List of Tables

Pag	e Nos.	
Table 4.1 – Data set of aircraft generator failures in number of days	75	
Table 4.2 – Parameter estimates of the models used for aircraft generator	76	
failures data		
Table 4.3 – Quantiles of the null distribution of the log likelihood ratio	77	
for HPP vs NHPP		
Table 4.4 – Parameter estimates of the HPP segmented model used for	79	
aircraft generator failures data		
Table 4.5 – Sequential change point detection for the failures data of the	83	
aircraft generator		
Table 4.6 – Data set of photocopier failures in number of days	84	
Table 4.7 – Parameter estimates of the models used for photocopier failures	s 84	
data		
Table 4.8 – Parameter estimates of the segmented models used for	86	
photocopier failures data		
Table 4.9 – Parameter estimates of the segmented models for photocopier	89	
failures data		
Table 4.10 – Data set of failures of Mill Stand Drive Gearbox	91	
Table 4.11 – Parameter estimates of the models used for Mill Stand Failure	91	
data		

Table 4.12 – Parameter estimates of the HPP segmented model used for	94
Mill Stand Gearbox Failures data	
Table 4.13 – Data set of Valve failures in number of hours	95
Table 4.14 – Parameter estimates of the HPP model used for failures data	96
of the valve	
Table 4.15 – Sequential change point detection for the failures data of the	97
valve	
Table 4.16 – Sequential change point detection for the failures data of the	98
valve after the first change point	
Table 4.17 – Parameter estimates of the HPP segmented model used for	98
failures data of the valve	
Table 4.18 – Parameter estimates of the models used for Valve data	100
Table 4.19 – Parameter estimates of segmented models used for Valve	101
failures data	
Table 4.20 – Parameter estimates of the hybrid segmented model used	105
for Valve failures data	
Table 5.1 – Data set of an Iron ore mine excavator no. 51089 failures	111
in number of hours	
Table 5.2 – Parameter estimates of the models used for the failures of the	111
Iron ore mine excavator no. 51089	
Table 5.3 – Parameter estimates of the HPP segmented model with a	113
single change point used for the failures of the Iron ore mine	-

excavator no. 51089

Table 5.4 – Tes	ting for true change point in HPP segmented model used	115
for	the failures of the Iron ore mine excavator no. 51089	
Table 5.5 – Para	ameter estimates of the HPP segmented model used for the	118
failu	res of the Iron ore mine excavator no. 51089	
Table 5.6 – Seq	uential change point detection for the failures data of the	120
Iror	ore mine excavator no. 51089	
Table 5.7 – Seq	uential change point detection for the failures data of the	120
Iror	ore mine excavator no. 51089 after the first change point	
Table 5.8 – Dyr	namic change point detection for the failures data of the	121
Iror	ore mine excavator no. 51089	
Table 5.9 – Dat	a set of wheel assembly failures of RTEOT Crane in	122
num	iber of days	
Table 5.10 – Pa	rameter estimates of the models used for Crane Wheel	123
As	sembly Failure Data	
Table 5.11 – Pa	rameters of the Segmented models used for	124
Cr	ane Wheel Assembly Failure Data	
Table 5.12 – Pa	rameter estimates of the hybrid segmented model used for	129
Cr	ane Wheel Assembly Failure Data	
Table 5.13 – Pa	rameter estimates of the models used for Crane Wheel	131
As	sembly Failure Data	
Table 5.14 – Pa	rameter estimates of the subsequent segments modelled	133
wit	h HPP and NHPP segmented models with single change	
ро	int for Crane Wheel Assembly Failure Data	

Table 5.15 -	- Data set of failures of Load-Haul-Dump-A Machine in	135
	number of days	
Table 5.16 -	- Parameter estimates of the models used for failures data of	135
	LHD-A Machine	
Table 5.17 -	- Sequential change point detection for the failures data of	137
	the LHD-A Machine	
Table 5.18 -	- Sequential change point detection for the failures data of	137
	the LHD-A Machine after the first change point	
Table 5.19 -	- Parameter estimates of the HPP segmented model for failures	138
	of the Load-Haul-Dump-A Machine	
Table 5.20 -	- Parameter estimates of the models used LHD-A machine	140
	failures data	
	raintres data	
Table 5.21 -	- Parameter estimates of the segmented models used for	142
	LHD-A failures data	
Table 5.22 -	- Parameter estimates of the ARI1 segmented model used for	144
	the first segment of twenty seven failures of the Photocopier	
	failutes data	
Table 5.23 -	- Parameter estimates of the weibull renewal segmented model	144
	used for the first segment of twenty seven failures of the	
	Photocopier failures data	

Table 5.24	- Parameter estimates of the weibull renewal segmented	145
	model with two change points for the Photocopier failures	
	data	
Table 6.1 -	- Data set of failures of Mill Stand Drive Gearbox with a	149
	covariate	
Table 6.2 -	- Parameter estimates of the models used for Mill Stand Drive	150
	Gearbox Failure Data with a covariate	
Table 6.3 -	- Comparison of the models used for Mill Stand	152
	Drive Gearbox Failure Data	
Table 6.4 -	- Data set of wheel assembly failures of RTEOT Crane	153
	in number of days with covariate wear	
Table 6.5 -	- Parameter estimates of the models used for Crane Wheel	153
	Assembly Failure Data with covariate wear	
Table 6.6 -	- Parameter estimates of the segmented proportional intensity	155
	models used for Crane Wheel Assembly Failure Data	
Table 6.7 -	- Parameter estimates of the subsequent segments modelled with	159
	HPP and NHPP segmented models with single change	
	point for Crane Wheel Assembly Failure Data	
Table 6.8 -	- Parameter estimates of the hybrid segmented proportional	162
	intensity model used for Crane Wheel Assembly Failure Data	
Table 6.9 -	- Comparison of the models used for LT Wheel assemblies	163
	of crane failure data	

List of Figures

	Page Nos.
Figure 4.1 – Failures of an aircraft generator	76
Figure 4.2 – Location of a change point with a HPP	79
Figure 4.3 – Segmented model of aircraft generator failures	80
Figure 4.4 – Checking of Aircraft generator failure models	81
Figure 4.5 – Failures of a Photocopier	85
Figure 4.6 – Location of change point with a HPP segmented model	. 87
Figure 4.7 – Location of a change point with an NHPP segmented n	nodel 87
Figure 4.8 – Location of a change point with an ARI_1 segmented mo	odel 88
Figure 4.9 – Hybrid Segmented model for the failures of a Photocop	vier 90
Figure 4.10 – Failures of Mill Stand Gearbox	91
Figure 4.11 – Location of change point with a HPP segmented mod	el 92
Figure 4.12 – Segmented model of Mill stand gearbox failures	93
Figure 4.13 – Checking of Mill stand gearbox failure models	93
Figure 4.14 – Failures of a Valve	96
Figure 4.15 – HPP segmented model of Valve failures	99
Figure 4.16 – Failures of a valve	100
Figure 4.17 – Location of change point with a HPP segmented mode	el 102
Figure 4.18 – Location of a change point with an NHPP segmented	model 102
Figure 4.19 – Location of a change point with an ARI_1 segmented m	odel 103

Figure 4.20 – Segmented models of valve failures	106
Figure 5.1 – Failures of an Excavator	112
Figure 5.2 – Location of change point with a HPP segmented model	113
Figure 5.3 – Location of second change point with a HPP segmented model	114
Figure 5.4 – Location of third change point with a HPP segmented model	116
Figure 5.5 – Location of fourth change point with a HPP segmented model	116
Figure 5.6 – HPP segmented model for failures of an excavator	117
Figure 5.7 – Checking of HPP model versus HPP segmented model	118
for failures of excavator	
Figure 5.8 – Failures of LT Wheel assemblies of a crane	123
Figure 5.9 – Location of change points with a HPP Segmented model	125
Figure 5.10 – Location of change points with an NHPP Segmented mode	125
Figure 5.11 – Location of change points with an ARI_1 Segmented model	126
Figure 5.12 – Segmented models of wheel failures	126
Figure 5.13 – Hybrid segmented model of crane wheel failures	129
Figure 5.14 – Checking of hybrid model for wheel assembly failures	130
Figure 5.15 – Failures of LHD-A Machine	136
Figure 5.16 – Segmented model of LHD-A Machine failures	138
Figure 5.17 – Failures of LHD-A machine	140
Figure 5.18 – Location of change points with an NHPP Segmented mode	141
Figure 5.19 – Location of change points with an ARI_1 Segmented model	141
Figure 5.20 – Location of change points with an ARI_1 Segmented model	143

Figure 5.21 – Weibull renewal segmented model and hybrid segmented	146
model for the failures of a Photocopier	
Figure 6.1 – Failures with vibration of Mill Stand Drive Gearbox	150
Failure Data	
Figure 6.2 – Models for Failures of Mill Stand Gearbox	152
Figure 6.3 – Failures with wear of LT Wheel assemblies of crane	154
Figure 6.4 – Location of change point with a HPP proportional	156
intensity segmented model	
Figure 6.5 – Location of change point with an NHPP proportional	157
intensity segmented model	
Figure 6.6 – Location of change point with a HPP proportional intensity	158
segmented model for first segment of thirty six failures	
Figure 6.7 – Location of change point with an NHPP proportional intensity	160
segmented model for first segment of thirty three failures	
Figure 6.8 – Hybrid proportional intensity segmented model for the	162
failures of LT Wheel assemblies of crane	

List of Abbreviations

- SAN = Same as new
- SAO = Same as old
- i.i.d = independent and identically distributed

HPP = Homogeneous poisson process

NHPP = Non-homogeneous poisson process

TRP = Trend renewal process

ARA = Arithmetic reduction of age

ARI = Arithmetic reduction of intensity

 $ARI_1 = Arithmetic reduction of intensity with memory 1$

GRA = Geometric reduction of age

GRI = Geometric reduction of intensity

WPP = Weibull probability paper

MLE = Maximum likelihood estimator

ln L= log likelihood

AIC = Akaike information criterion

PLP = Power law process

SPLP = Superimposed power law process

PI = Proportional intensity

MTBF = Mean time between failures

ROCOF = Rate of occurrence of failures

FMEA = Failure modes and effects analysis

LHD = Load-haul-dump

List of Symbols

N(t) = Number of events in (0,t] each event being a failure occurring at random

 $\Lambda(t)$ = Cumulative intensity of the events up to time t

 λ (*t*) = Event intensity or rate of occurrence of events

- λ (t | H_t⁻) = Conditional event intensity or conditional rate of occurrence of events
- H_t = The available data just prior to time t or the history of the process, the

collection of all events observed on [0,t]

 $T_{N(t^-)}$ = Time just prior to the last failure

 $t - T_{N(t^{-})}$ = Time since just prior to the last failure

- λ = Scale parameter of the homogeneous poisson process
- a = Scale parameter of the non homogeneous poisson process
- β = Shape parameter of the non homogeneous poisson process
- $\varepsilon(t) = \text{Effective age of the unit / system}$
- ρ = Random variable representing degree of repair

 $\lambda(t \mid H_t) = \lambda(t) f(\gamma' Z(t))$

- Z(t) = Time varying covariates
- Z = Time invariant covariates

 $\gamma =$ Regression coefficients of the time varying covariates

 τ = Location of change point