
ABSTRACT

Modeling of reactors, fixed, fluidized or moving beds, is usually a very complex 

exorcise. It involves chemical reaction, heat and mass transfer with varying contacting 

patterns. Single-particle reaction features assume great importance in this exercise. Often, 

in detailed reactor modeling, a simplified single-particle reaction model is used. 

Howev er, it limits the applicability of the model. The present investigations are directed 

towards bridging this gap and incorporating detailed single particle reaction model in 

overall reactor analysis.

Gas-Solid Non-Catalytic (GSNC) reactions have immense industrial applications. 

Due to their diverse nature, GSNC reactions can not be generally explained by one single 

model. Detailed analysis of these reactions have been carried out based on Shrinking 

Core/Sphere and Volume Reaction Models. Finite Volume Method, not yet applied for 

genera! analysis of GSNC reactions, has been employed for solution. The present model 

predictions have been found to agree well with the ana! ytical solution, numerical and 

experimental results o f other w'orkers reported in the literature. Detailed parametric 

studies have been carried out to assess the effects of different model parameters on the
kten

progress of reaction. The geometric and thermal instabilities have/investigated in detail.

Combustion and pyrolysis reactions are two important examples o f such reactions. 

Combustion reactions for carbon, lignite and coal char have been modeled using 

Shrinking Core/Sphere and Volume Reaction Models, incorporating both the 

heterogeneous and homogeneous reactions. Ignition/extinction phenomena have been 

investigated. The effect of various process variables on the the combustion dynamics has 

been studied in detail. A two-stage kinetic-heat transfer model is developed for the 

pyrolysis of biomass and experiments carried out to verify the model. The model is found 

to explain the pyrolysis behaviour of large and small biomass particles adequately. 

Parametric studies have also been carried out.
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Combustion data on high ash Indian coal in fluidized bed is still limited. Some 

useful experimental design data have been generated for combustion of high ash Indian 

coal and biomass in a batch Fluidized Bed Combustor (FBC) fabricated for the purpose. 

Single-particle combustion o f high ash Indian coal and electrode carbon is carried out in 

FBC' and the mass-loss and temperature profiles are used to validate the combustion 

models developed. Finally the detailed single-particle reaction model has been 

incorporated in overall reactor analysis of Fluidized Bed Combustor for the combustion 

of coal char.
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