1.1 INTRODUCTION

Claessical optimization approaches evaluate a
decision with its performance on a single criterion, e.g.,
maximization ©of profits or minimization of total distance
travelled. A single criterion model is usually the
simplified form 0f the reality which sometimes leads to
a wrong decision. For instance, in water resources
development the design of projects and programmes is
based traditicnally on the estimation of national benefits
and costs. A more realistic analysis would include environ-
mental, social and regional objectives as well. In complex
systems, a good decision is possible only when the multi-
plicity of criteria are taken into account. Such decision
proplems are referred t© as the Multiple Criteria

Decision Making (MCDM) problems.

Multiobjective programming is a powerful mathematical
Procedure in the area of Operatfons Research in making
good decisions. It has awakened widespread interest ang
acceptance among the researchers, decision makers,
managenent scientists and others for its wroad applicacility

to real world decision making problems.

In the recent past it has become more and more
obvious that comparing different ways of action as to
their desirability, determining optimal solutions in
decision problems in many cases can not be done by using
a single objective function. Thus multiobjective analysis

has led to numerous evaluation schemes.



Malticbjective problems arise in the design,
modelling and planning of many complex resource ailocation
systems in the areas 0f industrial production, urkan
transportation, health care, layout and landscaping of
new cities, energy production and distribution, wildlife
management, oOperation and control of a firm, portfolio
theory., agricultural and live stock production and local
government administration to mention a few. We now

briefly indicate the nature ©f these problems.

Research organizations are often faced with the task
of evaluating a large number of proposals that compete with
each other for the allocation of limited resources. The
management is interested in the application of methodo-
logies of multiobjective programming useful in the

selection of a choice set of projects.

Multiobjective problem o0ften arises in the zlloca-
tion of vehicles for the deliv@ry of finished products
to destination points. An excellent review and application
of multiobjective methods to the evaluation of trans-

portation plans is given by Hill [7].

Public investment is another area to which
maltiobjective programming is applicable. Managerial
decision problems regarding water resource systems,urban
transportation planning, educational establishments, city
corporations are just a few examples of the problems in

this area. In the evaluation of urban transportation



plans we can consider the objectives as the reduction

of air pollution, noise, accidents and fiscal efficiency.

In multiobjective programming the objectives are
normally conflicting in nature. For example, the most
direct route for an urban highway will usually maximize
accessibility and fiscal efficiency but gives a high
level of air pollution and noise impacts. Onr the other
hand, a circular route will have less air pollution and
noise but requires longer travel time and more coast of

travel.

In a MCDM problem, the cbjectives are inherently
competitive among themselves. Unlike an unigue optimal
sclution in the case of a single objective function, we
get a set of 'efficient' or 'non-dominated' solutions in
the case 0of a multicbjective problem. The problem then
is usually to select one of these ‘efficient' solutions
according to some physical or theoretical extra infor-
mation inputs. There are broadly three types of solution
procedures tc select the preferred soluticn out of a
set of tefficient' sclutions for a multiobjective

programoing problem. They are known in the literature as

i) Global modellings,
ii) Interactive procedures,

iii) Outranking methods.



In global modelling methods one constructs an
overall decision function corresponding to the objectives
and optimizes the decisicon function within the constraints
of the problem. In general this methodology finally leads
to a linesar programming or a non-linear programming

problem.

In the interactive procedures, one first generates
a set of 'mon-dominated' sclutions and offers them for
evalustion by the decision maker. Having the reaction
inputs from the decision maker in the form of trade-offs
among the objective values, one generates another set of
‘efficient' solutions or a single 'efficient® solution.
If the decision maker is satisfied with one of these
solutions the process is terminated. However, if the
decision maker further interacts with these new solutions
and offers trade-offs between the Objective values the

process is repeated.

The conflict among K criteria invelved in a MCDM
problem reflects K different orderings of the set of
alternatives. In global modelling the decision maker
aggregates thése orderings into a single one using an
overall criterion. However, in social choice area where
the criteria are interpreted as voters, such an
aggregation is not realistic. The problem then is how
to construct a relation which best reflects the individual
orderings. The investigations of outranking relations

(fuzzy or non-fuzzy) are aimed at solving the above problem.



In an outranking method, one constructs an outranking
relation and then exploitslthis relation in ranking the
alternatives. We may mention that the cutranking
procedures are of use even in some Of the real world
problems of multicri£eria decision making apart from the

problems ©f the social choice area.

1.2 TERMINOLOGY

In the MCDM literature, the most often used words
and phrases are objectives, goals. criteria, non-dominated
solutions and compromise scolutions. These terminclogies
together with some other relevant concepts are introduced
which are necessary for the development ©f the theory

involved.

Objectives :

An objective is the reflection 0f the desire of
the decision maker and generally indicates the direction
in which he should strive to achieve his geal. For
example, the objectives of the government in devising the
acceptable plan would be to maximize the national welfare,

to minimize dependence on foreign aid etc.

Aspiration Level :

An aspiration level is a specific numerical value
assigned to an objective according to the desire 0f the
decision maker. It is expressed in terms of a measure of

the achievement 0f an objective.



Soal :

An oObjective specifieqd with an aspiration level
is termed as a goal. An objective indicates the desired
direction whereas a goal gives an aspired level of

achievement in the desired direction.

Criteria @

aAn aspect of the problem acting as one Of the
standards ©of judgment to test the acceptability of an
action or decision is called a criterion. Criteria
usually emerge as objectives in the actual probklem

setting.

Criterion Space :

Let xl, Xosr seme A be the n number of gdecision

variables and let Zl' Zyreees 2, De the K number of
objectives which are functions of the decision variables.
We can represent the decision variables (x1, Xeeonr xn)
3 . . n
and the objectives (Zl. Zys ene Zk) as a vector in E
and Ek respectively where £” and Ek are n—-dimensional
and k-dimensional Euclidean spaces. For each point x¢€ X
in the decision space, i.e., in En, there corresponds a
k-tuple (2,{x), Z,(x),..., Z (x)). The set of such
k-tuples obtained by mapping the points of the decision

space to the k-~dimensional space is known as the

criterion space Or objective space.



Non-~-dominated or Efficient Solution :

A non-dominated solution is one for which none
of the objective functions can be improved without a
simultaneous adverse effect on at least one of the Other
objectives. That is, a point 5* is said to be non-

dominated if there exists no other point x¢ X, such that
* ) H
21(5 Y < 21(5)=¢ i, i =1,2,..., k.
* ’ -
zj(5 y < Zj(g) for at least one j.

The non-dominated solution is also known as pareto-

optimal seolution, non-inferior solution, or efficient

solution.

Efficient Frontier :

The set of all non-dominated solutions constitutes
a frontier known as the efficient frontier in the
feasible criterion space. Figures 1.1 and 1.2 depict
continuous and discrete efficient frontiers for a MCDM
problem involving only two Cbjectives 21(5} and
zzt-i;) . gl= (zi, z;) and g2= \z;]' zg) are two non-

dominated points on the efficient frontier.
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10

1.3 METODS OF SCLUTION

The criteria involved in a MCDM problem are often’
conflicting and non-commensuranle in nature. Conflict
among the criteria does not allew a solution to be optimal
with respect to all criteria. That is, an improvement in
the achievement level of one is not possible without
adversely affecting that of another. Consequently, there
exists a muitiplicity of.alternative solutions called as
nen-dominated or non-inferior feasible solﬁtions. In such
cases, we do not have an optimal sclution, rather we can
choose a geod compromise solution. The first step, there-
fore, is to cbtain the complete set ¢©f non-dominated
solutions for the problem. The choice of the best among
them, suited for the decision maker will be known after
prescribing some additional criteria. Detailed
descriptions of multiobjective analysis and its solution
procedures for obtaining an efficient compromise soluticn
is discussed by Cohon (3], Hwang and Masud [8] and
Goicoechea et al. [4]. There are several methods
available to generate a set of non~dominated solutions.
We discuss Qome of these methods wnich have been used in

the later chapters of the thesis.

The Weighting Method :

2 multiobjective problem may be transformed into a
single optimization problem by assigning weights to the

various objective functions for which solution methods
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exist. Generating a non-dominated set of solutions by
parametrically varying the weights was first proposed

by zZadeh [25].

Using weighting method, the multiobjective problem :

Max Z(xl.xz....,xn) = [ Zl(xl,XQ,....xh).zz(xl.xz...-.xn),
.ees Zk(xl;xz,....xh)]'
subject to (xl, Kyreves xn)e X

-

is transformed into the single optimization problem :
k

Max Z(xl,x N P xn) = iiiwizi(xl.xz,...;xn}

; =]
Sub]ect to (Xlo )czfto-c xn) X.

The co—efficient‘Wi operating on the ith objective function
zi(.xl.x ,...xn) is called a weight and can be interpreted
as the relative importance of that objective when compared
to the other objectives. If the weights of the various
objectives aré interpreted so as to represent the relative
preferences of thé decisioh maker, then this solution is
egquivalent to the best compromise solution. This solution
is a non-~dominated solution provided all the weights are
positive., Several weight sets can generate the same non-
dominated point. The solution obtained by the method
depends only on the choice of Wi. We may mention that this

ﬁeighting method is a global modelling technique.
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The Lexicographic Method :

In many decision problems some of the goals are so.
important that unless thesé are achiéved, the decision
maker can not consider the achievement of the other goals.
This method requires that the objectives be ranked in

order of importance by the decision maker.

Given the miltiobjective problem with k Objectives,
Max z{x) = [ 2,(x), Z{x)...., Z (x)]

subject to x €X

the Lexicographic method can be described as follows.
Assume that the objective function zligj is the most
important and the objective functions have been ranked

according to the priority list 2,(x),2z,(x),....2 (x).
Hence, first one solves the specified problem
Max Z, (x)

subject to x€X.

If @, denotes the optimal value of 21(31, then in the

second step One solves the problem

Max 22(5)
subject to 21(5) = Q..

x €X.
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1f @, denotes the optimal value of Z,(x), then in the

.third step the problem

Max Z,(x)
subject to Z;{x) =¢;, (i =1,2),

X €X

is solved and so on. In general one solves the following

problem at the mh step @

Max 2Z_(x) , {m< k)
subject to Zi(z} =6, (i-= 1,2,0..,m=1},

XEX.
If problem is unbounded, then no solution is said to exist.
The procedure is terminated as and when a unigue solution

is obtained at any of the m stages. This solution will be

the preferred sclution to the entire problem.

1,4 MEIHODS FOR PRIOR ARTICULATION OF PREFERENCE GIVEN 3

Once the set of non-dominated solutions for a
multiobjective problem has been identified using any of
the methods described in the last section, a decision
maker may be éble to select one of those non-dominated
solutions as his final choice. However, the situation may
arise where the decision maker is unable to choose one of
those solutions made available to him and would like to

introduce his preference regarding the various objective
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functions in the search for that choice solution. Ihis
section presents the methods where the decision maker is
asked to articulate his preference structure and these
preferences are then built into the formulation of the

mathematical model for the multiobjective problem.

The preferences are assigned by various weighting
schemes, constraints, goals and utility functiens, etc.
All of these methods have a common feature of identifying
a non-dominated solution as a best compromise solution.

We now give a brief account of some 0f the

existing methods.

Utility Function Method :

In gall of the utility function methecds the multi-

objective problem is converted to

- Max UEZl(z). Zy(x)seeesz (X)] = u{z)

subject to x€X

where U(Z) is the utility function of the multiple
objectives. Thus the methods require that U(2) be known

prior to scolving multiobjective problem.

Normally, a utility function is defined over a set
of attributes with values in the set of real numbers. For
multiobjective problems utility function can order
completely the set of non-dominated solutions. A utility

can be associated with each non-dominated sclution and
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the solution with the highest utility is referred to as

the best compromise solution.

The major advantage of utility function methods is
that if U(Z} has been correctly assessed and used, it will
ensure-the most satisfactory solution to the decision
maker. The solution will be_a point at which the non-
dominated set of solutions and the indifference curves
of the decision maker are tangent to each other
(Keeney and Raiffa [12]). The indifference curves are the

set of curves which have the same utility along each.

Goal Programming 3

A decision situation is generally characterized by
multiple objectives. Some 0f these objectives may be
complementary., while others may be conflicting in nature,
-Goal programming allows the decision maker to specify.a
target or aspiration level for each objective function. a
preferred solution is defined as the one that minimizes
the sum 0f the deviations from the prescribed set of
aspiration levels.

The goal programming was originally proposed by
Charnes and Cooper [2]. It has been further developed by

Ijirt {111, Lee [13] and Ignizio [1C].
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Formulation of a simple goal programming problem

is given by

K
Min 3 = ¥ p, (& + 4]
i=1 i 1 1
subject to z (x) + 4] - dI =b, i i=12,....k
- +
Et dil dl 2_ Ol

where b, -~ the target for goal i ,

1
d; - the underachievement of goal i ,
di - the overachievement 0f goal i ,
p; - priority level for the i™" goal ,
a ~ the function of deviational variables known

as achievement function,

Though goal programming is one ©f the most widely used
technigques for solving many real world managerial malti-
criteria decision making problems, it has gdt some drawbacks.
The weak points of the methodology are that the assessment
of aspiration levels and priorities are subjective, Moreover,

it does not guarantee a non-dominated solution.

1.5 USE OF FUZZY SET THECRETIC CONCEPTS IN MCDM

In some decision problems the criteria themselves are
defined qualitatively rather than quantitatively. For
example, in hiring a new faculty member in the Industrial

Engineering Department, the department sets the following
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set of goals :

(1} The candidate should be young .
(ii) The candidate should be eduéated in a
famous cecllege ,

(iii) The candidate should be experienced in industry.

In these goals the underlined terms are responsible for

the fuzziness which has been expressed qualitatively

instead ©of gquantitatively. Moreover, in realistic situations,
it is not always rational to assume rigid limits to the
existing resources. That is, the constraints involved in =a
decision problem are not generally strictly binding. In

view of these reasons, Bellman and Zadeh [1 ] have suggested
that a MCDM problem is better modelled using fuzzy set
theoretic apprcach, where objectives and constraints are

expressed as fuzzy goals.

Zadeh [26] 1laid the initial foundations of fuzzy
set theory in the year 1965. This hés induced an increasing
intefest among the researchers because of its remarkable
usefulness in dealing with inherent vagueness or ambiguity

involved in variocus realistic systems.

Decision making in the real world of human interaction
and in socio technological design, planning and management
processes with humanistic intervention is wvery often vague
and imprecise. It is equally imprecise in legal, medical

and environmental contexts. Conventional precise mathematics
!



18

has not helped us in the understanding of human Qecision
processes in such tasks. An underlying philosophy of the
theory of fuzzy sets is to provide a strict mathematical
framework, where these imprecise conceptual phencmena in
decision making may be precisely and rigorously studied.
For very highly precise complicated and detailed models,
Oone needs eqﬁally an elaborate system Or measurements. In
many industrial processes, this is difficult to achieve.
Supervisory personnel with years of experience can
express their control processes effectively in linguistic
terms, but.not so effectively in mathematical terms. For
an example, 'the possible amount of annual profit of a
given firm should be substantially large'. This type of
expression is generally ill defined and can be well
formuilated by the use of fuzzy sets. Thus fuzziness is
inherent in human attempts tO conceptualize, categorize,
classify and relate all perceived phenomena. Fuzziness is
not synonymous with probability. Probability deals with
uncertainty concerning membership or non—memﬁership of
an object in a non-fuzzy set. On the otherhand, fuzziness
has to 4o with classes in which there may be grades of
membership intermediate between full membership and
non-membership.

Before diécussing some aspects ©f decision making
in fuzzy environments we will review some of the basic
concepts of fuzzy sets and thelr operations as 1t applies

to MCDM problem,
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Fuzzy Sets ¢

Informally, a fuzzy set is a class of objects in
which there is no sharp boundary between those objects
that belong to the class and those that do not. A more

precise definition may be stated as follow:
Definition :

Let X be a set, denumberable or not, and let x be an
element of ¥X. Then a fuzzy subset A of X is a set of

order pairs

A:{x,l-LA(x)} ¥ x € X

where uA(x) is the grade or degree of membership of x in A.
Thus, if HA(x) takes its values in a set M, called the
membership set, one may say that x takes its value in M
through the function MA(x}. This function will be called
the membership function. When M contains only the two
points C and 1, A is non-fuzzy and HA(x) is identical to

the characteristic function ¢f a non-fuzzy set.

Example
Let x = {5.5,7} . be possible heights {(in feet) of
some people. Then the fuzzy set A of 'class of tall people’

may be defined by a certain individual as
A = {5/0.7, 6/0.79, 7/0.85}' .

Next we will refer to the following basic concepts.
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Eguality :
Two fuzzy sets A and B are said to be equal

{(denoted A = B) iff

.UA(x) = uB(x} ¥ x € X

Containment ¢

A fuzzy set A is contained in or is a subset of a

fuzzy set B, written as A B, iff uA(x) < Hplx).

Complementation 3

A fuzzy set B is salid to be the complement of a

fuzzy set A iff

JJvB(x) =1 - H-A(x) ¥ x € X,

Support :
The support of a fuzzy set A is a set S{(a) such that

x €s(a) <= U-A(x) > O, The support of a fuzzy set A is a

ordinary subset of X,

Normality 3

A fuzzy set A is normel iff Sup MA(x) = 1, A non-
X

empty fuzzy set can always be normalized by dividing

MA(x) by S;p MA(x).
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G-Level Set :

The €-level set of a fugzzy subset A of X is a

non-fuzzy subset of X denoted by A, and is defined by

Aa = (x | ‘-"A(X) pd €, x€X).

Union ¢

The union of A and B, denoted as & U B, is defined
as the smallest set containing both A and B, The member=-

ship function of A2\ B is given by

uAUB(x) = Max '(H-A(x), uB{x)) ¥x € X.

Intersection :

The intersection of A and B is denoted by AAB angd
is defined as the largest fuzgy set contained in both A

and B. The membership function of AN3 is given by

IJ-A = Min (.UA(xl, HB(x))vx e X

nB(x)

1.6 FUZZY MATHEMATICAL PROGRAMMING

The basic problem in decision making is how to
choose a course Of action when multiple decision criteria
need to be taken into account, There is no optimal solution
in which all the objectives are similtaneously maximized.
Thé objectives are frequently incompatible and a decision
maker mast find a compromise solution. Moreover, in most

of the real world MCDM problems goals and/or constraints
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which constitute the envircnment of the decision process
are usually not precise. For example, the targets of
production, profit, etc.., usually can not be ascertained
precisely. These type ©f situations are better modelled
with the help of fuzzy set theory. Approaches ﬁhich s0lve
the vectormaximum problem (VMP) efficiently and at the
same time model a decision problem properly are still in
demand. Fuzzy mathematical programming can be regarded as
an example 0f such a method. It can model problems which
can be described by either crisp or fuzzy relations and

it can solve multiobjective models with reasonable effort,

In a multiple criteria decision problem the difficulty
occurs because of :
(a) the objectives and the constraints are not precise and

() many objectives are involved in the decision problem.

The difficulty due to the imprecise nature ©f the
system is handled by the use of fuzzy set thecry as
mentioned above. The difficulty encountered because of the
number of objectives involved can be eradicated by developing
a decision function which is nothing but a representation
function of all the objectives. Based upon this decision
function a decision maker can select one alternative from
the space of alternatives which is best suitable for the
decision prokblem. More precigsely if we have a set of
alternatives, the decision function associates with each

alternative a real number which indicates the measure of
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satisfaction of that alternative over the decision
criteria involved. The usual procedure is t©o select the
alternative with the highest value produced by the

decision function.

Now the main problem is to obtain a suitable
decision function by aggregating all the objectives.
Aggregatioﬁ of objectives with different operators on
fuzzy sets results in different decision functions
reflecting different concepts in modelling preferences
( Bellman and Zadeh [1], Zimmermann ([27,28,29), Yager [21],

zimmermann and Zysno [301, Luhandjula [14]1 )}.

In the next section we discuss about some ¢0f these

operators which help in aggregating the objectives.

1.7 MODELLING DECISION FUNCTION USING VARIQOUS OPERATORS

It is intended to design an cperator for the
aggregation of fuzzy sets. The different forms of decision

function using various operators are discussed below.

Minimum Operator :

A decision in a fuzzy environment has been defined
by Bellman and Zadeh [1] as the intersection of fuzzy sets
representing.either.objectives and/or constraints. The
grade of membership ©f an objective in the intersection of
the two fuzzy sets, i;e., the fuzzy set decision is
determined by the use of either the min-cperator or the

product operator,
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Assume that we have k objectives Z,(x). Z,(x),...,
Z (x) and m constraints 91{5}, 92(53,..., 9, (%) defined

over a decision space X. Let Mo (xY, B (x),eee, B, (x)

1 % %y
HoAx), ¥ {x),..., 8 _ (%) Dbe the respective membership
91 92 T %m ~
functions of the objectives and the constraints. Then
according to Bellman and Zadeh [1] the fuzzy membership

function of decisgsicn D is defined as

™., )Uzk(gzl/\[ g (0.

ugzcg},...._ugktg)J

where the symbol /A stands for infrimum,

. Phe optimal decizion can be obtained as

Max M (x)

xex

Zimmexrmann [28] has introduced this concept in
vectormaximum problems. He has defined the membership
function of the decision D for a VMP as

»U- (}C) = Min (u (x)) rs i = 102;...: kc
D= , Z, =
i i

Now the optimal decision is obtained by maximizing

the decision over the feasible space, i.e., by determining

Max Min (K (x})
i i

XxXeX
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The above maximum can be found by solving the

following linear programming problem,

Max Min (Mz (x)) = Max A
i i

SUb.ject to )\ :S. ’u'z (l{]l i = 1!2000-1 k

i
: ‘(x b' i =1121001‘ in
9;{x} < by ]
x> 0. (original constraints)

Following Zimmermann [28], the memvership functicn 0% the

objective Z,(x} is defined as follows :

»
1 2, (x) 2 2;(x)
G = JEETE T mn g
H x) = — L Z.\x) £ 2, (x,
—_— o — -_— —
23 zZ, (x;)- 20 * * vt
min
0 z;{x) < 2,

* |
where ﬂfx Z(x) = 2,(x;), {( 1 =1,2,..., k),

Z?inv

S *
Min Z.(x-):
i
and x; is the optimal solution for the objective 21(5}
when solved individually as if the other objectives are
not there.

This is a MCDM model in maximin sense. This model
ensures a minimum degree ©Of satisfaction ©f each criterion

and is known as the competitive model, This reflects
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equal importance of each criterion. Alsc the optimal
solution obtained by using this operator is an efficient
solution. Tanaka et al. [20}, Hannan [5,6] have discussed

fuzzy mathematical programming based on this cperator.

Maximum Operator 3

A multiobjective programming problem modelled with

max-operator is given by

Max Max (M, (x)) = Max &
i i
subject teo
->—,U.Z (Z)’ i = 1}2‘000;' k
1
.(X} < b-f i = 1;2;.-. m
2y & 2 7y . ‘
x2 0.

This model is called fully compensatory in the sense that
it achieves the full satisfaction of a single goal. The

- full satisfaction of one goal is considered as compensation
for lower degree of satisfaction of the other goals

(Yager [22] ). This model has rarely been used to solve

any MCDM problem because of its stress on the optimization

of a single criterion.

Compensatory Operator :

Several operators have been proposed for the
aggregation of fuzzy sets. However, they do not seem to

be very suitable for modelling the real world problems.
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All the operators suygested for the intersecticn,result
in membership grades between zero and minimum and those
suggested for the union, between maximum and one,

respectively.

Empirical studies of Zimmermann and Zysno [30} on
the suitability of various aggregating operators to define
an appropriate decision function reveal that subjective
aggregation processes in the framework of human decision
~always show some degree of compensaztion which does not
correspond to the logical connectives 'and} and ‘or’

{(i.e., fully competitive or fully ccmpensatbry). Therefore,
the authors have suggested a class of hybrid operatcrs
called compensatory oOperator with the help ©0f a suitable
parameter of compensation. The formulation ©of decision

function using compensatory cperator is given by

(1-7) Min (MZ (x}} +7 Max(uz (x)), Og7v g 1.
i

i
They have, However, not given any method for determining

the value of 7.

Recently Rac et al. [16] have developed a method to
determine the value of 7 dependening on the inherent
compensation in the realistic human decision situations.
In this method the personal utility function 1s suggested
for obtaining the risk attitude or compensatory behaviour

of the decision maker.



