
ABSTRACT

Recently/ high efficiency ( > 2 0 % )  s ilicon  p-n 

junction passivated emitter solar cell has teen demonstrated 

using the V-groove/serrated emitter structure, in  this 

V-groove solar c e ll / the p-n junction boundaries are parallel 

to the oblique <111> front surface. Naturally/ the motions of 

the charge carriers are two-dimensional about the junction 

boundaries. Thus,a  1-D device model is inadequate for the 

theoretical study of such type of cell  structures. A 2-D 

device model is needed for the analysis o f this cell structure. 

To the best o f  our knowledge, there has been no theoretical 

modelling and analysis of this structure so far .

in this investigation , a 2-D modelling and analysis 

o f  the V-groove/serrated silicon  solar cells  has been done 

using the double Fourier transform technique. A 2-D ray-tracing 

model has been developed to compute the 2-D optical generation 

rates for the V-groove solar ce lls . A 2-D analytical model 

formula for these structures has been also developed using the 

double Fourier transform technique on the basis  o f the genera­

tion rate data computed by using the ray-tracing model. This 

model formula has been the key of success for the present 2-D 

device m odelling and analysis, for it  became possible to apply 

the technique of separation o f  variables with this model
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formula only to solve the relevant 2-D minority carrier 

transport equations with appropriate boundary conditions 

for the V-groove solar cells . The developments of these 

2-D ray-tracing model for optical generation rate and 

the 2-D device modelling and analysis of the V-groove 

solar cells  may be considered as the s ig n ific a n t  contri­

butions of the present investigation.

A bandgap narrowing (BGN) model has been also 

developed in which the position-dependant d ielectric  

function and the Fermi-Dirac Statistics  have been incor­

porated. This BGN model exhibits  excellent agreement with 

the existing  experimental results for n-type and p-type 

s ilico n  and germanium.

in the present work, there has been useful modelling 

on the Fermi-Dirac integrals (F D I) o f  half-integer orders 

between -3/2 and 1 1 /2  for the range - 4 .0  <. r) ^  2 0 .0  (r)r is 

the reduced Fermi energy) with an rm s  error less than 1 .0 ,  

the tolerable lim it. The BGN and FDI models have been incor­

porated in the present 2-D device m odelling and analysis. I t  

appears from our sim ulation results that more investigation  

is yet needed on BGN, because none o f  the existing  models 

can account for the experimentally found very high open c ir ­

c u it  voltage ( ~ 6 8 0  mv).
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In addition, there have been accurate and useful 

modelling on the photon-flux densities and the 1-D optical 

generation rates (for  s ilicon  over the range of distance,

0 to 1000 jjxn) for AMO, AMI, AMl. 5 and AM2 spectra. These 

modelling have been very much useful for the computation 

of point-by-point generation rate in course of the develop­

ment of the 2-D ray-tracing model.

The most o f  the algorithms and methods discussed 

in the thesis have been implemented in a solar c e ll  analysis 

code named KISCAMEL, developed by the author, currently 

running on the HP-9000, series  500 computer system. Compari­

sons between the simulation results and the existing  experi­

mental results have been made in this thesis . Agreement 

between the sim ulation results from KISCAMEL on the V-groove 

solar cells  and the experimental results has been found 

satisfactory . Thus,the present 2-D device modelling and ana­

lysis  o f  the v-groove/serrated solar cells  has been 

a successful in it ia l  step on the subject.Cop
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	fig. 5.7 Dark and illuminated J-V characteristics for the FSSC structure , depicting the effects of SRV , BGN and FDS
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	sions and the semiconductor material parameters. 2.	Numerical analysis by FEM or FDM to incorporate the position dependency of the minority carrier transport parameters,
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