
Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1

Introduction

Embedded systems (ES) are information processing systems that are embedded into

different products. These systems are dedicated towards certain applications with real-

time constraints, reactive in nature, and must be dependable and efficient (Marwedel,

2006). Embedded systems pervade all aspects of modern life, spanning from con-

sumer electronics, household appliances, automotive electronics, aircraft electronics

and telecommunication systems. These systems are also suited for use in transporta-

tion, safety and security, robotics, medical applications and life critical systems. In the

subsequent sections, we describe the ES design flow and highlight various behavioural

transportation that are often applied in course of the design. Since dependability is an

important aspect of ES, we have taken up the issue of verifying the correctness of

such transformations by way of equivalence checking. Specific problems handled in

the thesis have been listed. This is followed by a statement of contributions and the

thesis organization.

1.1 Embedded system design flow

Present day electronic products demand high performance and extensive features. As

a consequence, embedded systems are becoming more complex and difficult to de-

sign. To combat complexity and explore the design space effectively, it is necessary to

represent systems at multiple levels of abstraction (Chen et al., 2006b). Initial func-

tions and architectures are preferably specified at a high level of abstraction. Functions

1



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

2 Chapter 1 Introduction

constraints

Mapping

Behavioural

specification

Architectural

spefication

Design

Refinements

Implementation

Figure 1.1: Embedded system design flow

are then mapped onto the architecture through an iterative refinement process (Chen

et al., 2003; Keutzer et al., 2000). The embedded system design flow based on this

principle is shown in figure 1.1. During the refinement process, the initial design is

repeatedly partitioned into hardware (HW) and software (SW) parts – the software

part executes on (multi)processor systems and the hardware part runs as circuits on

some IC fabric like an ASIC or FPGA. Application-specific hardware is usually much

faster than software, but its design, validation and fabrication are significantly more

expensive. Software, on the other hand, is cheaper to create and to maintain, but it

is slow. Therefore, the performance-critical components of the system should be re-

alized in hardware, and non-critical components should be realized in software. The

HW-SW partitioning approach is shown in figure 1.2.

The SW part of the behaviour is translated into assembly/machine language code

by compilers. The translation process of input behaviour into target assembly lan-

guage code can be divided into two stages: the front end for analysis and the back end

for synthesis (Raghavan, 2010). The front end of the compiler transforms the input

behaviour into an intermediate representation (IR) and then the back end transforms

the IRs into a target assembly language code. The front end consists of several sub-

tasks such as lexical analysis, syntax analysis, semantic analysis, intermediate code

generation and optimizations (Aho et al., 1987; Raghavan, 2010). The back end of

the compiler consists of target code generation and optimization tasks. A set of be-

havioural transformations are applied in the optimization phase by modern compilers

during this translation processes (Muchnick, 1997). Figure 1.2 highlights the list of



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.1 Embedded system design flow 3

?

Yes

System
No Meets

Requirements

arithmetic transformation

sequential to parallel transformation

parallel code transformation

code motion

Initial Behaviour

HW-SW partation

HW partSW part

SW compilation HW synthesis

Simulation

loop transformation

Behavioral Transformations

Behavioral Transformations

RTL transformation

high-level to RTL transformation
loop transformation

arithmetic transformation

code motion

Figure 1.2: HW-SW partitioning

behavioural transformations that are applied during SW-compilation processes.

The HW part of the behaviour is first translated into a register transfer level (RTL)

code by high level synthesis (HLS) tools (Gajski et al., 1992; Gupta et al., 2003c).

The generated RTL then goes through the logic synthesis and the physical design

process before being fabricated into a chip. The HLS process consists of several in-

terdependent subtasks such as compilation or pre-processing, scheduling, allocation

and binding, and datapath and controller generation. The HLS process applies sev-

eral behavioural transformations during pre-processing and scheduling phases. The

list of behavioural transformations that are commonly used during these phases are

listed in figure 1.2. In the next section, we discuss the commonly used behavioural

transformations during embedded system synthesis.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

4 Chapter 1 Introduction

.

.

.

4 4

2

1

1

3

5

2

control flow

1 - duplicating down, 2 - duplicating up

3

BB0

BB1

BB3

BB2

code motions

3 - boosting up, 4 - boosting down, 5 - useful move

CB0

Figure 1.3: Various code motion techniques

1.2 Behavioural transformations

As discussed above, application of behavioural transformation techniques is a com-

mon practice during embedded system design. In course of devising the final imple-

mentation from the initial specification, a set of transformations may be carried out on

the input behaviour targeting the optimal performance, energy and/or area on a given

platform. In this section, we introduce several behavioural transformations that are

commonly applied during embedded system design.

1.2.1 Code motion transformations

Code motion is a technique to improve the efficiency of a program by avoiding unnec-

essary re-computations (Knoop et al., 1992). The primary objective of code motion

is the reduction of the number of computations at run-time. Secondary objective is

the minimization of the lifetimes of temporary variables to avoid unnecessary register

pressure. This can be achieved by moving operations beyond basic block boundaries.

The code motion based transformation techniques can be classified into the following

categories (Rim et al., 1995) using Fig 1.3: (i) Duplicating down refers to moving op-

erations from a basic-block (BB) preceding a conditional block (CB) to both the BBs

following the CB. Reverse speculation (Gupta et al., 2004b) and lazy execution (Rim



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2 Behavioural transformations 5

et al., 1995) belong to this category. (ii) Duplicating up involves moving operations

from a BB in which conditional branches merge to its preceding BBs in the conditional

branches. Conditional speculation (Gupta et al., 2004b) and branch balancing (Gupta

et al., 2003a) fall under this category. (iii) Boosting up moves operations from a BB

within a conditional branch to the BB preceding the CB from which the conditional

branch sprouts. Code motion techniques such as speculation (Gupta et al., 2004b) fall

under this category. (iv) Boosting down moves operations from BBs within the condi-

tional branches to a BB following the merging of the conditional branches (Rim et al.,

1995). (v) Useful move refers to moving an operation to a control and data equivalent

block. A code motion is said to be non-uniform when an operation moves from a BB

preceding a CB to only one of the conditional branches, or vice-versa. Conversely,

a code motion is said to be uniform when an operation moves to and fro both the

conditional branches from a BB before or after the CB. Therefore, duplicating up and

boosting down are inherently uniform code motions whereas duplicating down and

boosting up can be uniform as well as non-uniform.

1.2.2 Loop transformations

As the name suggests, loop transformation techniques are used to increase instruction

level parallelism, improve data locality and reduce overheads associated with execut-

ing loops of array-intensive applications (Bacon et al., 1994). Most execution time of

a scientific program is spent on loops. Thus, a lot of compiler analysis and compiler

optimization techniques have been developed to make the execution of loops faster.

Loop fission/distribution/splitting attempts to break a loop into multiple loops over the

same index range but each taking only a part of the loop body. The inverse transfor-

mation of loop fission is fusion/jamming. Loop unrolling replicates the body of a loop

by some number of times (unrolling factor). Unrolling improves performance by re-

ducing the number of times the loop condition is tested and by increasing instruction

parallelism. Loop skewing takes a nested loop iterating over a multi-dimensional array,

where each iteration of the inner loop depends on previous iterations, and rearranges

its array accesses so that the only dependencies are between iterations of the outer

loop. Loop interchange/permutation exchanges inner loops with outer loops. Such a

transformation can improve locality of reference, depending on the array layout. Loop

tiling/blocking reorganizes a loop to iterate over blocks of data sized to fit in the cache.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

6 Chapter 1 Introduction

Loop unswitching moves a conditional from inside a loop to outside by duplicating the

loop body. Some other important loop transformations are loop reversal, spreading,

peeling, etc. (Bacon et al., 1994).

1.2.3 Arithmetic transformations

A compiler usually applies a set of techniques that transform the arithmetic expres-

sions of the behaviours. Some of them are discussed here. Common subexpression

elimination: In many cases, a set of computations will contain identical subexpres-

sions. The compiler can compute the value of the subexpression once, store it, and

reuse the stored result. Constant propagation: Typically programs contain many con-

stants. By propagating them through the program, the compiler can do a significant

amount of precomputation (Bacon et al., 1994). More importantly, the propagation

reveals many opportunities for other optimization. Constant folding is a companion

to constant propagation. When an expression contains an operation with constant

values as operands, the compiler can replace the expression with the result. Copy

propagation: Optimization such as common subexpression elimination may cause

the same value to be copied several times. The compiler can propagate the original

value through a variable and eliminate redundant copies. Algebraic transformations:

The compiler can simplify arithmetic expressions by applying algebraic rules such

as associativity, commutativity and distributivity. Operator strength reduction: The

compiler can replace an expensive operator with an equivalent, less expensive oper-

ator. Redundancy-eliminating transformations: Compiler may remove unreachable

and useless computations. A computation is unreachable if it is never executed. Re-

moving it from the program will have no semantic effect on the instructions executed.

A computation is useless if none of the outputs of the program are dependent on it.

1.2.4 High-level to RTL transformations

High-level synthesis (HLS) tools (Gajski et al., 1992) convert a high-level behavioural

specification into an RTL level description. The HLS process consists of several in-

terdependent subtasks such as compilation or pre-processing, scheduling, allocation

and binding, and datapath and controller generation. In the first step of HLS, the be-



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.2 Behavioural transformations 7

havioural description is compiled into an internal representation. This process usually

includes a series of compiler like optimizations. Scheduling assigns operations of the

behavioural description into control steps. Allocation chooses functional units and

storage elements from the component library based on the design constraints. Binding

assigns operations to functional units, variables to storage elements and data trans-

fers to wires or buses such that data can be correctly moved around according to the

scheduling. The final step of high-level synthesis is data-path and controller genera-

tion. Depending upon the scheduling and the binding information of the operations

and the variables, proper interconnection between the data-path components is set up.

Finally, a finite state machine (FSM) is generated to control all the micro-operations

over the datapath. The RTL designs consist of a description of the datapath netlist and

a controller FSM.

Power optimization can be performed on different levels of the design hierarchy.

Lately, system level and high-level power optimization have received great attention

(Ahuja et al., 2010; Jiong et al., 2004; Lakshminarayana et al., 1999; Musoll and

Cortadella, 1995; Xing and Jong, 2007). Employing low power transformations at

RTL designs, such as, restructuring multiplexer networks (to enhance data correlations

and eliminate glitchy control signals), clocking control signals, and inserting selective

rising/falling delays, clock gating, etc., has emerged as an important technique to

minimize total power consumption of the circuits (Chandrakasan et al., 1995a, 1992;

Raghunathan et al., 1999). In control-flow intensive designs, the multiplexer networks

and registers dominate the total circuit power consumption. Also, the control logic

can generate a significant amount of glitches at its outputs, which in turn propagate

through the data path accounting for a large portion of the glitch power in the entire

circuit. For data-flow intensive designs, the chaining of arithmetic functional units

results in majority of dynamic power consumption.

1.2.5 Sequential to parallel transformations

Applications like multimedia, imaging, bioinformatics, and signal processing must

achieve a high computational power with minimal energy consumption. Given these

conflicting constraints, multiprocessor implementations not only deliver the necessary

computational power, but also provide the required power efficiency. However, the

performance gain achieved is dependent on how well the compiler can parallelize the



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

8 Chapter 1 Introduction

given program and generate code for ‘matching’ the hardware parallelism. There are

three types of parallelism of the sequential programs: (i) Loop-level parallelism: The

iterations of a loop are distributed over multiple processors. (ii) Data-parallelism:

data parallelism is achieved when each processor performs the same task on different

pieces of distributed data. (iii) Task-level parallelism: Task parallelism focuses on

distributing sub-tasks of a program across different parallel processors. The sub-tasks

can be the subroutine calls, independent loops, or even independent basic blocks. This

is the most used parallelization technique.

The parallel behaviour obtained from a sequential behaviour may undergo a par-

allel level code transformations. Parallel transformations manipulate the concurrency

level of the parallel programs. The concurrency level of a program may not match

the parallelism of the hardware, or vice-versa. In this case, the performance (in terms

of total execution time, energy consumption, etc.) of that parallel program can be

modified to suit the hardware by changing the concurrency level of the program. The

transformations like channel merging and splitting, process merging and splitting and

computation migration, etc., are commonly used for this purpose.

1.3 Motivations and objectives

Verifying correctness of behavioural transformations, as described above, is an impor-

tant step in ensuring dependability of embedded systems. Various analysis tools can

prove the absence of certain kinds of errors at the source behaviour; however, if the

compiler is not guaranteed to be correct, then no source-level guarantees can be safely

transferred to the generated code. One of the most error prone parts of a compiler is

its optimization phase. Many optimizations require an intricate sequence of complex

transformations. Often these transformations interact in unexpected ways, leading to a

combinatorial explosion in the number of cases that must be considered to ensure that

the optimization phase is correct (Kundu et al., 2009). Vendors of mature ES design

tools often talk of method which are “correct by construction". However, it should be

noted that tools are always in a state of change as newer features have to be introduced

to maintain competitiveness of the tools. Therefore, even with “mature" tools, there is

a possibility of encountering a bug resulting in design flaws.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.3 Motivations and objectives 9

A degree of assurance is achieved by way of on extensive simulation and testing.

The goal of simulation is to identify errors as early as possible in the design phase.

In particular, for embedded systems, both the hardware and the software parts of the

system must be simulated at the same time. Both simulation and testing suffer from

being incomplete: each simulation run or each test evaluates the system performance

for only a single set of operating conditions and input signals. For complex embedded

systems, it is impossible to cover even a small fraction of the total operating space

with simulations. Finally, testing is prohibitively expensive. Today building a test

harness to simulate a component’s environment is more expensive than building the

component itself.

Formal verification can be used to provide guarantees of compiler correctness. It

is an attractive alternative to traditional methods of testing and simulation, which for

embedded systems, tend to be expensive, time consuming, and hopelessly inadequate,

as argued above. There are two fundamental approaches of formal verification of

compilers. The first approach proves that the steps of the compiler are correct by con-

struction. In this setting, to prove that an optimization is correct, one must prove that

for any input program the optimization produces a semantically equivalent program.

The primary advantage of correct by construction techniques is that optimizations are

known to be correct when the compiler is built, before they are run even once. Most

of the techniques that provide correct by construction guarantees require user inter-

action (Kundu et al., 2009). Moreover, correct by construction proofs are harder to

achieve because they must show that any application of the optimization is correct.

Despite the fact that a significant amount of work has been carried out for verifying

that synthesis steps are correct by construction, the state of the art techniques are still

far from being able to prove automatically that the steps of the compilation process

always produce correct designs (Kundu et al., 2010). However, even if one cannot

prove a compiler to be correct by construction, one can at least show that, for each

translation that a compiler performs, the output produced has the same behavior as the

original behaviour. The second category of formal verification approach, called trans-

lation validation, consists of proving correctness each time an optimization step is

invoked. Here, each time the compiler runs an optimization, an automated tool tries to

prove that the original program and the corresponding optimized program are equiv-

alent. Although this approach does not guarantee the correctness of the compilation

process, it at least guarantees that any errors in translation will be caught when the



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

10 Chapter 1 Introduction

particular steps of ES design tool are performed, preventing such errors from propa-

gating any further in synthesis process. In this dissertation, we work on developing

translation validation methodologies for several behavioural transformations applied

during embedded systems.

1.3.1 Problem statements

The objective of this work is to show the correctness of several behavioural trans-

formations that occur during embedded system design primarily using equivalence

checking methods. Specifically, the following verification problems will be addressed:

Code motion transformations: Several code motion techniques such as specula-

tion, reverse speculation, branch balancing, conditional speculation, etc., may be ap-

plied on the input behaviour which is in the form of a sequential code at the prepro-

cessing stage of embedded system synthesis. The input behaviours are transformed

significantly due to these transformations. One may also apply a combination of

these transformation techniques. Moreover, arithmetic transformations may also be

applied along with code motion transformations. It is, therefore, a non-trivial task to

show the equivalence between the input behaviour and the transformed behaviour. The

equivalence checking methods reported in the literature conventionally use path based

approach whereupon for each path in a behaviour an equivalent path is identified in

the transformed behaviour. Code motions can be of two types namely, uniform and

non-uniform code motions. The former moves a code segment over both branches fol-

lowing a branching block; in contrast, the latter category of code motions move code

segments over only one branch of the BB. The methods reported in the literature can

verify only uniform code motions. A common verification mechanism for both kinds

of code motion transformations is worth exploring.

High-level to RTL transformations: During high-level synthesis, the input high-

level behaviour is transformed to an output RTL consisting of a datapath, which is

merely a structural description, and a controller, represented as a finite state machine

(FSM). The controller invokes a control assertion pattern (CAP) in each control step

to execute all the required data-transfers and proper operations in the FUs. The results

of the relational operations (i.e. the status signals) are the inputs to the controller. The

state transitions in the controller FSM depend on these status signals. The input be-



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.3 Motivations and objectives 11

haviour is in a higher abstraction level compared to that of the output RTL behaviour.

The verification method, therefore, should first analyze the CAP vis-a-vis the datapath

structure to identify the RT-operations from the output RTL behaviour to compare it

with the input high-level behaviour. The data transformations of the high-level be-

haviour, however, may be implemented in pipelined or multicycle functional units

which may execute over more than one FSM control state. Therefore, a state-wise

analysis of CAP vis-a-vis datapath inter-connections may not suffice to verify multi-

cycle and pipelined operations. The verification task of this phase, therefore, should

accommodate all the intricacies of the RTL designs to show the equivalence between

the high-level behaviour and the RTL behaviour.

RTL transformations: The low power RTL transformations primarily bring about

modifications at a much lower level of abstraction involving intricate details regarding

restructuring of the datapaths, control logic and routing of the control signals. Accord-

ingly, in a typical industry scenario, an RTL or architectural low power transformation

implies a full cost of simulation based validation, which can extend to many months

(Viswanath et al., 2009). Formal verification methods, not necessarily compromising

the details through abstraction, is a desirable goal. One of the objectives of this work

is showing equivalence of two RTL designs, one obtained from the other by applying

low power RTL transformations.

Loop transformations: Signal processing and multimedia applications are data

dominated in nature. Several loop based transformation techniques such as un-switching,

reordering, skewing, tiling, unrolling, etc., may be applied at the preprocessing stage.

These transformations are applied in order to reorder and restructure the loop body to

improve the spatial and temporal locality of the accessed data. The loop transforma-

tion techniques can be of two types, structure preserving and structure modifying. The

former admits a clear mapping of control and data values in the transformed behaviour

to the corresponding control and data values in the source behaviour; the latter does

not admit such a mapping (Zuck et al., 2005). In addition, arithmetic transformations

may also be applied along with loop transformations. The verification method should

be strong enough to handle as many loop transformations and arithmetic transforma-

tions as possible applied on data dominated behaviours.

Sequential to parallel behaviour transformation: The functional specification,

which relies on a single-threaded sequential code, is not easy to deploy on highly



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

12 Chapter 1 Introduction

concurrent heterogeneous multi-processor systems. A parallel model of computation

(MoC) may be used as the programming model. However, writing an application

depicting concurrency is time consuming and error prone which conflicts with the

low time-to-market requirement of the present day embedded systems. So, an au-

tomated tool that converts a sequential code to its equivalent concurrent behaviour

is employed. In the case of streaming applications, Kahn process network (KPN)

(Kahn, 1974) model of computation is often used. The KPN is a deterministic parallel

MoC that explicitly specifies tasks as processes and distributed memory units as FIFO

channels. The verification task involves showing the equivalence between a sequential

behaviour and its corresponding parallel KPN behaviour. Obviously, the overall data

transformation of the KPN behaviour can only be captured if the global data depen-

dencies are captured. The challenge lies in capturing the data dependencies spread

over all the concurrent KPN processes independent of their possible interleaving.

Parallel level transformations: The parallel process network model that are ob-

tained from the sequential behaviour in an automated way or manually may not be

suitable for the target architectural platform. Moreover, the overall achieved perfor-

mance obtained as a result of mapping may not be satisfactory from the point of view

of the data throughput and/or memory usage. In this case, it is necessary to manipulate

the amount of concurrency in the functional model. Too little concurrency may not be

desirable since it may not completely make use of the architectural capabilities. Too

much concurrency, in contrast, may require too large an overhead to eventually man-

age in the architecture, which may increase the overall latency. The transformation

techniques like process splitting, channel merging, process clustering, and unfolding

and skewing may be used to control the concurrency in the KPN behaviour accord-

ing to the architectural constraints. The verification task of this phase, therefore, is to

show the equivalence between two KPN behaviours. The challenge remains the same

as in equivalence checking of sequential to parallel transformation namely, capturing

the global dependencies irrespective of the interleaving of both the input and the out-

put concurrent behaviours. Hence, it is worth examining whether a method capable of

validating sequential to parallel transformations should suffice for the commonly used

parallel level transformations.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.4 Contributions 13

1.4 Contributions

Verification of code motion transformations: A formal verification method for check-

ing correctness of code motion techniques is presented. Finite state machine mod-

els with datapath (FSMDs) have been used to represent the input and the output be-

haviours. The method introduces cutpoints in one FSMD, visualizes its computations

as concatenation of paths from cutpoints to cutpoints, and then identifies equivalent

finite path segments in the other FSMD; the process is then repeated with the FSMDs

interchanged. A path is extended when its equivalent path cannot be found in the other

FSMD. However, a path cannot be extended beyond loop boundaries. Our method is

capable of verifying both uniform and non-uniform code motion techniques. It has

been underlined in this work that for non-uniform code motions, identifying equiva-

lent path segments involves model checking of some data-flow properties. Our method

automatically identifies the situations where such properties are needed to be checked

during equivalence checking, generates the appropriate properties, and invokes the

model checking tool NuSMV to verify them. The correctness and the complexity of

the method have been dealt with. Experimental results demonstrate the effectiveness

of the method.

Verification of RTL generation and RTL transformations: A formal verification

method of the RTL generation phase of a high-level synthesis (HLS) process is pre-

sented in (Karfa, 2007). The goal is achieved in two steps. In the first step, the dat-

apath interconnection and the controller FSM description generated by a high-level

synthesis process are analyzed to obtain the register transfer (RT) operations executed

in the datapath for a given control assertion pattern in each control step. In the second

step, an equivalence checking method is deployed to establish equivalence between

the input and the output behaviours of this phase. A rewriting method has been devel-

oped for the first step. Our method is strong enough to handle pipelined and multicyle

operations, if any, spanning over several states. The correctness (termination, sound-

ness and completeness) and complexity of the presented method have been treated

formally. The experimental results on several HLS benchmarks are presented.

In order to verify RTL transformations, we model both the RTLs as FSMDs and

then apply our FSMD based equivalence checking method to show the equivalence.

In this work, we analyze several commonly used RTL low power transformation tech-



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

14 Chapter 1 Introduction

niques and show that our verification method can handle those transformations.

Verification of loop and arithmetic transformations of array intensive behaviours:

We propose a formal verification method for checking correctness of loop transfor-

mations and arithmetic transformations applied on the array and loop intensive be-

haviours in design of area/energy efficient systems in the domain of multimedia and

signal processing applications. Loop transformations hinge more on data dependence

and index space of the arrays than on control flow of the behaviour. Hence, array data

dependence graphs (ADDGs), proposed by Shashidhar (Shashidhar, 2008), are used

for representing array intensive behaviours. Shashidhar (Shashidhar, 2008) proposed

an ADDG based equivalence checking method to validate the loop transformations.

Possible enhancements of his method to handle associative and commutative trans-

formations are also discussed in (Shashidhar, 2008; Shashidhar et al., 2005a). We

redefine the equivalence of ADDGs in this work to verify loop transformations along

with a wide range of arithmetic transformations. We also propose a normalization

method for array intensive integer arithmetic expressions. The equivalence checking

method relies on this normalization technique and some simplification rules to han-

dle arithmetic transformations over arrays. Correctness and complexity of the method

have been dealt with. Experimental results on several test cases are presented.

Verification of Parallelizing transformations: A formal verification method for

checking correctness of parallelizing transformations of sequential behaviours is pre-

sented. The parallel behaviours are represented as Kahn process networks (KPNs).

We describe a mechanism to represent a KPN behaviour comprising inherently paral-

lel processes as an ADDG. We also present a proof of correctness of the construction

mechanism. We then apply our ADDG based equivalence checking method to estab-

lish the equivalence between the initial sequential behaviour and the KPN behaviour.

The key aspect of our scheme is to model a KPN behaviour as an ADDG. We then

show how the ADDG based modelling helps us detect deadlocks in KPN behaviours.

Experimental results supporting this scheme are provided.

We next address the problem of verifying transformations of parallel behaviours.

We assume that the parallel behaviours and their transformed versions are both avail-

able as KPN models. The KPN to ADDG transformation scheme is applied for this

purpose. Specifically, we model both the input and the transformed KPNs as AD-

DGs and apply our ADDG based equivalence checking method for establishing the



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.5 Organization of the thesis 15

equivalence between the two KPNs. We then show that the commonly used parallel

transformations techniques can be verified in our verification framework. Experimen-

tal results are presented.

1.5 Organization of the thesis

The rest of the thesis is organized in the following manner.

Chapter 2 provides a detailed literature survey on the applications of commonly

used behavioural transformations and their existing verification methods. In the pro-

cess, it identifies the limitations of the state of the art verification methods and under-

lines the objectives of the thesis.

Chapter 3 discusses a path extension based equivalence checking of code motion

transformations. The issues addressed in the chapter is illustrated first. The FSMD

model is then introduced. A normalization procedure over integer arithmetic is given

next. The notion of path extension and its enhancement for verifying non-uniform

code motions are described next. The verification method is then given. The chapter

also provides a detailed theoretical analysis of the method and some experimental

results with the implementation.

Chapter 4 discusses the high-level to RTL translation verification method. The ba-

sic construction mechanism of the FSMDs from the RTL designs is discussed first.

How the basic method is enhanced to handle multicyle, pipelined and chained opera-

tions is given next. The overall construction mechanism is then discussed. Termina-

tion, soundness and completeness of the method have been proved and the complexity

of the method analyzed. The verification of the data-path and the controller during

FSMD construction is given next. The chapter then discusses the applicability of this

method to verify RTL level transformations and finally, provides some experimental

results on this method.



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

16 Chapter 1 Introduction

Chapter 5 discusses the verification of loop and arithmetic transformations of array

intensive behaviours. The ADDG model and its different entities are formally defined

and elaborated with examples first. The method to obtain an ADDG from a sequential

behaviour is then presented. A normalization method and some simplification rules of

normalized expressions for array intensive arithmetic expressions are introduced. The

chapter defines the notion of slice based equivalence of ADDGs next. The correctness

and complexity of the method have been analyzed subsequently. The chapter finally

provides some experimental results and error diagnoses of the presented method.

Chapter 6 discusses the verification of sequential to parallel and parallel to parallel

code transformations. The objectives of the work are illustrated first. The verification

framework is given next. The chapter then provides a mechanism of modelling a KPN

as an ADDG. The proof of correctness of this translation is given next. The chapter

then discusses the commonly applied KPN level transformations and shows that our

verification framework is strong enough to verify those transformations. Finally, some

experimental results are provided.

Chapter 7 concludes our study in the domain of verification of behaviour trans-

formations during embedded system design and discusses potential future research

directions in this field.


