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CHAPTER I

GEHERAL INTRODUCTION

1.1. Intreoduction

A discrete declsion precess is a process in which a

finite or infinite sequence: of deeisions is executed on a
system, serially at different points of time (epochs) and
sach decision earns a return or reward {cost may be regarded
as a negative reward). There 1is also usually 8 system of
discountlng which inflates or deflates the returns from
future decisions, In a general set up the decisions, rewards
and discount factors at any epoch may depend on the epoch,
the current state and the histery ef the preocess, The number

@f deeisiens te be taken may g kﬁaun from beferehand, If
-. ltogather T-deeisions have to be taken the process is called
a T-horizon process., If T 1is infinity {or if the_numhe:_gf
decislions to be taken are indefinite), the process may be ’
called an infinite horizon process, The objective is to find
the 'best! sequence of decisions with respect to a specific
optimality criterion., PFor rigorous definition of a general

diserete decision process in mathematical terms one may ses,

e.g., Portems (1975h), Hindemer (1970), and WeRg (1974).

In a Markev declsion process the declsgions, rewards and
discount facters at any epoch depend only on the epoch and on

the current state of the systém and not on the past history,



A detailed definition of a general Markev decision process
can be found in Kreps (1975), 8trauch (1968), Blackwell
(19%8). and alse in Periteus (1975b).

1,2, The Model of the Present Thesis

The eclass of Markov decision processes with which the

present thesis is concerned can be outlined as follows.

A system can be in any one of a finite set

8 _.-{1, ceves K} of states at any epoch n, n = 0,1,2,4004y.
A% state 165 ‘& finite (non empty) set of setions or deci-
sions ke A(1), A(1) =£1,2, ..... K(1)} 1s open to the
decision maker; the set i\éJSA(i) = A 1s called the action
space, If at any epoch n *.;he system 1s in state i, 1£8
and an action k, k& A(1) dis _plexaented, then the systam

¥

Wy & [ernsitien to.skate 1, JC/S with a probebility Py i

_ N
% X k a1y °
Piy 2 0 jfl Fig =1, 1, £8, keca(l) ; (1.2,1)
the triplet (i,k,jY € S x A x 8 is referred to as a tran-
sitien.
An  N~dimensional column vecter

= (£(1), £(2), esesss f(H)}', i) € A(1), i=1,8y...4y N,
is ealled a decision fm( tien of policy functien (pelicy),
wvhiech 15 & map I_froﬁ{ 8 inte A. The set of policy functions



is denoted by F and is oalledNthe policy space. The

policy space is isomorphic to 1Xi A(1) and is finite.
=

The N x N matrix ((Pr(i)

yy V) = RO, (1.2.2)

is called the transition probability matrix corresponding to
f, T&F,

It is assumed that a decision funetion is executed at
each epoch n, n = 0,1,2,,.,.., . The interval (n, nel) is
called the (n+l)th stage. The policy followed at the nth

spoch 13 denoted by

-

1
f'n+l - (fn"_l(]” fn‘_l(g.‘, fn"_l(a)'j L I IR A fn+1(N)) H

fTaEF, N = 0,12, ceveaee
If altogether a finite number T of dscision functions ars tog
be implemented on the system the sequenoa.{fl, £0) eoss f?} = Wy ?
called a T-horizon strategy; and T is referred to as the length [

of the planning horizon. When the planning horizon is very large
or does not have any definite or forseeable end, we may =ay that
we have an infinite planning horizon (ef, Koopmans, 1987), The .
corresponding strategy is called an infinite horizon strategy and
18 denoted by w» = (Ql,ﬂa, PR rT, vens)s The classes of all

T-horigon and infinite horizon strategies ars denoted by Ahz
and & respectively, If an identical poliey f ig fellowed

at esach epoch, the stratagles Tp and w7 are called stationary



and are denoted by fr and r“’ respectively, The class of
all stationary T-~horizon and infinite horizon strategles are
denoted by VT and Vv  respectively, Obviously VTCAT
and V¥V Cc A

Tt i® assumed that there is an immediate stage-wise

rewvard r:j sy 0¢ rlitj < m# assoclated with every transition

(L,x,JY)EB8xAx8, If a decislon function [ is executed

at any epoch a transition (i, f£(1), J) +takes plasce with
£(1)

robablilit
P y pij

280 that the sxpected immediste reward at
state 1 1is

f(i)‘ £{1Y

N
I'(i, f(i)’ = r(f)(i) = 2 D rij -3(i=l,2;ts.ccn),

=1 1
(1.2,3)

The N-dimenslonal column veoteor

rCE) = (2(1y 21, craeey oCN, LY, (1,2.4)

1s called the expected immediate reward vector assceiated
with poliey fEer .

There is slsc a stagewise discount factor z?i :

0 5“:3 < @ assoclated with every transition (i,k,J)ES x A X 8,
vhich 18 a sort of accumulator or multiplier (see 8ec, 1.8)

used to determine ths prasent valuwes of rewards earned after

this transition, Por example, suppose f and g are the

¥ More generally, 1‘;3 may take finite negative values also,

Hovever, .im the present dissertation, non-negativity of rjk_j
1s assumed.



policy functions implemented on the system at the nth and
the (n+l)th epochs respectively and we are interested in
obtaining the present value vectors of r(f) and r(g) at
the nth epoch., Ths present value vector of r(f) 1is
r(f) 1itself, but the present value wveetor of r(g) is

r{1 £(1
vhere (L) = ((pi; ) ¢1§ ) ) (1.2,6)

80 that the ith element of the present value vector ls given

by

N (1) £
13 {"

331 p 13 r{J, s(J)i}.

This 1s because the present value vector of »r(g) depends on
the probsbilities and discount factors involved in the tran-~
sitions sssociated with the preceding decision funetion £ °
for a transition (i, £(1), J) at the =ath epoch, the jth
element r(j, g(3)) of r(g) will be discounted by gf}i).

8c the present value of r(3j, g(J)) due to transition

(1, £(1), §) 1s aiji) r(l, £(J)). 8ince this transition has

a probabiiity pigi)

forw given by (1,2,8), The N x N matrix () given by
(1.2.68) 18 called the Markov matrix or the transition matrix

the present value vector of r(g) has the

associated with fLeF and its (1,jYth elemwsnt, the transition
measure (cf, Hinderer and Hubner, 1978) assocliated with the
transition (1, £(1), j). Klements of P(f) are boundsd



£(1) £{1)

sinece pid and aia are both bounded for every

(1, £f(1), &2 8 x Ax 8. 8o the tetal present value at
nth epoch for executing £ and g at nth and (n+l)th

epochs respectively is
r(£) + P(£) r(g) .

Now consider a given T-horizon (T < e} strategy

Ty = .{f ’ 52’ veers Iy }.. The expected immediate reward

vector of f, s 2 =1,2,.0... T 18 r(fn) and its present

'ﬁéineureetém+£preetedzdisae&ntgd&gawaxdgfeeter) (ef, Iwameoto,
1974; Schal, 1975; Serfezo, 1976) at Oth epoch is

_n-1
B(fy) P(£p) evevees PG 5) 2(£) =P () r(£),

n ﬂlgg, TR T’ say

(1.2.7)
where B (m) = AL P(f), npl (1.2.8)
is an n step transitien matrix,
| o0 . |
and P(n)=1, for n=0 - (1.2.9)

is am identity matrix. Hence thé tetal present Value'vegtéﬁf
or the tetal expected discounted return reotor for e;éﬂﬁting

the sequence fy, fg, eeevs Ty  of ddcisien fggggkgﬁﬁzfar

l‘l_#:,_,l-_g?,..... T-1 , is -



SR (1.2.10)
= X P (m) r(f_..) 1.2.10
tx0 i t+l
t 0

whers B (wp) @nd P (wp) are of the form given in (1.2,8)
and (1.2.9) .

If the plsnning horizon is of length 7T , 1t 1s assumed
thet with epoch T & terminal reward or serap valus vector
(Howard, Vol.II, 1970}, € = (a3, eg, vcss 0f)' 2 0 18 asso-
clated, Its present value at Oth epoch 13
B(£y) -I;(fg) . 3 "fa(fT) ¢ , Wwhich may be called the selvage
term (ef, Wagner, 1970). 8o the total expected discounted

return vector associated with "y is

r — — i
r (m) = r(f)) + P(f)) 2(f3) + wous + P(£3) eas P(Ly,4) r(f))

LR

Foavees + B(£) o0y BlLy 1) T(L)

+ P(£)) coees (L) C (1.2.11)

T=1 a I 4
¥ 1.2.12
= 2 Pm)r(f Y +F (n)C ( )

n=0

In particular if the starting state is 1, 1£8 the total
reward sarned is given by the ith element rr('arr) (1) of

rT(.,rT) . Thus



B
T (-rr.r) (1) =

3 PR f(

r(i,fl(i))+j§l 5 %

r(3, £3(3))

] (1) fp(d) £,(1) f2(D)

+ X p

Ky £o(k
Jpk=l 1 Px a3 g 700 B0

4- PR NN NN E NN NN N I N N RN R L I S L

).

z f1(0) £o(3) £ £, £, £ (W)
+ P P eed BT a « o e Bl 3 rayd
i s
e PR T T

+ ....O........D....l..D.I..Ct.‘........'.....

LI £, (1) fp(m) £ (1) £ ()

*e sen & G te
+ > , pij . ng aij m' n
j’k’ ..h,l’ *.m zl

i = 1,2’.... H.
© (1.8.,18)

n
Thug r ('"'T) is the total expested discounted return assesia-

ted with the part (f)sfo, eee.e £), g Tl of

' T
'H'T =4 {fl, fz’ eseney fT} and r ('frT) m the fatal expeeted

dizgeunted return associated with tke whole strategy Ty

When Tep is stationary, that 1s Ty = fT, fel ,

{(1.2.10) and (1.2.12) take the forms

N~1 t
2y = ) P () x(0)

-- T | ..
and g-T(‘fT) = BE:; ’Pn(fr) r{(f) + P (rr) ¢ £152,14)
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- - n
respectively, where P (Iz) =[.P(f}] sy 2= 0,1,2,,,,.. T.

k
When oy = o 4 & constant for every (i,k,j) £ 8 x A x 3

(1,2.8) and (1.2.8) take the forms

- (&
P(f) = ((« 91; ))) = & P(f) (1.2,185)
" n n " Pn
B = = [ « P(£) = o P () (523)
end P (mp) _;;ia:[l Be,) gi & "
(102.16)
where Pn(ﬁ't) = P(fl) sreren P(rn)’ n z 1 9 (112.17)

the (i,j)}th element of Pn(vT) denotes the probsbility of the
system to be in state j at the nth epoch given that it
atarted in state 1 at Oth epoch, In this case (1.2,12),
(1,2.13) and (1.2.14) respectively take the foras

rT('ﬂ‘T) = r(fl) + P(fl} r(fz) ¥ sesvsevenvan
n-l
"' G P(tl) LA N N J P(rn"'l) r(rn) + LE N NN NN N

» @ TIR() B(fg) ue P(E, ) R(LD)

* aT P(r]-) TR P(rr) C e

T-l
n N 4
"I € Pm) R(f) v P(rg) €, (1.2,18)
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T F (1)
r (ﬂi)(i) = r(l,£7(1)) + @ Jii pij r(J,fé(J7)
[} £ (1Y 1,(3)
+ ot 1 p 2 r(k,fé(k))

P
Jok=l  iJ Jk

+ I EEE NN EESENNERENN N NNNEENENNE NN NEERLNENDNE RS

N
n-l £, (1) fo(1) £ ()
+a Z: pii‘ Pip o phg'l r{l,f,(1))

J,kttnh’lzl
¥ sascesvnrnessvsecnosrrasnnsessantesee
~— () £ fyp(w
T f3(1 m
+ o > atte P 1 se P n-f ee P Tl c" ¥
a’kr chglo om,m' =1 13 hl wmH
for 1,1,2540400 M. (1.2.18)
and .
Tiely = B 2P +a" P o (1.2.20)
nwd

where Pp(rT) iz an n step transition probability matrix

under the polioy funetion £ .,
Now we consider the limiting case, when the horizon
length T tendz to o0, In this case the strategy
r = {fv for eenes rn....} £ A and the stationary strategy
(e -3
r o= {r, Ly wveer r}-r £ VCA We shall use the notation

rT(w) to denote the totsl expected discountsd return of the
first T-horison part.{rl, fgs ssee f:r} of » . Thus

) = 5 B r(t.) (1.2.21)
n=g n+l



n

B

where P (7) =%[E 'ﬁ(ft) . {(1.2.22)
. e =] - _

As will be seen later 1lim rT(-n-) may or may not exist, In
T—>e0

case 1t exists and is finite for every w g A one may Say that
the problem is econvergent, otherwise the problem 1s said to be
divergent, For convergent procesges

lim (1) = rlr) (1.2.23)
T—3m

may be regarded as the total expected diseounted return of an

infinite heriZem strategy » = { ‘fl’ 'fé_, PP fn, .o .} .

Conditions for the existence and finiteness of (1.2.23)
are discussed in section 1l.4A, As will be seen there the most
general sufficient condition has heen provided by Velnott (1989)
in terms of the dominant eigemvalwes o(P(f)) of the matrices
P(r), feF . er shows that when the rewards are fimnite, 1i,e.,

max { r{i, £(1)), ci}.g M<o , (1.2.24)
1£8, -
£(1) £ A(1)

and Sup {d(?(f})} <1, (1.2.258)
fer

the proeess converges. We shall use the notation

2= Bop - o'(-P'(f))} (1.2.26)
fEF

te denote the supremum of the demimant eigenvalues.




In particulsr for the Markov decision process with
constant discount factor a«, o(Mf)) =a , for every f ¢ F
(gince P(f) i2 stochastic). Thus in this caze the Markov

declglon process is convergent if e« < 1 .,

It will be seen in Chapter IV that the process does
not converge if X' > 1 i.e., there exists at least one

strategy = such that %_m rI(x) tends to infinity. Then
—

the process is called a divergent process,

o It in_thns seen that the Markor decision process under
consideration® 1s completely characterised by the six-tuple

{33 Ay Py, M C } (1.2.27)
where 8 1is 'a finite state space;
A= U am (1.2,28)
168 v

a finite actlon space;

£y | (1) N (1)
p = {’ij ’ pij > Q, Jfl pij =1, 1,38, £(1) E.A} ,

(1.2.29)
a set of transition probeblilities;

® The Markov decision process considered above is in fact a
stat ionary Marcomdecision process in the sensze that the
revards, discount factors and transition matrices remain
invariant with time (epoch), We shall have cccadions to
consider a sort of nonstationary Markov decision processes in
Chapters III and IV (the equivalent process and the ssympiotl-
cally equivalent process)in which the rewards are time ddpen~
dent, For such proces:ses %1! Bup r¥(x) and %n inf L (Y

—p o0

- 00
exist but do not necessarily have idsntical values, g2c that
14m rF () does not necessarily exists, Swoh processes may
alsc be regarded as convergent processes,



£(1) {1 .
r =.{1-1;I ; 0¢ rij( ’< w, 1,j.£ 8, f£(i)sA } (112.30)

a set of stagewise immedlate rewards,
£(1) £(1)
nada 50 ga <o, Lie8 rmga} (1.2.31)

a set of stagewise discount factors ; and
]

C = (cl, 02, eave 0]) y (1t2.32)

s terminsl reward vector,

In partlcular when a:j = a for all {i,k,)) € S x A X B

a constant discount factor of the process, the Markov decision

process is characteriged by the six-tuple
.{a, Ay Dy Ty & O } (1.2.38)

Somewhat more general Markov decision processes can
however be defined in which a policy specifies the probabilitiea
vith which different actlons are taken at each state and each
sctlon leads to transitions to different states with given sets
of probabilitiez, B8uch policies may be called randomired
policies and the corresponding Markoev decision process 1is
callad & Markov decision process with randomised plang
/ 3ee Dermah, 1970; Imamoto, 1975 and Silver and Moore, 1976_7.



1.3, The Optimaiity Criterion

It is well known (e.g., Eilon, 1963) that a declsion
problem i3 concerned with choosing the thest' gltermative out
of several availsble onea : -~ 'hest' with respsct to a speci-
fie optimality criterion. Ths most commonly used criterion
for choosing an optimal strategy 1g that of meximal total

expected discounted returnm * »

According to this crilterion, wvhen T 1s finite, the
objective is to maximize tke total expected dlscountsd return
vector (component wise), given ir (1.8,12) . The optimel
T-horizon strategy 11-;' is the one which satisfies the rela-
tion

rr("?:“” < rT(rg)(ﬂ ; for every 168, w, c.Aq
(1.3.1)
8o that
rT(“;B S-rr(wp y for any T €. A.r
(1.3,2)
*
A backward recurrence relation of dynamic programming based
on Bellmans principle of optimality (ef, Derman, 1970; Bellman,
1957, Mine and Osaki, 1970) can be made use of to find such a

strategy. The recurrence relationa are given by

# Bes Section 1.4C, for other oriteria proposed,

@9 An anslogous recursion formla may be used for non-stationary
Markov decision processes (8f, Porteus, 1976b; Howard, 1970

snd Chepters III and IV),
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! CY [rf(i)+ £(1) n-1 ]
= max e
e@yeawy (32 M LW (1.5.5)

1= 1,2,0-¢|oo. .} ;
n = 0,1,2,oqo-t T

(4,0(1)) » 3 ot D P el
= max r +
£(1)¢ 1(1){ ’ g1 24713

(1.3.4)
1= 1’23;0¢coco N ;
n= 0’1’2,u-¢.; t
and Yg = ci ; 1= 1’2,tl.t0. N . (1.3.5)

The above system can also be written I1n vectorial form as

(1.3.6)

V= omx { M0« B vn"l} ,
fen

n = 0,1,2, esene ¥

and ¥° = ¢ (1.8.7)

Again when afj =« for (1,%,J)€ 8 x A x 8 80 that

B(f) = aP{f)fer any £ ¢ F then the iteration forsulae (1,3.3)
and (1,3,8) reduce to

n N (1) n
v, = mMax r(i, (1)) b A s
1 f(i)&&(i){ ' a7 } ’

1 = 1,2,0011000 !

(1.3.8)

n = ;51,2,.....- T
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and

v} = max r{f) + a P(D) vn-l }

fEF (1.3.9)

n = 1’2,oonnoa T

)

respectively,” By using the above recursion formulae one can
determine an eptimal policy for every stage % in a sequential
fashion, end hence an optimal T-horizon strategy wg* and the
corresponding maximal total expected discounted return vector
vT. Obviously

VT = rT(“gj for any T < oo (1.3.1.0)
and 1f v corresponds to §¥ 3 v:'l to g;;l and se em

lastly vl to g* then

1
TT w{g‘T ’ %—l 3 wreae s-’;.} = { f;f., fié samre f;-}
' (1,8.11)
. 3
vhere fi = gT 14l is the optimal T-horizon strategy whiech

iz to be exeeuted in practice, To avoid confusion we shall
always use the eonvention that the eptimal policy eorrespon-
ding to v°© will be denoted by gy and the optimal poliey to
| 5
S

be followed at the mth epoch will be denoted by It may

be neted that am eptimal T-horizen strategy ebtained by the

@ It mey be meted that v® defined in (1.3.6) sstisfy
vB < v for n = 0,1,2,...., (see e.g. Bellmsa, 1957;

Mine and Osaki, 1970) and v* defined by (1.3.9) is
continuous in e« (Hordijk and Tijms, 1974).
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above formulae in general depends on the terminal reward
vector, This preeedure of finding the eptimal T-harixmn
strategy 1s also ealled the tmethod qf succegsive approxi-
mations' (M8A) (ef, Derman, 1970).

As long as T 1is small the procedure remsins compu-
tatleonally feasible, partieularly when the state space 8
iz nmot very large. But for large T , the procedure becomes

quite cumbersome even when 8 1s small,

When T 1is large, it is reasonable to consider an
infinite horizon precess® (the proessa¥lhich continues
indefinitely) as an approximation to the T-horizon process
(cf. Bellman, 1957; Hinderer and Hubner, 1978; Morton and
Wecker, 1977), provided an optimal solution te the infinite
horizon precess exists, thag.ia,the process is convergeﬁt in
the sense of seapian.l.z (§f2 1Y . In this case, an optimal

infinite horizon strategy =" satisfies the relation

r(#)(1) 2 T(M() ;

(1.8.12)
for all 1€8 and wea _

where r(w)(i) 1is the i1th element eof

rix) = 1lim r<(yr) .
T—»@

& 0flcourse an sctual infinite herizen process does mot exist
in the real werld, It 1is taken into account enly teo
invegtigate the structure of eptimal strategies for
sufficiently leng horizons and for the development of an
analytical theory comecerning the preblem, Thus Bellman
(1957) says that 'Although an uwnbounded process lg always
a physieal fiction, a8 a mathematical process it has many
attractive festurest,
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It is well kmown (e¢f, Veinott, 1969; Mins and Osalki,
1970) that there i3 sn optimal strategy that is statlonary
and i2 jindepesndent of the terminal rewerd vector C ,

k
1]

80 that the Markov decision process becomss divergent, Im

When o . =a =1 for (i,k, ) £ 8xAXx8, f‘ul,

thisz ease !*T(mr'} given by (1.2.18) takes the form

T~1
r’ () = oz P(mg) T(fp 1) + Pimy) © (1.3.18)

where rn(w!) is given by (1.2.17) ana“&;.s.o) for = > L

and n = 0 respectively. This case has bean studiled
extensively through the use of the &xpected averesge return
of {BAR) criterion (of, Dermen, 1370)., The sxpectsd

average return of wm, 18 glven by ‘

R (ry) = 2" (my)/R (1.3.14)

H

It can be shown that when rT(-er) is of the form (1.3.18),

R'(x) remains bounded as T—>® for wyg Agp 30 that ;
!

1

T

1im inf B (v ) (1.8.15)

T——>® ;

I.

and lim aup RT(ﬂ }
T——>ao

exist: for wed, but do not necezsarily have the same value. .
In particnlar if » 18 stationary, they have identlical values f
and 1

R(w) = 1in B (v
) o v (1.8.16)
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exists (ef. Dermah, 1970).

GO
Now consider +x = f , where P(f) is irreducible,
{1.3.18) exists snd is egual to

T-l n .aT T ?

T, B TP I D)+ P (L) C

B(v) = Lim E.LL°) | 135 ) B=0
T T Ty T

where PM(LT) = (P(£))

for B = 0,1,0-.0' T

= P r(e)
= &l , (3ay)

where & > 0 is a constant snd L = (L,1,40000y) , an ¥ —
dimensional vector of ones, since P is a stationary stoshastie
matrix, Whea P(f) is not irreducible and contains { ergodie
classes and possibly sowme transient stgtes then the elements

of R(w) will be of the form

1§1 Ly

vhers ay > 0 and ;,,f iz an K-dimensional column vector
with elements unity corresponding to esch state belonging to

srgodie class 1 and zeroc elements elasvhere,

Lot + = £® donote an optimal stationary atrategy
snd T (#¥) the corresponding total expected disscounted return
function when the discount fastor is «, «& (0,1) then



-20-

i (1-a) r, (M) = 11a & r7@) = R (1.3.17)
«—1" & T-»a

(see Derman, 1970; Mine and Osaki, 1970; and Blackwell, 1962),

The 1eft hand side of (1,3.17) 18 concerned with the behaviour
of a« near snough to but less than one, Thus hy a limiting
procass it ean be egtablished that for the undiscounted case
there exists a statlionary sirategy which is optimal on the

expacted average return criterion.

It 1s thus sesn that a stationary optimal infinite
horizon strategxy exists when i?'( J on the total expacted

ik..‘l = &« = 1, r.T(sr)—-)m

a8 T-—a@ 20 that no well defined optimal infinite horizon

discounted return ceriterion, But when o

strategy on total expacted discounted return oriterion existss
however on the sxpected average return eriterion there is an
opbtimal infinlte horison strategy wvhich is ststionsry. In
other situations no optimal Infinite horison atrategy existe

on either of the above ceriteria.

When an optimsl Infinite horizon strategy exists on the
total expected discounted return eriterion and T is suffi.
cilently large one can make nse of Shapiro (19881h)t's turnpike
thecry to obtain en optimel strategy for the T-horizon
problem, &hapiro shows that there exists s T such that when
T> f*', an optimal policy for each of the first L 4 epochs
is provided by the corresponding policy of the optimal infinite
horizon strategy. & in practice the optimel infinite horison
gtrategy can be lmplemented during the first T-f*'epochx and



- 21 -

for the remalning pX epachs the poliey funetions given by
the iteration formila (1.3.3) can be wsed., T-T° is called the
optimal turnpike, TUnfortunately for the undilisgcounted case

(g = 1) turnpike results are not as precise as in the
convergenit case (fk < 1), Reference mapy be made to the work
of Romanovakii (1970), Federgrusn and Schweitzer (1977) and
Hinderer and Bubner (1978) in this commection,

In the last three decesdez a sonsiderable amount of
work has been reported on Markov decision processes und
allied problems, Among the initlators of the subject mention
may be made of Bellman and LaBalle (1949), Bellman aad
Blackwell (1949) and Shapley (1983), While these investigators
view the Markov deciaion precezs in the context of two person
dynemie games, Bellman (1957a) has given an explicii: formile-
tion of the problem outcoside the game theorstic context; he
has alsec given the outlines of the computational technique of
guccassive approximations(see Section 1.3) for the evalnation
of an optimal T-horizon strategy in a general Markov decision
process, 8ince then there has been & good smounti of theoreti-~
cal and methodologlical development, For a bibllography of
the work concerning Markov decision processes upto 1973 aee
Schweltser (1973)., Teugels's (19768) more recent hibliography
on semi-Markov processes Iincludes the work on more general
declaion models, Some more recent work has been included in

the bibliography section of the present thesis,
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In what follews we present the broad details of

previous work related to the present thesis,

1.4A. Convergent Markov Decision Processes

Convergent Markov deeision processes with constant
discount factor a, o« €[ 0,1) have been studied extensively

by a good number of authors (¢.g. Howerd, 1960; Blackwell,
1962, 1965; Derman, 1970; Mine and Osaki, 1970; Var Nunen,

1976; Veinott, 1966, 1969, 1973 ),

Howard (1960) has developed a computational technique
called the policy improvement algorithm (PTA) under the
assumption that there exists an optlmal infinite horizon
strategy that is stationmary for Markov decision process with
a £{0,1) on the basis of tetal expected discounted return
eriterion, Later en PBlaskwell (1962) Eas established tkhe
existence of an optimal stationary infinite horisen strategy.
He has also established that this optimal infinite horizon
stationary strategy is independent of the terminal reward
vector. 8o the gearch for an optimal infinite horizon
strategy can be eonfined to the class of stationary infinite
herizon strategies only. An algerithm based on the linear
programming approach for findlmg the opitimgl infinite horiszen
statlonary strategy for the Markov decision precess with
a£{0,1) has been given by D!Epencux (1963). Later De
Gellinek and Eppen (1967) and Derman (1970) have develeped

the theory based on this approach for the randomized Markov



decision process and have found that the linear programming
forrmulation also finds a strategy which is pure (independent

of actien probabilities, Derman, 197@), stationary and
independent of the state where the precess is started initially.
The relation between linear programming‘and policy -improvement

algerithms ean be found in Mine smd Osaki (1970},

An gspect of problem of Markov deeision procesg is
its s0 called sensitivity analysis.  Thig is concerned with
examining how far the @ptimél infinite horizen stationary
stra‘hégy repains inveriant as « lnereases frem 0 to 1.
Studies in these lines have been made by Howard (1960) and
Smallwood (19843},

k k
For variable aij case (mije,[ﬂ),l) for i,j £ 8
and kgA ),_Iwame’so (1974, 1978) has fomnd analogous results

a8 in € 5-f®,1§' -é‘ase wnder & slightly more general set wup.

The problem of convergence of Ha'rkolv'-de'eiwisn pméesses
has been studied from the point of view of contractien
mapplngs by several authors. Aa eperator H 1is a contraction
mapping on B' with contraction ecefficient e (c. <1l) 1irf

for twe vectors w, v & E“ and for any f &F ,
Wie - mvfl ¢ e fu-v} (1.4.1)

vhere “-“ stands for the norm .

% Here the norm of & veector wm = (u3,%gy... Bg)' is taken to be
equal to max \ g} (Wilkinson, 1965) and the norm of the matrix

)]
A= ((“ij” is equal to mpx ¥ \aij‘ that is, the maximal

i 1
sggﬁ §f the abgolute values of lezie elements of a row (Wilkinson,
1965).
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Thus H 1s a contractlon eperater if “H \l <1 (s8e @.%8.,
Penardo, 1967; Iwsmoto, 1974 and Portews, 1978b). Denardo
(1967) has used thlis appreach in a gemerszl dynamic programming
problem from which 1t follows that the eperator L(f) define&

by

L(Du = (£ + a P(Hn,
(1.4,2)
for fE£F and ume B

is a contraction oper'ator with contraciion coefficient «
ATF the constant discount facor a < 1. For the variable
discount factors case Iwamoto (1974) has shown that if

e' <1 then the eperator L(f)
(1,ky3 )isms{ 13} ’ P ¢

defined by

L(fYa = () + P(Hu | (1.4.3)

18 a centraction eparater' with econtractlon ceefficient at

most equal to c'. If the contractien coefficient is less
than one for every L(f), £ € F then the total expected dis~
counted return of any infinite horizon strategy = ¢ A
(either in the constant discount facter case or In the variakle
disceunt factor easb) converges (ef. Iwamoto, 1974; Eaves,

1977; Blackwell, 1962}, Thus the corresponding Markev deecision
processes are com%argent.
If W€ lH eﬁsts such that for an operater A
Aa® = o '

then u* is called a fixed point of A, Sharpening and
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generalizing Shapley (1983)'8 and Denardo (1967)t's results
Veinott has éhewn that 1f e(P(LY) ¢ 1 for f EF (i.e. JL*.
definedin (1,2,28) i3 less than unity) the maximization
operat@r R, defined by

Rw 2 max { r(0) + F(u } y RE B (1.4.4)

TeEFR

is an n-stage eontraction operator (that is R is a
contraction operator for some positive interger =n) and

padsasses a wnique fixed poimt.

If therefore follows that the given Markov declsion
process convergesﬂ if J;* <1, in the sense that every
strategy w € A has a finite total expected discounted
return, An sgulivalent conditien fer the convergence of the

Markov decision proeess is that

L ] .
s F(®) <@ (1.4.5)

n=0

for every f € F (ses, Velnott, 1969, 1873). Veinott proves
that when conditien (1.4.5) holds then

@ _n

p P(r) < e - _ ' (1.4.5}_
_n

for every w £A, wheme P (¥) 18 given by (1,2.22).

W Convergent processes are called transient proces:ses by
Veinott (1969, 1978), terminating processes (ef, Shapley,
19833 Aggarwal et.al., 1977; Mime and Osaki, 1870) and
disecounted processes (Porteus, 1975a) have analogeus
properties,
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So for the convergence of the Markev decisiem process,
r~stage contraction (m > 1) is sufficient, This happens
for example when (1) the transition probability matrix eof
every f£F 1s substochastic, so that o(P(Ff)) <1, f £ F

or (2) the comstant discount facter e, « £ (0,60) is such

that (e P(f}) <1 4, £ £F or (3) variable diseeunt factors

k k

aﬁ ) %4 £ (0, @) are such that 6(P(f)) < 1 for TEFR.

Veinott has shown that for any infinite Eorizon strategy

¥ &yl F()
Pr P < y P(r
min, Lo} ¢ {oF @} ¢ mer facheon |
(1.4.7)

s o
fer any n > l, sa that when # = f

a _ n
o(F (1)) = {c(_l?(f)_)}_. o (1.4.8)

Tt may be moted that when ail = ¢ < 1, the total expected
disecounted return of any infinite horizon Strategy Canverses

geometrically at the rate of o (ef, Morton and Wecker, 1977).

For some recent studies dealing with contraction
mappings in Markov decigion prbeesses reference may be made
to Van Nunen (1976) and RBewes (1977)., Using the approach of
monotene mappings in dynamie programming whieh is some whab
analogeus te the cemiraction mappings appreach to Marikov
decision processes, Bertsekas (1977) obtaimed several results
relating mostly to the convergence of the dynamic pregrsmming
algorithm and the existence of optimal stationary strategiea,‘
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then he applied the theory te several problems regarding
eptimal eontrel theory. Sec alse 8erfa§o (1978) and Sladky
{(1974) in this cenrection,

1.4R. Divgrgent Markov Decisien Processes.

Thus divergence in ai Markev deeision process due to
discoeunting occurs when f* 2 1. We briefly review the

literature e¢oncerning the cases F =1 and f¢> 1 separately.
Among divergent problems enly Markev decision precesses with

«’fj =e=1 for 1,] =1,2, ..... N and kEA (also ealled
the undisecountes Markov decision proecesses) have been studied
extensively., In the game theoretie (ef, Hoffman and Xarp,
1966, Gillette, 19857) centext, they are ealled nomterminmating
stochastie games. !hgzxark¢v dceisi@n precess with « = 1
has been studied beth as a limiting case (e—31") (see
Blackwell, 1962; Mine and Osaki, 1970; éﬁrgan, l%?ﬁ)wggq;
independently @ﬁ the basls €f the expected averége réwar&

per transition eriteriem (see Howard, 1960; Blackwell, 1962;
Mine and Osaki, 1976; Derman, 1970). Beth limear programming

and peliecy improvement algorithms (Manne, 1960; Howard, 1960;

Veinott, 1988, Brown, 1965, Hine and Osaki, 1970 Derman,
1970, Herdilk and Kallemberg, 1979) are available for- fif"ing

the @ptlng@?inzinite horizen Strategy, whieh is-atg&i@a&ry.
and inde@enﬂent of § and of #hs.stata-whare tkgiyééeéas has
started, These algorithms.ara‘available Lfor msreﬂkeheral
models alse (see, e.g., Joweli,:lssa). |



Among the few imvestigstora om other types of
divergent problems mention may be made of the work of Merton
(1971, 1978) and Morton and Wecker (1977). They have given
soms ¢onvergence propertlies of the Markov decision process
wvhen the constant disceunt factor « > 1 , They have shown
that Im this case if there 13 a stationary optimal infimite
horizen stratagy fw then the relative valuse functisn (tetal
value function less total value at a fixed or reference stiale
¥, White, 1963, 1978) converges Iif « YR | y where X't is
the modulug of the subdominant eigenvalue of P(f), They
har.va 2130 shown that the ssymptotic econvergence ef relative
value function 1lmplles ssymptotic poliey convergence under
certain hroad tregulerity' conditions, Tke theory thus
slightly relaxes the restrictien that « should be leazg than
sne, but of course eaven the relatlive values diverge vhen «

is s0 large that « att zl .

Hinderer (1976, 1977) and Hinderer and Hubmer (1978) have
studied the csse of « > 1 by the *‘method of extrapolationt ,
wherein he hag given a procedure for finding the eptimal stra-
tegles of sufficlently large finite horixons by using the
eptimal strategles of small horizons.

Bellman (1987) kas given the formulation of the mmltipli-
cative Markov <decisien process vhiah is a special eare eof
(1.2.27), when »r(f,) = o (er 'fhl(r} r(f,) = 9) for
R = L2, 000000 y -l;‘(-r) 20 for every xe 4 amd e (o,m).
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He showed that the total expected discounted return of an
n-borizon stationary sﬁratagy whieh is eptimal im the elass |
of statiomary strategies (see Rothblum, 1974) fgrows like
the nth powsrt ef ¥ y for large values of n wnder the

" assumptions that the poliey funetien f havimg s(ﬁ(f)) = A%
is mnigue and '§(f3 >0 for every fe&F .,

Roethbluw (1974) has alse comsidered multiplicative
Markov deeision chaims, His model is somewhat more general
tﬁan Bellmen's in the senss that P(f) fer any f £ F ean
be reducible.and X% may be equal to zere (the 'nilpotent!
case). His atteatien has not bheen restricted te stationary
strategies as in Bellman (1957) and he has used a new
ceriterion ealled the 'cummiative optimality criterion!
whieh 18 based on (esaro means ef higher orders (ef. Hardy,
(1949), He has observed that the eptimal sirategies are
ﬁsually nbnstﬁtiaﬁary and has given a constructive proof of
the existernce of such optimal strategies, He has a1g9 given
various algorithms which find stationary strategies whieh are
infinite cummulative eptimal. Other works on multiplieative
Markov decision precesses imelude the work of Mandl (1967),

Mandl and Seneta {(1969) and Howard and Matheson (1872),

Porteus (1975b), Schal (1975) and Serfoze (1976) have
posed a gereral monstationary decision process in which
discount facters are dependent on time, states and actiens,
and belongs te the [ 0, ) regiom. Under the framewerk of
maltistage decision processes Perteus (1978b) has given
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sufficient conditions for the general processes to converge,

He also has given the assumptions required for an € -optimal

{ €> 0) (Blackwell, 1988) stationary strategy and optimsl sta~?

tionary strategy to exist, Schal (1975) has given sufficient
econdltions for the existence of an optimal strategy and has
interrelated the optimal total expected rewards as well as
the optimal actions of the model with infinite horizon and
those of the model with finite horizon T, as T tends to
infinity., Bis analysis is based on some results on set
valued mappings, upper seml continuous functions mesasurable
selections and topologles on spaces of probablility measures,
Serfozo (L976) has extendsd Schal's work to monotons optimal
policles for Markov decision processes and illustrated them

wlth controlled random walks and mechine maintenance examples,

Wang (1974) has considersd a nonstationary non-Merkovian
genaral model with Borel state and action spaces and discount
factors oy (%) € (0, ®), where H, 1s the history of the
system upto t+l epochs starting from Oth epoch., His study
is based on the combination of additive and muitiplicative
reward systems. His model 1s considered to be a genersliza-
tion of that of Howard and Matheson (1972) and Jaquette (1978)
who have analysed the Markov deeclslon process in the presence
of the exponential utiiity eriterion., Wang has also presented
gufficient conditions for the existencs of nonrandomized

optimal strategles,
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Piriekx (1971) analysed the deterministic dynamic
pregrmmmngﬁiﬁh g > 1 under a new criterion called Modified
equivalent average_returm whieh avoids the difficulity arising
from divergence of the present value of an Infinite horizon
strategy., His apt;mizatien procedure 12 based on linear
progremming and works successfully in the deterrinistic ease
but since in the stoechastic ease the optimal infinitg horizon
strategy is nonstationary, mo finite algoerithm for its deter-

mination appears te be available,

1.4C. Some Other Optimality C€riteria.

The most commonly used criterla for choosing an eptimal
strategy in a Markev decision precess are the tetal expected
discounted return (tetal presemt valme) eriterion for ecomver-
gent processes amd the expreeted average return eriteriom for
undiscounted preéQSSQS. Some other glternative eriteris have
alse besn propesed by several authors, They are the relative
value eriterien (White, 1963, 1978; Merton and Wecker, 1977);
& -optimality, p-eptimality and (p, & )-optimality (Blaeckwell,
1965; Strauch,1986) eriteria; medifled equivelent average
return eriterion (Diriekx 1971); equivalent average return
eriterion (ef, Wagner, 1969; Lippman, 1969; Diriekx, 1971),
gensitive discount eptimality eriteriom {(Veinmott, 1969;
Rothblum, 1974, 197%), moment eptimality eriterion (ef.
Jaguette, 1974,.19%5;‘Eagle, 1978; Denarode, 1971; Yoldwerger,
1977), cammmlative eptimality eriterion (Rothblum, 1974) and
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average overtaking and overtaking eptimality eriteria
(Vgingtt, 1868, 1977, Rothkblum and Veilmett, 1978).

Kreps: (1978) and Porteus (1978b) have explicitely
defined some different types of wtility functions like additive
multiplieative,expenential, separable and separated utilities
and have weed an expected utility criteriom with respect %o
the particular type of utility funetion used (see alsc Howard,
1968 and Howard and Matheson, 1972 in this conneetion),

Some of the above eriteria are variants of the tetal
expéeted discounted return when the latter cannot be applied
directly. Reference may be made to the bibliography of the
thesis for some other c¢riteria used for more general proce-

gses (ineluding semi-Markovian and non-Markovian processes),

Variants of the Markov decision proecess comsldered in
seetion 1.2 and their applications (both practical amd theore-
tieal), have recelved quite a good deal of attention. 8ince
these are not directly related to the work incorporated in
the thesis, no review of such investigations 1s presented here,
though seme of them are of very great interest, and are

included in the bibliocgraphy.
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1,5. Motivation of the Present Study.

In a decision process discount factors come in the
picture when rewards (or more gnnerally refarna{:e of wtili-
ties) from future decisions are to be related to the present
epoeh, The exact way in whieh they affect the total reward
earned from future decisions is explained in section 1.2,
Several interpretations are available about their physieal

meaning or signifie é.nca .

For the constant disecount factor case the first inter-
pretation is ecomomie. It is well known that the money value
of an investment does not remain invariant because it may
earn interest or may suffer or gain in real terms due to
inflation,defliation, devaluation, revaluation and so on.
Likwwise the value of the reward at a fubture instant may not
be the same as its present worth., So it is customary to
use a discount factor to reflect possible ckanges in the value
of a reward earned at a future epoch, TFor example if metl
interest (interest rate - inflatior rate) is to be taken inteo
account @« = 1/(1+p) where p, -1 < p < @ represents the
net interest rate, may be used (Wagner, 1970; Keeny and
Raiffs, 19’?4); It may be noted that negative valmes of p
indicate that the rats of inflation 1s higher than the rate
of interest, (a very eommon situation now a days!), im whieh

case e« takes a value grealer than unity.

Again o may be regarded as an indicater of the pheno-

menon of 'time preference of a deeision maker' which can be
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deseribed as the tgreed impatience trade offt (Howard, 1968).
« > 1 corresponds to the case where the decision maker
prefers to delay deeisions with higher rewards (cf, Piriekx,
1971; Keopmans, 1965?, 'in order to have more later or less

new! .

The case a& ¢ 1 may be interpreted as an indicater
of the 1lmpatience of the decision maker towards taking such
decisions (ef, Koopmans, 1967, Fishburn, 1970, Diriekx, 1971).
The case g = 1 indicates that the feeling of the deeision
maer ig. meutral about all decisions, Fer fwmrther detalls
regarding this approeach to the discount factor see Koopmans
(196%), Howard (1968), Keeny and Raiffa (1974) and Pishburn
(1970).

In seme problems relating to the deterministiec netw
werks, a discount factor refers to a mwitiplier or gain rate

of a particular arc (ef. Jewell, 193@; Diriekx, 1974; Framk
and Frisch, 1971, Jensen and Bhowmik, 1977). This fert of

gain rate 1is wsuwally present in large electrical networkswithk
transformers and in transportation netwerks (ef, Frank and
Prisch, 1971), When the flow passes through » node it is
either amplified or diminished depending om whether its value

is less than er graatar than one,

Diriekx (1971, 1978) remarks that the case af > 1
hgsheom considered as a possibility by Koopmans (1267) in the
context of economies grewth theory. He also eitaa an example

about the optimization of am Intertempersl consumption ever
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an wrbounded horigen given by Manne (1970), wherein a parti-
cular term plays the role of a discount factor. Though
Manne has sssumed that it 1lies between O and 1 for the sake
of convenience, Diriekx (1971) points out that this term

ean actually be greater than one,

Finaglly a« < 1 1is interpreted as the probability that
the process will continue to earn rewards after the next
transition (Howard, 1980), 80 1 «~ ¢ is the probability
that the process will stop at 1ts present stage thus the
process with discounting (« < 1) =may be interpreied as one
of indefinite duration,

It 18 thus seen that the & > 1 case is physiecally
meaningful in many practical situwatiorns though comparitively
few investigations are concerned with it., This may be because
of the mathematiocal complexitles produced by divergsnce, To
see how far these mathematical difficultles can be overcome

i8 one of the chief motivations of the present thesis,

That the dAiscount factors can vary with time and with
the transitions involved has been realised by zeveral suthors
(ef. Iwamoto, 1974; Schel, 1975; Porteus, 1975b; Bellman,
1987; Berfazo, 1978; end 8Hladky, 1976), 8o in general one

should take into account stagewise discount factors of the

K
13

for the transition (i,k,j) at epoch t.

form a® (£), ~oo < aL(t) €} L,JES, Keh, t = 0,1,2, 00,0y
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The present thesis eonsiders that the discount factors
are non-negative and may vary with transitions, but remains
invariant with time, Perhaps time-invariance is not a very
realistic assumptiom to make, But sinee in the basie model
of the thesis faetors llke state space, action spa&é and
transition probabilities are all regarded as stationary, this
limitatien with regard to discecount factors had to be maine
tained, Bven then divergence poses certain mathematically
interesting preblems and provides a metivation for a detailed

investigation.

The same reason has led to an attempt to use the tetal
expected discounted return criterion throughout the thesis,
Though the total expected discounted returmsof some infinite
horizon strategies diverge our attempt has been to answer the
f@ilowing guestion, Be@é”there exist a.stntﬁagﬁfgwg' whieh
has a larger tobal sxpeéfad diseounted return than any other

strategy m, , for all T sufficlently large ? .

1.8, Investigations Reported in the Present Study.

Phe present thesls is deveted teo a study of a class

of divergent Markov decislon precesses, in which the tetal
expected disecounted return vecter of an infinite horizen
strategy diverges because the transition matfices _§(r3
amrrespomding to some of the policies f, f & P have spectral
radii u(?(f))'g 1 ., 8uch a situation arises when éeme of the
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discount factors are too large. Our main interest is te
investigate the structure of an optimal T-horigzon strategy
of suehlbrecessas for suffieiently large values of T . The
eriterion ef optimaiity used 18 the toetal expected discounted

return,

Chapter II presents the mathematical prelimingries
required in the later chapters (Chapters III and IV) of the
thesis, In the first few sestions (Sections 2,2 - 2,7) of
this chapter some of the known concepts and results econcerning
naﬁ—negative matrices are recapltulated. 1In the later
sections (8ections 2.8 - 2,12) a number of new results are
presented. First a theorem on a necessary and sufficient
condition for strong ergodicity of a seguence of stochastie
matrices is established, based on the comcapt'ef fixed points.
Second it is established that if two mon-negative irreducible
matrices A and B of a set have the same spectral radius
A then they will have a common extremal eigenveetor 3z,
provided, the matrices (assumed irreducible) generated by
interehanging any row of A Dby the earresﬁonding row of B
have spectral radii not greater than 3, Flnally some fixed
point algorithms regarding the convergence of products of a
sequence of stochastie matrices and a seguence of irreducible

non-negative matrices each having spectral radius unlty are

presented,

Chapter III is concerned with the study ef a divergent

Markov decision pr@cess in which the eonstant disecount factor
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@ 1% greater than one, The order of the total expected
discounted return funetion of & T-horizon strategy is shown
to be equal 1o qT . Two processes related to tﬁe original
process (the divergent Markov decision process, a« > 1),

called the equivalent process and the asrmptoﬁically equiakent
process, are proposed and the stege by stage equivalence of

the original process and the equivalent process and the asymp-
totlc equivalence of the equlvalent process and the asympto-
tically egquivalent process are established. The structure of
an eptimal igfinite horizon strategy of the asym@tétieally
equivalent process is thenpinvestigated. Phis enables one to
determine the structure of an optimal infinite horigen strategy
of the equivalent process, From this the structure of an
optimal T-horizon strategy of the original preeess and
corresponding total expected discounted return functions ean

be found, for Suffieiéﬁfiy large values of T . Finelly an
iterative procedure to obtain an optimal T-hgriZQR.strgtggy
of the original process is suggested., The optimel strategy

found is usually non-stationery.

Chapter IV is concerned with the study of divergent
Markov decision processes with variasble (state, action dependent)
diseount (factors, Throughout this chapter it i1s assumed thab
the transition matrix corresponding te each pelicy fumetion 1s
irreducible, It is first shown that when the expected
immediate rewards are bounded and ﬁ*, the supreﬁuﬁ of the

spectral radii is greater than or equal to ome then the Markov
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decision process diverges. For the case of X'=1 it is
established that on the expected average return ctitsrion a
stationary optimal infinite horimon strategy exists and is

independent of the termlinal reward vector.

For the case §> 1 1t 1s established that the order
of the total expected dlscounted return function of any
T-horizon strategy, when T isg large, does not exceed 2T
so that the total expected diszscounted return of an optimal
T-horizon strategy 1s of order £' . In order to study the
structure of such an optimal strategy two processes ealled
the equivalent process and the sgymptotieally equivalent
process are proposed (just as in the previous chapter) and
the stage by stage equivalence of the orlginal process and
the equivalent process and the asymptotic equivalence of the
equivslent process and the asympiotlieally equivalent process
are established. The struoture of an optimel Infinite horigon
strategy of the asymptotically squivalent process iz then
determined. This enables one to determine ths structure of
an optimal infinite horizon strategy of the equivalent process,
From this the structurse of an optimsl T-horizon sirategy of
the orilglnal process and the corresponding totel expected dis-
counted return functions can he found, Finallr two iterative
procedures for rinding an optimal T-horiszon stretegy of the
original process sre suggested, As in the constant dizcound

factor a > 1 case an optimal strategy is2 non-stationary, in

genaral,





