presented a technique for obtaining the vibration
characteristics of a multiblade packet from the frequency
inference diagram of a two-blade packet. This inference
diagranm can be constructed from the analysis of independent
modes of uncoupled component blades and shrouds.

Tuncel et al. L&71 analysed such systems 1in two steps.



F*irst, the uncoupled blades were analysed and then the effects

of coupling, due to the interconnections, were incorporated as

perturbations. Though this method is attractive for its novel
approach, it lacked in both quantitative and qualitative
results, owing to the apriori assumption of weak coupling.

Chen and Wada C63 used matrix perturbation techniques for
studying the effect of small changes on the dynanmic response
of structural systems. Su-Huan et al. C783 developed a
procedure based on this technique to obtain the free-free
modes and frequencies of structural systems from the measured
data of the constrained systems.

However, such systems can be studied in a more effective
manner  taking advantage of both bond graph techniques and a
suitable pre-treatment followed by operator perturbation,
without resorting to the assumption of weak coupling right

from the beginning.

Parallel Systeas with CoBsutative, Non-potential |Interactions
Problems of fluidelastic vibrations of tube arrays in
heat exchangers and that of fuel rods in nuclear reactors
belong to this class of parallel systems with non-potential
interactions. Blevins CI1 discussed different mechanisms like

turbulence, vortex shedding, jet switching which can induce

instabilities of tube arrays under the action of Cross
flows. In this, Blevins presented the quasi-static fluid
force coefficients for calculating the critical flow

velocities.
Tanaka et al. C60,81-833 measured fluid forces and used

them to get critical velocities for different arrangements of
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tube arrays and fluid flow. Chen 119,1011 discussed two main
mechanisms of instabilities based on displacement and velocity
dependent fluid forces. Chen C8,11D also summarised the avai-
lable literature emphasising on the analytical techniques,
experimental results and future trends of research in this
field.

Blevins® theory C1D 1is quite helpful 1in understanding the
phenomena of flow induced vibrations with moderate computa-
tion. In the analysis of Blevins, effects of different con-
straints among adjacent tubes in the array and the dynamic
details of individual tubes are not considered. The semiana-
Iytical technique of Tanaka et al. and Chen requires a signi-
ficant amount of measurement and computation to determine the
fluid force coefficients which are necessary for further
analysis.

However, Blevins® theory can be utilised in a better way
if the non-potential nature of the interaction among the
tubes, due to fluid flow, is identified and exploited
properly.* This helps also in reducing the measurement and

computation costs considerably.

Bond Graph Based Dual Formulation

Most of the analyses of dynamic systems are based on
usual geometric co-ordinates. However, the possibilty of an
alternative (dual) formulation based on momentum co-ordinates
was pointed out by Trent C863 , Toupin C851 and Chrandall et
al. C12H. Karnopp C263 extended the idea to study coupled
vibratory systems. In Ref. €323, Karnopp studied system of

acoustic filters using dual formulations and normal modes.
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Lebrun utilised this approach in analysing hydraulic lines and
fluid flow networks C37,3QD.

In Ref. (3411, Karnopp presented four alternative formula-
tions based on mass displacements, momenta, spring impulse and
spring displacement coordinates respectively. The order of the
equation varies with the type of formulation, as discussed in
Ref. C333. Karnopp also proposed an alternative procedure of
modal analysis of the first order state equations derived from
the system bond graphs, leading to the representation of the
system in form of another bond graph. It retains the feature
of symmetry of bond graph state equations in both types of
energy variables (displacements and momenta) and both types of
excitations (effort and motion). The bond graph so obtained is
somewhat unusual in a sense that each modal oscillator (a
combination of I-C connected to an S or 1- junction) gets
depicted by an I and a C element connected by a TF with
modulus equal to the corresponding natural frequency. It gives
rise to an increase in the number of bonds 1in the final bond
graph.

However, there exists a possibility of another procedure
which 1is similar to the usual formulation. It 1is also necessa-
ry, at the subsystem level, to eliminate the high frequency

modes due to coupling compliances incorporated among the

subsystems for ease of analysis C44,45D, in case of distri-
buted systems. This will be particularly important in analy-
sing response of such systems. A necessity is felt to study

the dual formulation taking full advantage of the bond graph

techniques and develop it as a useful tool for system analysis
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through substructuring.

Margolis and Tabrizi £473 proposed a procedure of re-
peated modal decomposition of the system equation to study the
dynamics of interacting lumped and distributed systems. It is
found necessary to extend the same concept to the bond graph

adapted dual space formulation.

Acoustoelastic Systems
Systems consisting of acoustic and structural componen-
tes, termed "acoustoelastic" systems £163 were studied by Lyon

£403, Dowell and Voss £153, and Morse and Ingard £563 for

simple harmonic motions of structures. Dowell et al. £163
developed the equations for arbitrary wall motions using
Green"s theorem for the acoustic region. The coupled systenm

equation could be obtained from the 1in vacuo structural modes
and rigidwall acoustic modes. Dowell £173 surveyed the availa-
ble literature on vehicle interior noise prediction. Nefske et
al. £58,593 presented reviews of current practices for vehicle
interior noise analysis based on finite element method.
Tabarrok £803 presented a dual formulation for acoustoelastic
systems. It is felt advantageous to extend concepts of bond
graph adapted dual formulation to the analysis of such

systems.

1.6 Scope of the Present Work

From the above discussion, it is felt that there exists a
scope for an organised study of a wide range of dynamic sys-
tems, with help of bond graph techniques, taking full advan-

tage of their flexibilty in modelling multi-energy dynamic
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systems and uniqueness in formulation of system equations. The
uniqueness lies in the symmetric manner of treating momentum
and displacement variables and both flow and effort type of
excitations. This feature helps 1in extracting useful 1informa-
tion, from the bond graph of the systenm, for further
processing in simulating 1its dynamics.

The present work 1is discussed 1in the next eight chapters.
Chapters 2 to 4 deal with the analysis of repeated systems. In
Chapters 5 to 8 non-repeated systems have been studied using
dual space formulation. Contents of each chapter are

summarised 1in the following paragraphs.

Parallel Systems with Commutative, Potential Interactions

In Chapter 2 a procedure is discussed to study the dyna-
mics of parallel systems with commutative, potential interac-
tions. Subsystems are decoupled by a similarity transformation
influencing only the interactions. The process of decoupling
consists of two steps. |In the first step, a pilot bond graph
is constructed replacing each subsystem by a unit mass at the
point of interconnection and retaining only one interaction at
a time. The second step consists of construction of a decoup-
led subsystem bond graph with the constraining elements ob-
tained from the eigenanalysis of the pilot bond graph. In case
of systems with more than one commutative interactions, the
pilot bond graph with one interaction need be considered, and
effects of other interactions may be suitably incorporated 1in
the decoupled subsystem model. The overall system dynamics can
be studied with the same computational effort necessary in

analysing a single subsystem.



Parallel Systems with Non-commutative, Potential |Interactions

Chapter 3 deals with a technique to study the dynamics
of a class of repeated systems with non-commutative inte-
ractions. The system equations are formulated wusing tensor
product algebra. A  pre-analysis of the system equations is
carried out to reduce the interactions to a small perturbing
operator. The procedure of pre-treatment is adapted to bond
graph techniques for the ease of representation of dynamic
systems. It is shown that the method of operator perturbation
may also be handled very conveniently by bond graph approach.
The overall system dynamics can be studied from the analysis
of the subsystems coupled through the perturbing operator thus
reducing the size of the problem to be considered at a time.
The procedure helps in assessing the effects of different

interactions in a systematic manner.

Parallel Systems with Commutative, Non-potential |Interactions
Chapter 4 is devoted to the discussion of a procedure for
studying the dynamics of parallel repeated systems with non-
potential interactions within the framework of bond graph
techniques. This type of interaction, when decoupled, gives
rise to complex elements which cannot be wused for  further-
processing in the conventional bond graph analysing packages
like ENPORT. This shortcoming 1is removed by reformu lating the
decoupled subsystem equations to an equivalent form with all
real parameters leading to reduction in size of the problem to
be studied at a time. The procedure is illustrated by the
example of fluidelastic vibration of tube arrays in heat

exchangers. The technique 1is suitable for interactive design
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purposes because of its ability 1in assessing the effects of

different system parameters on design variables with moderate

computation and reasonable accuracy.

Bond Graph Adapted Dual Space Formulation

In Chapter 5 a technique 1is presented to study the
overall characteristics of complex dynamic systems from those
of the subsystems which are easy to model individually. The
complex system 1is divided into a number of simple subsystems
each of which may be represented by using either position-
velocity or impulse-force descriptions. The appropriate boun-
dary conditions are assigned at the interfaces. The subsystems
are then interpreted in form of bond graphs using a Tfinite
mode representation. These bond graphs are coupled through
proper elements such that the conditions of equilibrium and
continuity at the intrefaces are preserved. The overall systenm
dynamics are studied from the resulting bond graph. The proce-
dure is illustrated through simple examples. The entire analy-
sis is based on bond graph techniques and thus allows the
effective use of ENPORT packages. The main advantage of the
proposed technique lies 1in unambiguous substructuring of mul-
ti-connected distributed systems and removal of redundant
state variables. It, 1is also suitable for "stiff" systems

because of modal reduction at subsystem level.

Repeated Hodal Deconposition in Bond Graph Adapted Dual

Space .

The overall system dynamics can be studied using dual

formulation as discussed in the previous paragraph. From the
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coupled subsystem bond graphs in dual space the overall systenm
model can be reconstructed in an equivalent uniform co-
ordinate space. This again can be represented in form of
another bond graph taking advantage of a second stage modal
decomposition. The effects of damping and external excitations
can be incorporated in this model suitably. The system
response can be obtained over the required frequency range
retaining the appropriate modes. The procedure 1is particularly
suitable for "stiff" systems because of its scope of modal
truncation at both the stages of analysis. Chapter 6 deals

with this aspect of bond graph adapted dual formulation.

Role of Zero Frequency Modes 1in Bond Graph Adapted Dual Space

Formulation

The technique of analysing dynamic systems making use of
dual formulation and bond graphs has been presented in
Chapters 5 and 6. The representation of the subsystems and
their subsequent modal decomposition have been based on their
dynamic modes, removing altogether the non-dynamic modes cha-
racterized by zero frequencies. However, sometimes in a momen-
tum based formulation there are zero frequency modes which
play a significant role in the overall dynamics of the systems
and when eliminated, lead to anomalous results. In chapter 7,
the role of" such nondynamic modes in bond graph adapted dual
formulation is discussed. An algorithm is presented for
retaining these modes in the overall system model. The proce-
dure 1is extended to obtain system response taking advantage of
a second stage modal decomposition. The procedure is illus-

trated by suitable examples.
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Acoustoelastic Systems

Chapter 8 discusses a procedure for analysing the
dynamics of acoustoelastic systems within the framework of
bond graph techniques. The substructures, acoustic and struc-
tural, are modelled individually in form of bond graphs which
are coupled through suitable elements satisfying the condi -
tions at the interfaces. From this bond graph a second stage
modal decomposition is performed to represent the overall
system in yet another bond graph which can be analysed to
obtain the overall system dynamics. The procedure is illus-
trated by the examples of coupled cavities. The systenm
responses due to different external excitations are also
obtained. The technique 1is suitable for acoustoe lastic systems
which are "stiff" in nature due to the wide range of their

natural frequencies.

Conclusions

This chapter is devoted to summarise the present work as
to, its aplicability in analysing dynamic systems of different
classes alongwith 1its salient advantages. The future scope of

the work 1is also discussed.

The work concludes with a list of references cited in the
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