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Introduction 

1.1.   The needs of Industrial Maintenance  

Maintenance of assets is one of the most important activities in a continuous 
process industry to achieve the desired performance levels in terms of reliability, 
availability, safety and productivity. Having procured and installed the machinery, 
this remains the only option left to preserve and sustain the assets in a healthy 
condition. Therefore, various approaches for improving the effectiveness of 
maintenance of assets have evolved over the years. These include various 
maintenance philosophies, development and application of technology and IT 
based maintenance techniques. The key to effective deployment of these 
approaches, lies in a better understanding of the failure patterns, management of 
spare parts, allocation of human and other resources, and overall planning and 
controlling of the intended maintenance function. The development of 
mathematical models for maintained systems helps in carrying out the above 
functions in an objective manner. 

The industrial environment today is much more complex than ever before, 
with large sophisticated and costly systems, that are required to be operated 
round the clock with as little unscheduled disruptions as possible. The 
consequences of breakdown/failure can be a simple maintenance loss to a loss of 
production with or without safety and environmental consequences causing 
ultimately a loss to the society where they operate. 

1



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

In order to effectively and efficiently operate such systems large maintenance 

organizations are employed either, in-house, off-loaded or mixed along with large 

budgets and resources. Typical costs of maintenance work out to approximately 

ten percent of the total expenditure of any large industrial organisation. If the 

maintenance activity is optimized it would enhance the organizations ability to be 

competitive and meet its stated objectives with as little loss as possible. 

Managing maintenance in any organisation starts with elucidating and 

articulating the needs of the maintenance engineer / manager. The broader needs 

of maintenance are closely linked to the business goals of the organisation. The 

broad strategy for maintenance is framed based on these business goals. First the 

mission and vision of maintenance are decided and the broad objectives of 

maintenance are fixed. Next the policy / techniques / tasks / practices adopted 

for maintaining assets to achieve the above objectives are finalised.  

These encompass activities such as scheduling of maintenance work, 

deployment of resources, planning for spares, creating and using maintenance 

systems employing the concepts of preventive maintenance, condition based 

maintenance and predictive maintenance. The goal of the maintenance engineers 

/ managers is to carry out these activities in a productive and cost effective 

manner.

The greatest fear of the maintenance engineers / managers, in managing their 

twin goals, is the incidence of system breakdown or failure and their greatest 

challenge is to improve the system reliability. The questions faced by them in 

tackling these activities start with their eternal bugbear failure and revolve around 

the measures needed to protect the systems from its occurrence. Questions asked 

are;

1. What is the frequency of failure? 

2. What is the trend of failures? 

3. When will the next failure occur? 
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4. How many failures will occur in the following specified time period? 

5. What are the factors responsible for the failures? 

6. Which factor is prominent in causing failure and needs to be tackled? 

7. What are the consequences of the failures? 

8. What are the measures to be taken to tackle these failures? 

9. After taking these measures has the failure trend changed? 

10. What should the maintenance policy be? 

11. When to go for modifications or design changes? 

12. How to estimate the effects of modifications / design changes? 

13. How to distinguish the effects of various operating environments? 

14. How to operate equipment to give the maximum reliability under the given 

conditions?

15. How many spares are to be kept? 

16. How to decide on the resources for maintenance? 

17. When to go for total replacement? 

18. How to optimise maintenance decisions based on different criteria? 

19. How to judge the effectiveness of the maintenance policy? 

20. How to assess its contribution to business goals? 

Finding answers to these questions will help them in arriving at suitable 

decisions as to what needs to be done to perform appropriate maintenance of 

their systems. 

Today, the most common mode of assessing the information and making 

decisions based on them is by applying common sense to their engineering 

knowledge to arrive at heuristic decisions. This, more often than not, leads to 
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incorrect decisions that detract heavily from the effectiveness and efficiency 

required in meeting their goals. 

If the maintenance engineers / managers have at their beckoning tools that 

could provide them a means of objectively, scientifically and repeatedly arrive at 

correct decisions then their onerous burden would be lightened and their 

responsibility, in reducing the overall business risk, and enhancing their 

organisation’s capability to be competitive and successful well met. The need of 

the hour is to develop such tools, to represent the concepts of industrial 

maintenance, to help in meeting their needs completely. This is achieved through 

correct mathematical modelling of the maintenance activities.

1.2.   Mathematical modelling of maintenance using Point 
Processes

The occurrence of failure or breakdown of a system is a negation of all the 
efforts of maintenance. A proper and better understanding of the failure process 
will lead to improved maintenance practices for reducing the incidence of failure. 
Hence, a study of the maintenance activities connected with any system begins 
with a study of its failure process.

Two approaches have been employed to model and understand the failure 
process of any system. The first is the Physics of failure approach or the white 
box approach, where the mechanism of failures is modelled based on the 
established theories of component failures. The second is the Empirical approach 
or the black box approach, where the mechanism of failure is not properly 
understood and the failure process is modelled based on the failure data. In the 
Empirical approach, the failure process of a maintained system has been 
traditionally modelled with stochastic processes called point processes. Point 
process models, generally used for maintained systems, are reviewed below. 

As the time of occurrence of any failure of the system is uncertain, it’s time to 
failure from the time at which a system is put into operation is represented 
mathematically as a random variable. 
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The system is put back into operation on maintenance and continues to 
function till its next failure. Thus, the failure process of a maintained system 
consists of a series of failures occurring sequentially at different points in time. 
This increasing sequence of times to failures can be represented mathematically 
by a sequence of random variables. A collection, family or sequence of random 
variables, forms a random (uncertain) or stochastic process. 

The sequence of failures represented by the times to failure of a system 
treated as a sequence of point events (the failure events) occurring at specified 
points in time lead to their modelling by stochastic processes called Point 
processes. A point process is, roughly speaking, a countable random collection of 
points on the real line.

Let T1, T2, T3,…..,Tn be the times at which failure events occur on the time 
axis. Each of these times to failure is represented mathematically by a random 
variable, and the collection of these random variables, forms a point process. 

Let N(t) be the number of points/events in [0,t] where the real line is the 

time axis. The process N can be said to count the events of the point process, 

and hence is called a (univariate) counting process. In the case of a failure process 

the counting process N(t) counts the failure events. 

Both the processes are equivalent to each other and are governed by the 

relation;

Pr (Tn  t)  Pr (N(t)  n)              (1.1) 

A study of the failure process can be made by studying either of the 

stochastic processes, the point process T1, T2, T3,…..,Tn or the counting process 

N1, N2, N3,…., Nn.

The stochastic process called the intensity process of the counting process 

can be used to study the points/events N(t).
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Let (t| ) = Conditional event intensity or conditional rate of occurrence 

of events 

-t
H

                         = dt/)H|dtt t, in occurs Event An( Prlim -t0dt

                         = dt/H|1)N(t)  ))dtt(N( Prlim -t 0dt

                         = dt/)H|1(dN(t) Prlim -t
 0dt               (1.2)

where represents the available data just prior to time t or the history of 

the process, the collection of all events in this case, the failures observed on [0,t]

for an orderly point processes i.e., a point process for which no simultaneous 

failures occur at any given instant of time. 

-t
H

Since the development in time of a counting process N(t) is governed by its 

intensity process, we can specify a counting process model for failure history data 

by giving a specification for the intensity processes. Since the study of the 

counting process N(t) is equivalent to a study of the point process Tn, the 

intensity process of a counting process can be used to study the point process of 

failure events Tn.

The conditional intensity process (t| ) provides a general framework for 

the modelling of the failure event processes of a maintained system.  

-t
H

The approach involves the specification of a baseline intensity function )t( ,

which we can think of as being the hazard function of the time to first failure. 

This function will then be used in describing the various models by means of 

their conditional intensity function (t| )-t
H

1.2.1.   Maximal Repair 

Systems which undergo major repairs and after repair the system can be termed 
as a good as a new system are modelled by means of renewal processes. For these 
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processes, the failure intensity starts anew from zero after each repair as if a new 
system has been put into operation at this point of time and thus the process 
represents maximal repair and the system is termed same as new (SAN).  

The word renewal owes its genesis to the fact that the system after repair is 
considered to be the same as being replaced with a new one and thus is 
considered to be renewed. 

The inter failure times of a renewal process are independent of each other 
and identically distributed. Thus, a renewal process is formed by a sequence of 
independent and identically distributed (i.i.d) random variables.  

For a renewal process the conditional intensity function is a function of the 
backward recurrent time i.e., the time since the last failure; 

)|t( -tH = )Tt( )t(N  (1.3) 

A renewal process can be formed with the inter failure times coming from 
any probability distribution. The most common ones used for maintained 
systems are the exponential, the gamma, the log normal and the weibull. 

The exponentially distributed inter failure times form the homogeneous 
poisson process (HPP) whose conditional intensity function is a constant;  

)|t( -tH =  (1.4) 

These processes have been widely used in literature for modelling maintained 
systems and also by industrial engineers for optimizing cost, reliability and 
availability of maintained systems. A vast literature has developed in this field in 
the sixties to eighties and innumerable books have been written based on these 
two processes. 

Renewal processes have been comprehensively depicted by Cox (1962). The 
application of these processes to maintained systems has been dealt thoroughly in 
Ascher and Feingold (1984). The HPP is treated comprehensively in Rigdon and 
Basu (2000). 
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1.2.2.   Minimal Repair 

Systems which undergo minor repairs and the system failure intensity remains the 
same after repair as before repair i.e., the repair process brings the system to a 
functioning state but does not change its failure intensity with the system 
remaining same as old (SAO) are modelled by non homogeneous point 
processes. The most common non homogeneous point process used for 
maintained systems is the non homogeneous poisson process (NHPP). For an 
NHPP the conditional intensity function is a function of the chronological age of 
the system; 

)|t( -tH  = )t(  (1.5) 

Two NHPPs are commonly used for modelling maintained systems the 
power law process and the log linear process. For a power law process the 
conditional intensity function is given by; 

)|t( -tH  = )t( =  (1.6) 1t

For a log linear process the conditional intensity function is given by; 

)|t( -tH  = )t( =  (1.7) te

The power law process has also been widely applied to maintained systems. 
Rigdon and Basu (2000) give a comprehensive account of its use for both single 
and multiple systems. 

The log linear process has been introduced by Cox (1972). This has been 
applied to maintained systems in Majumdar (1995). 

Berman (1982) introduced the non homogeneous gamma process and 
provided its characteristics. 

The use of other non homogeneous point processes has been discussed in 
Krivstov (2007). He introduced the non homogeneous log normal process and 
applied it to a maintained systems data set. 

8



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

A generalisation of the renewal process and the NHPP, the trend renewal 
process (TRP) i.e., a renewal process with a trend has been proposed by 
Lindqvist (1993) where the conditional intensity function is given by, 

)|t( -tH  = ))T()t((z )t(N )t(              (1.8) 

Elvebakk, Lindqvist and Heggland (2003) provide methods for parametric 
inference of the trend renewal process for observations from both single and 
multiple systems, and also with a possible unobserved heterogeneity between the 
systems.

1.2.3.   Imperfect Repair 

Usually most maintained systems after repair lie somewhere in between these two 
extremes.

A repair after a failure need not be always either completely effective leading 
to perfect or maximal repair or completely ineffective leading to minimal repair. 
The quality of repairs performed generally lies in between these two extremes 
resulting in some loss of effectiveness leading to imperfect repair. A partial or 
imperfect repair leads to a failure intensity which improves from what it was 
before repair but does not achieve the state of perfect repair leading to a failure 
intensity lying in between the minimal and the maximal. 

The quality of repair action can be incorporated into the failure process by a 
means of a random variable, called the degree of repair attached to each failure 
event or failure age, taking values between 0 and 1. Both extremes of the degree 
of repair indicate the maximal and minimal Repair states, while any value in 
between represents imperfect Repair. 

The degree of repair can be treated using the concept of virtual age which has 
been introduced to model the concept of age recovery or age loss. The model is 
given by; 

)|t( -tH = ))t((               (1.9) 

9



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

where, )t( is the effective age of the unit 

This model was introduced by Kijima (1989) as model I and model II.  Non 
parametric estimation for the model was developed in Dorado, Hollander and 
Sethuraman (1997). Stadje & Zuckerman (1991) generalised the improvement 
factor of Malik (1979), Finkelstein (1993) extended Kijima’s model II while Makis 
and Jardine (1993) extended Kijima’s model I. Guo and Love (1995) proposed a 
unified model.

The above models have been represented by the conditional distributions of 
successive inter failure times. Doyen and Gaudoin (2004) defined these models in 
a more convenient way by using the conditional failure intensity arithmetic 
reduction of age (ARA) or arithmetic reduction of intensity (ARI) models, 

An ARA model is given by, 

)|t( -tH =            (1.10) ))T,....T,i(st(
n

1i
n1

An ARI model is given by, 

)|t( -tH =  (1.11) )T,....,T,i(s)t( n

n

1i
1

where s (i, T1,….,Tn) = constants reflecting age or intensity reduction factors 
which form the marks on the failure process. 

For a power law intensity the ARI model with n failures and memory one 
ARI1 i.e., only the previous failure is involved in the failure intensity process, is 
given by; 

)|t( -tH = )ttt(I)t(t j1j
1

1j
1

n

1j

       =            

(1.12)

)ttt(I))t(t( j1j
1

1j
1

n

1j
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where j=1,2,3..n is the number of failures, I is the indicator function and t0=0

These models can be extended to models with memories m and  i.e., the 
previous m failures and all previous failures respectively are involved in the 
failure process.      

Doyen and Gaudoin (2004) also suggested the possible use of geometric 
reduction of age (GRA) or geometric reduction of intensity (GRI) models in 
place of the above. 

1.2.4.   Proportional Intensity models 

As stated by Kumar (1995) in actual maintenance practice the failure times of a 
maintained system may be dependent on many factors, viz., the operating 
environment (e.g., temperature, pressure, humidity dust), the operating history of 
a machine (e.g., overhauls, the effect of repairs, preventive or opportunistic 
maintenance), or the type of design or material.  

Considering some of these factors as covariates, explanatory or concomitant 
variables, their influence is modelled by means of a regression model based on 
the Cox regression model, Cox (1972) with time varying covariates given by; 

)|t( -tH = ))t(Z'(f)t(             (1.13) 

where Z(t) = Time varying covariates and 

 = Regression coefficients of the time varying covariates 

A model with time invariant covariates is given by; 

)|t( -tH = )Z'(f)t(             (1.14) 

)t( is the baseline intensity. where,

These models are known as the proportional intensities models. The effect of 
the covariates is to modify the baseline intensity function up or down depending 
on the nature and strength of the covariates. 
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