CHAPTER I

HYDRODYNAMIC AND HYDROMAGNETTC FLOW
AND HEAT TRANSFER

1.1, Introductio

Towards the end of the nineteenth century, the
science of fluid mechanics began to develop in two direc-
tions which had practicaily no point: in common. On %he
one side there was the seience of theoretical hydrodyna-
mics which was evolved from Eyler!'s equations of moﬁiom-
for a frictionless, non~-viscous fluid and which achieved
a hign degree of COmplétemess. However, since the results
Of this classical science of hydrodynamics stood in glaring
contradiction to experimental results - in particular as
regards the very important vroblem of pressure lbsses in
pipes and channels, as well as with regard 1o the drag of
a body which moves through a mass of fluid - it had little
. practical importance, For this reason, practical engin-
©ers, prompted by the need to solve the important problenms
apising from the rapid progress in technology, develoned
their own highly empirieal science of hydraulics, The
Seience of hydraulics was based on a large number of expe-
rimental data and differed greafly in its methods and in

its objects from the science of theoretical hydrodynamics,



In the study of the flow properties of a fluid,
we must speclfy the relationship between the stress-tensor
and othar properties of the flow, which are determinable
with the help of the equations of motion. In this épecifi-
cation one has to rely either on some mathenstical models
about the structure of the fluid canable of predictiﬁg
sonmething definite aboui this'relationship or experiments
which investigate how a fluid behaves when subjected to
externally imposed stresses. 1In the literature both of
these approaches have been adopted with considerable suc~

cess,

In recent years, much work was done on the genera-
lisation of well know viscous flow solutions to take account
of the additional effects of a magnetic field when the fluid
is electrically conducting, When an electriéally conducting
fiuid moves in the presence of a magnetie field, electric
currents induced in the fluid modify the field and produce
a mechanical force {(Lorentz force) which modifies the motion.
The development of the entire subject of Magnetohydrodynamics
(often referred to as MHD) is based on this interaction be-
tween 2 moving electrically conducting fluid and an externa-
11y applied megnetic field. This new branch of fluid mecha-
nics has not only provided a fascinating field of academic
interest but, it also offers a great scope in the develop-
ment of design divices in various engineering fields,

A



It is well known that a magnetic field imparts to
the fluid a certain degree of rigidity which precludes the
growth of any small random meotion of the fluid} Also a
magnetic field exerts a strong stabilizing influence by
preventing the motion of the fluid particles across the
lines of force. .In particular, the inhibition of the onset
of thermal convection of a layer of fluid heated from below
in the presencé of a magnetic field as studied by Chandra-
sekhar (1961) clearly explains the stabilizing influence of
a magnetic field, and this inhibition, incidentally, helps
to explain the phenomenon of sunspots (vide, Cowling, 1957).
Furthermore, the reduction of the velocity gradient in the
presence of the electrometive forces should influence tur-
bulence and the experiments of Murgatroyd (1955) clearly
reveal the dominating influence of a magnetic field in the
suppressionlof turbulence even at the highest possible

Reynolds mumbers of the order of 10°,

| The study of MHD has also assumed importance in the
field of aeronautics, especially missile aerodynamics, since
the temperature that occur in such flight speeds are suffi-
cient to dissociate or even ionize the air appreciably. In
such high speed flights Joule heating, i.e. heating due to
the flow of electric current, plays a Very important role.
For example, when a high speed missile (specilally in the
intercontinental class) re-enters the earth's atmosphere, a

very large amount of heat is generated due to the frietion



of the air molecules and this viscous.heating may sometimes
be so considerable as to ionize the air near the forward
stagnation point, Again for the flow past a body at suffi-
ciently large Mach numbers, the leading edge shock wave
(bow shock wave) lies close to the surface of the body and
the temperature rise due Lo compressioﬁ along the shock in
such hypersonic flows may be sufficiently high to ionize the
air, Since the ionized air in this stagnation region is
electrically conducting, a magnetic field may be applied to
it so as to induce electromotive forces in the air which in
turn will be retarded. As a result, the velocity gradient
decreases near the ﬁall, implying a reduction in the skin
friction. If, as is usually the case, a réduction in the
skin friction implies a reduction in heat transfer (Reynolds
analogy) in the ordinary hydrodynamic case, decrease in the
skin friction magnetohydrodynamically should also have a
similar favourable effect on the heat transfer. However,
thig analogy is not to be pushed very far in MHD for, in
this case Joule heating may be significantly considerable

to offset such thermo-mechanical analogy.

Tt is also well lmown, that the heat transfer consi-
derations are often of erucial importance in modern engin-
eering design, Equipment size in power production and che-
mical processing may be determined primarily by the atiaina-

ble heat-transfer rates. A considerable fraction of the cost



‘of many devices -~ for example, air-conditioning and refri-
geration systems - is due to heat exchangers, 'In many
types of equipment A sucéeSSful design is possible only if
provision is made to maintain reasonable temperatures.by
adequate heat transfer, Among such modern devices are |
rocket nozzles, compact electronic components, high-speed

aircfaft, and atmospherefre-entry vehicles,

These many and diversg demands upon the store of
knowledge concerning heat-itransfer characteristics have led
to a long period of sustained study of such processes., From
the ploneer work of Fourier to the present, many kinds of
processes have been studied both experimentally and analy-
tically by scientists and by engineers. Many of _the broad
divisions of the field have been established, and satisfac-
tory and productive theories have been presented for many
types of heat transfer, There are, however, many processes
of both theoretical and practical importance which are not
adequately understood, In addiﬁion, new technologies give
importance to types of processes not previously studied.,

As a fesult, work continues at an everaéccelerating pace to

the present day.

The study of heat transfer includes the physical
processes whereby thermal energy is transferred as a result
of a difference, or gradient, of temperature. The informa-

tion generally desired is the way in which the rate of heat



transfer depends upon the various features of the process.,

The three distinet modes of heat transmission are,
conduction, convection and radiation, Conduction is the
precess in which heat is transferred from regions of higher
température to regiong of lower temperature within a system
or between two systems which are in contact vhysically with-
out any relative motion of the different Darté of the Sys-
tem or systems. In fact, energy is conducted through a
materiagl in which a temperature gradient exists by the ther-
mal motion of various of the microscopic particles of which
the material ig composed; energy is diffused through the
material by these thermal motions. Radiation is an energy
transport from material into surrounding space by electro-
magnetic waves, Radiant emission is also due to the themmal
motion of microscopic partieles, but the energy is transmi
tted electromagnetically, A heat (or mass) transfef process
whose rate is directly influenced by fluid motion is called
a convection process, The heat may be finally transferred
through the flowing material by conduction, but the conduc-
tion process is basiéally altered by relative motion of the
macroscopic particles in the fluid, Thermal energy and mass
may be convected about the flow region by the mbtion of the
fluid., For example, the disturbances connected with turbu-
lence may have a large effect upon the transfer rate.

It should be emphasized that in most of the situa-

tions occurring in nature, heat flows by more than one of



these mechanisms acting simultaneously. Their relative
importance, while acting together in a heat transfer pheno-
menon, differs greatly with temperature. The vhenomena of
conduction and convection are affected primarily by tempera5
ture difference, and very little by temperature levels where-
as radiationpinterchange increases rapidly with increase in
the temperature levels., At low temperatures, conduction and
convection are the major contributors to the total heat
transfer whereas at very high temperatures, radiation is the
coﬁtrolling factor. Recent developments in hypersonic
flight, missile re-entry, rocket combustion chambers, npower
rlants for inter-planetary flight and gas-cooled nuclear .
reactors have focussed attention on the thermal radiation
and emphasized the need for an improved understanding of
radiative transfer in these processes, In a system of fluid
motion heat is transferred by conduction as well as by convec-
tion. This is guite evident from the method of heat transfer
from a surface to the surrounding fluid, At the surface,
heat is first transferred by conduction to the adjacent

fiuid elements which in turn move to regions of lower tempe-
rature (thus transferring heat by convection) and impart heat
to the~neighbouring fluid particles by conduction as well,

In fact, it is virtually impossible to observe pure heat con-
duction in a fluid because, as soon as a temperature differ-
ence 1s imposed on a fluid, natural convection currents ensue

due to the ragsulting density differences. Thus convective



process dominates a heat transfer phenomenon in fluid mechs-
nies, It is, however, not possible to separate the nroblem
of heat transfer from that of the motion of the fluid, and
for this reason, a study of the hydrodynanmic behaviour of
the fluid is necessary in order to have an understanding of
the heat transfer phesnomena taking place within a moving

finid.

Convection heat transfer is classified, according
to the modes of motivating flow, into forced and free con-
vections. If the flow field is imposed by some external
agency, such as a pressure gradient or a pump or blower the
process is called forced convection. In this case the welo-
city field is independent of the temverature field whereas
the temperature field is dependent on the velocity field.
Mathematically, the problem reduces to finding the tempera-
ture field due to heated or cooled boundaries in a given
velocity field. On the other hand when the mixing motion
takes place merely as a result of the body forces on the
fluid, that is, forces which are proportional to the mass or
~density of the fluid, the vrocess is called free or natural
convection., Thege body forces are generated by the density
gradients resulting from heat or mass ftransfer, as for a

domestic heating radiator or for a sum-~heated road surface.

Since in free convection, temperature difference is
the cause of the fluid motion which in turn changes the rate

of heat transfer, the temperature and velocity fields are



interdependent here, This coupling between heat trangfer
and fluid motion causes natural convection process to be
more difficult to analyse than similar forced convection
arrangements, Because, here the momentum eguation and the
energy equation become simultaneous equations for velocity
and temperature Fields. If both the conveetive procasses
are equally important in a flow system then it is called

combined forced and free convectlon process,

In magnetohydrodynamic heat transfer oproblems, the
additional body force term, viz., the Lorentz force comes
into play in the momentum equation and the term correspon~
ding to Joule . heating appears in the energy equation.

In a forced convection system, the energy equation remains
uhcoupled from Maxwell's equations and the Navier-Stokes
equationg. Thus, the electromagnetic and velocity filelds
can be determined independently of the temperature fisld.
However, when natural convection forces are present the
Navier-Stokes eguationgbecome: coupled with the energy
conservation equation, and simultaneous solution is requi-
red. If a magnetohydrodynamic device (e.g. a MED power
generator, or an electromagnstic pump) is to be intelli-
gently designed, information should be available concerning
the effects of the interactions of the electromagnetic,

velocity and temperature fields,



One interesting distinction between the free and
forced convection houndary layer problems in hydromagnetics
may be noted, In forced convection flows, induced electro-
magnetic forces may modify the inviscid free stream which
in turn may change the external pressure gradient or the
free stream velocity which is imposed on the boundary layer.
Thus for a complete solution in this case, one should also
solve the inviscid free stream problem in determining the
boundary layer characteristics. On the other hand in free
convection problems, the veloeity being zero in the free
stream, the induced magnetic forces do not exist there,.
Thus the influence of the magnetic field on the boundary
layer is exerted through the magnetic forces confined to
the boundary layer only, with no additional effects ari-
ging out of the free stream pressure graﬁient. Thus the
free convection MiD probléms can be formulated in a much
simpler way than the corresponding forced convection probd-

lens.

1.2. Beview of the relevant literature

(a) Channel flows
(1) Bydrodymamic channel flows

Up £i11 now numerous authors have devoted their
study to flows in channels and pipes with varilous wali con-

ditions relating to the hydrodynamic situations. The forced



and free convection heat transfer phenomena in such flows
have alse received considerable attention., Here we enlist
some of the works available in the existing literature mainly

related to this thesis.

The behaviocur of steady viscous Tlows around bodies
depends strongly upon the streamwise pressure gradient and
the normal velocity at the walls. The theory of this flow
has been given independently by Jeffefy (1915) and Yamel
(1816). Goldstein (1938} and Rosenhead (1963) have also
discussed the same problem. Pohlhausen (1921) has given
closed form solution to the boundary layer eqQuations for
inflow between converging channels, Riley (1963) and Sastri
(19683) have discussed the thermal boundary layers for the
problem studied by Pohlhausen.: The equations for siow flow
through convergent or divergent channels when there is sue-
tion at one wall and blowing at the other wall have been
solved by Terrill (1965a). Choudhury and Sinha.(lgss) and
S8ingh and Choudhury (1987} have considdred the bqundary

layer flow in tﬁe fully developed region and inlet length
respectively, of a convergent channel with porous walls.
Van Ingen (1964,1967) has considered the boundary layer
flow with suction or blowing at the non—pafallel walls by
phase-plane representation method, He has shown that boun-
dary layer solution can be obtained for any smount of suc-
tion or blowing at the wall in the case of inflow (conver-

gent walls) while for outflow (divergent walls) boundary
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layer is possgible only for sufficient amount of suction,

In recent years, & number of problems have heen
studied concerning the fluid flow through porous duets,
for example, in transpiration cooling and gaseous diffusion.
Also, the problem of alleviating the rate of heat transfer
to high speed airecraft with mass transfer or zblation coo-
ling has been svudied by several authors, Berman (1953),
Sellars (1955) and Yuan (1956) have studied viscous flow in
two-dimensional porous channels., Terrill (1964) has obtain-
ed more accurate results to Berman's problem for large posi-
tive Reynolds number. Terrill (1965b, 1966) has also consi-
dered flow in chamnel with large injection and flow thrgugh
a porous amnulus, Several cases of laminar flow through
parallel and uniformly porous walls of different permeabi-
1lity have bheen discussed by Terrill and Shrestha (1965a, 1966,
1968). Horton and Yuan (1964:1965) have studied the laminar

flow in the entrance region of a porous channel,

Tyagi (1966) has discussed the laminar forced con-
vection of a dissipative fluid in a channel., Terrill (1965e)
has studied forced convection heat transfer between two
porous plates. An extensive semi-empirical study has been
carried on by Elenbaas (1942a, 1942b) towards natural con-
vection heat transfer between two parallel plates and in
tubes of different cross-sections. Mull and Reiher (1930}
made an experimental study of free convection heat transfer

in enclosed spaces formed by two vertical walls, Batchelor




(1954) and Poots (1958) investigated the same vroblem theo-
retically and confirmed the experimental results of MUl
and Reiher, Ostrach (1952) has presented an analytical
study of the laminar fully developed natural convection flow
of viscous'fluids with and without heat sources bhetween two
vertical plates. He has also considered laminar free-
convection flow about a flat plate in 1953 and combined
natural and forced convection flow and heat %transfer in
vertical channels with linearly varying wall temperatures
in 1954, Hallman (1956), Han (1959) and Lu (1959) have in-
vestigated heat transfer characteristics in free convection
flow through vertical tubes with heat generation, rectangu-
lar chamnels and in vertical pipes with prescribed wall
temperatures respectively. Tao (1960a, 1980b) has studied
combined free and forced convection flow in channels, and

circular and sector tubes.

(ii) Hydromagnetic chanpel flows

In recent years, considerable interest has develo-
ved in MHD channel flow because of its application in energy
conversion schemes, e.g. power generators, electromagnetic
pumps and flow meters, Hartmann (1937) considered the two-
dimensional, steady Poiseuille flow of mercury between two
parallel walls In the presence of an applied crossed magn?-
tic field, Shercliff (1953, 1956} and Tanazawa (1960} have

obtained exact solutions for the MHD flow in channels with
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rectangular and circular cross sections respectively.
Gupta (1965) has discussed unsteady pipe flow at small
Hartmann number, The problem of steady Tlow of an elec-
triecally conducting viscous fluid through uniformly porous
parallel plates in thes presence of transgverse magnastic
fizld has been investigated by Survaprakasrac (1962) and
Terrill and Shrestha (1984, 1965h). Terrill (1965d3) has
also considered the same problem when the suction velocelty
at one wall differs slightly from the injection velocity
at the other wall., Hunt (1965) and Sloan and Smith (1966)
have studied MHD flow in rectangular ducts with conducting
vlates, BHwang, Li and Fan (1966) have studied the Taninar
HOD flow in the entrance region of straight channels.
Recently Sloan (1967) has considered MID flow in an insula-
ted rectangular duct with an obligue transverse magnstie
field, Hunt and Willjams (1968) have discussed the flow
between paraliel conducting plates when the fluid is driven
by the current produced by electrodes placed one at each
plane, the applied magnetic field being perpendicular to
the planes. The pbrosity of the walls of the straight
channels with transverse magnetic field has been considered
by Shrestha (1967) and Reddy and Jain (1967). Jungelaus
(1960) studied the hydromagnetic boundary layer fliow of a
viscous electrically conducting fluid between converging
and diverging channels under the influence of transvarse

magneti¢ fields, Ranger (1967) has extended the Jeffery-




Hamel flow in a convergent channel to the magnetic case
where the applied magnetic field is cross-radial and the

plane walls are non~-conducting.

A considerable amount of work in forced, natural
and combined natural and forced convection MHD flow in
chanpels has appeared in the literature. Siegel (1958),
Perlmutter and Siegel (1968l), and Zimin (1961) have studied
the magnetic effects on the heat transfer in a fully deve-
loped flow between non-conducting parallel plates. Alvher
(1961), Yen (1962) and Snyder (1964) have considered wall
conductances in such flows, Globe (1959} and Shohet (1962)
have considered forced convection flow in annular channéﬁi.
Gupta (1960) has investigated the flow of a conducting
fluid under pressure gradient between two vorous parallel
plates subjected to transverse magnetic field and in parti-
cular, solved the energy equation ineiuding the effects of
viscous and Joulesan dissipations., Nigam and Singh (1960},
Shohet, Osterle and Young (1962).and Srinivasan (1963) have
explored the effect of transverse magnetic field on the

thermal entry length for flow between two parailel nlates,

Smirnov (i959) gave an analysis of natural convec-
tion MHD flow in round vertical tubes with non-conducting
walls, Gershuni and Zhukhovitski (1968) discussed free con-~
vection shear flow between vertical plabes. Poots (1981]
has reconsidered their problem by taking account of nossible

heat sources including those due to viscous and Joulean



digsipations. A éimilar case of convebtiﬁe flow between
vertical nlates, under short circnit conditions, has been
congidered by Osterle and Young (1961). Young and Huang
(1964) have investigated the general circuit case in whiéh
the vertical channel walls are connected through electrodes
to an external eircuilt containing a finite load resistancé
R and an e.n.f. source \LmTP « Cramer (1982a, 196%b)
has considered KED f{ree convecticn flows in channels and
pipes and Singh and Cowling (1963) have treated free con-
veetion in a rectangular box. Srinivasan and Sastri (1964)
have studied convective HHD flow bétﬁeeu parallel norous
walls, Combined natural and foreed convection flow with
transverse magnetic fi2ld has been studied by Mori (1961)
for parallel plate chamnel and by Regirer (1959, 1962) for
parallel plates and tubes. Singer (1965) has discussed
unsteady combined convective flow through vqrﬁical channeld
under transverse magnetic fields. Unsteadiness is caused
by orescribed varistions in the axial pressure gradient and
the wall temperature. The flow is assumed to be fully
developed and the walls perfectly conducting. He (1988)
has also congidered steady, combined thermal convective.
MID flow in vertical channels with finitely conducting
walls whose temneratures vary along their iengths. In both
the cases Singer negllcts viscous and Joulean dissipations

of heat,.
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(v} MED boundary layer flows vast a Semi-infinite
flat plate

Much work has been done in recent years on the gene-
ralization of the well known Blasius flow past a semi-
infinite plate to include additional effects of an exter-
nally applied magnetic field, parallel to the plate. 4
derivation of the éorresponding boundary layer equations
has been carried ocut by Greenspan snd Carrier (1959) and
Davies (1983a). 1In the former, the fundamental equations
haveaﬁeen replaced by Oseen equations:; the linearizatiocn has
been effected by assuming that the convective-velocity and
magnetié fields may be replaced by their free stream vaiﬁes,
It has been found that the boundary layer thickness conti-
nues to increase with Q (the square of the ratio of the
Alfvén velocity to the free stream veloecity), until it
reaches the critical value & = A , where the entire flow
1s brought to rest, Further discussions on the problem by
means of the 0seen linearization ha&e been given by Carrier
‘and Greenspan (1960) and Greenspan (1960) respectively for
unsteady flow conditions and the flow past a finite plate
with &> 4 . Glauert (1961) has pointed out that the
linearized method of analysis, adopted'by Greenspan and
Carrier cannot be relied upon in problems of such compiexity.
Alternatively, he has obtained two solutions in series,

valid for large and small values of the magnetic Prandtl



number?% (_{hefratio of the viscous to magnetic diffusiti-
ties). Glauert's treatment is, however, limited to the
range S ) with A~%  npot small, He has further
shown that boundary layer equations cease to hold when

At = 0@31\0‘&1 'num!,m)hl. Wilson (1964) and Stewartson and
Wilson (1964), on the other hand, have shown that the solu-
tions obtained by Greenspan and Carrier (1952) are not
unique when er Z 4 and &« A . Goldsworthy (1961)
and Reuter and Stewartson (1961} have disagreed with the .

intervretation by Greenspan and Carrier (1959) that the flow

is 'plugged! or brought to rest at the critical value Q=4 -

on the contrary they have proved that for Q= { the prob-
lem has no unique solution., Because, it has been improperly
posed for &=—4 . Other contributions ‘towards this
problem include those due to Jungelaus (1959) and Meksyn
(1962). Recently, Johnson (1966) has shown that for-each S

in the interval O <& € <4 the problem has unique solu-"

tion whereas, if & '>/’l_ s it has no solution. Further
he has obtained that as L —> 0 s this solution
approaches the solution of the Blasius probiem. Fillo (1968)
has discussed the heat transfer in the problem studied by
Greenspan and Carrier (1959)‘ with viscous' dissipation and

Joule heating neglected,

With a view to have a better understanding of the
MHD flow past a semi-infinite plate, Davies (1963a) has

reconsidered the problem, He has derived the boundary layer

18



equat ions, employing the usual orderuof—magnitude analy-
sis. These boundary layer equations have been solved by
an 1terat10n method suggested by Weyl (1941) for the cor-
Pesponding non-magnetic case. It has been found that the

drag coefficient diminishes steadily as §  increases,

In the above studies the boundary layer flow was
considered in the absence of.pressure gradient (i.e. uni-
form conditions in the free stream). The influence of the
external magnetodynamic Pressure gradient proportional ‘o
- Some power of distance along the boundary has been analysed

at length by Davies (1963b) and Grlbben (19655}

——

The HHD flow past a semi-infinite plate in the
PreSence of a transverse or crossed magnetic field has been
studied by Rossow (1958), Clausenr (1963), Dix (1963), Sears
(1966} and Heector (1967). Clauser concludes that the boun~
dary layer and wake phenomena which occcur in ordinary fluid
mechanics do not carry over to crossed MAD flows. L Dix and
Sears have shown that there exists a Hartmann type boundary
layer near the surface of The plate with a standing Alfvén
Wave above this Hartmann iayer. Chawla'(196¥) has considered
the fluctuating boundary_léyer on a semi-infinite, magnetized
plate. Mittal (1968) has considered the effect of plate
temperature oScillations on the MHD thermal boundary layer
on a semi~infinite flat plate, Lewis (1968) has considered

the boundary layer flow due to the uniforn motion of a semi-



infinite flat plate through an incompressible conducting
fluid at rest, subject to a constant transverse magnetie

field.

(c) Hydromagnetic flow due to a robeting disk

An interesting class of problems that has been
studied in recent years is the rotationally symmetric hy-
dromagnetic flows which are of great importance in MHD
‘generators. The problem of MHD flow due to a finite rota-
ting disk has been studied by Stewartson (1957). He has
considered thne effect of a vertical magnetic field on tke
motion of a shallow disk of mercury, part of whose base is
rotating while the rest is fixed, It has been found that
both in the absence of magnetic field and when the field is
large there is a steady solution in which the mercury is
either uniformly rotating or at rest, there being a thin
layer separating the two regiohs; In obtaining the solu-
tion Stewartson neglects the radial component of the magne-
tic field in comparison with the strong external'field im-
posed along the axis of rotation. In a note in the above
problem, Majumdar (1958) has proved that for a rotationally
symmetric steady hydromagnetic field the radial component
of magnetic field can always be neglected in comparison with

the field along the exis of rotation if the depth of the



l1iquid column is small compared with the radius of the
disk. Ray (1960) has discussed the influence of g uniform
magnetic field on the couple resisting the rotation of a
circular disk in a viscous conducting Tiuid, Sharma (1963)
has examined the MHD Flow over an enclosed rotating disk
and found that the momeht on the rotating disk increases

with an increase 4in the Hartmann number,

The MHD flow over s rotating disk of infinite ra-
dius has besn investigated by Sparrow and Cess (1962) and
Kakutani (1962) with the induced magnetic fields neglected
and by Sychev (1960), Rizvi (1963) and Datta (1966) W1th
full magnetic fields. Jagadeesan (1964) has studied Lhe
hydromagnetic stagnation voint flow against g rotating disk
With the help of Kdrmén-Pohlhausen method. He has found
'that the torque on the disk increases as the strength of
the aonlled magnetic field increases. Pande (1964) and
Suryaprakasrao and Gupta (1966) have discussed the MHD

flow against a rotating disk with large suction.

S.Datta (1964), Kelly (1984) and N.Datta (1964)
have'stﬁdied the effect Qf a uniform magnetic field on the
torsional oseillations of an infinite plate in a wviscous
conducting fluid, Subba Raju (1966) has considered the
additiogal effect of porosity of the disk. On the other
hand, Gupta (1968) has studied the transverse waves induced

by a disk oscillating about a state of steady rotation in
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an electrically conducting fluid with a transverse magne-
tic field., Contrary to the non—mégnetic case (see Benney,
1965) he has found that in the presence of a magnetic field,
none of the Ekman-Stokes lafers becomes infinite when the
angular velocity of rotation of the fiuid anpproaches -

ihe
halfhfrequency of oscillstion of the disk.

The axisymmetric stagnation point flow in the pre-
gence of an axial magnstic field has been studied by
Kékutani (1960), Meyer ClQSO) and Axford (1961). Kakmtani
has neglected the induced magnetic fi2ld and shown that the
shear stress at the wall decreases with the increasing mag-
netic field, Axford has obtained a suitable form for tﬂé

rigin of the magnetic 7ield within the body which has the
pronerty that it vanishes in the fluid far from the surface.
Gribben (1967 has glven a more accurate solution to the
problem studied by Meyer (1960). He (1965hihas also dis-
cussed the case of the magnetic field parallel to the Sur-
face, Tiepel (1966) has considered the unsteady stagnation

voint flow of a viscous, electrically conducting fluid.

1.3. Inadeguacy of Newtonian fluid and develoovment of
non=Newtonian fuids

- On the basis of the experiments performed in water
between two parallel plates, Newfon stated that the stress

tensor is linearly proportional to the strain-rate tensor.



Mathematically, this law can be expressed as

AP*!:J: __/\:S,ﬂ_ ey ')
f

<. = l. .
i ,@(“91'{)- + UJ‘){) R (1.3.1)

Wwhere /bi is the stress tensor P “the raste~of-strain
tensor, S, the velocity vector, 5}. the Kroneclker
delta, AF an arbitrary hydrostatic nressure, /AA~ the mate-
rial constant called the coefficisnt of viscosiﬁy and a
comia followed by a2 suffix denotes covariant differentistion,
A fluid characterised by the linear relationship (1,3.1) is
known as a Newtonian fluid. The theory based on the consti-
tutive equations (1.3.1) provides satisfactory explanation
to the ohenomena like Lift, skin-friection, drag, separation,
seéondary flow ete. (which are observed in many mohile
liquids). However, it fails to explain many interesting
phenomena like Merrington effect, Weissenberg effect and
Reiner efrfect, Merrington (1943a,b) observed that when =
solution of rubber in mineral oil is forcéd through a strai-
ght pipe, the fluid swells on emergiﬁg from the pipe., As
pointed out by Merrington, this phenomenon of swelling is

due to the elastice reécovery of the liguid compressed in the
tube, Weissenberg (1947) found that when a high polymer

solution is sheapred between two coaxial cylinders (keeping

23
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the inner cylinder at rest and the outer cylinder in rota-
tien), the liquid climbs up the inner eylinder against the
action of the centrifugal force, This phehomenon of clim-
bing of the liquid in a direction perpendicular to the plane
of shearing is known as Wedlssenberg effeet or Normal stress
effect, He attributed this effect to the elastic character
present in the fluid. In 1957 Relner noticed that when ajr
iz sheared in a smpall gap between two coaxial disks {(one
rotating and the other at rest), the non-rotating disk ex~
periences a thrust at its centre. The fluids exhibiting
these effects inciude many other industrial products like
plastics, synthetic fibres, and slurries, A1l fluids which
do not obey the equations (1.3,1) are referred to as non-
Newtonian fluids, During the last two decades, many mathe-
matical medels are develorned to explain the flow ﬁéhaviour
of these fluids. We give below a brief description of a

few of ithese models,

(1) Reiner~Rivlin fluids

This class of fluids is governed by the constitytive

equationg
h\a = "')fg’t\: 2 P_e’i\i “+ #}*Q_"‘E\-f €k , (1.3.9)

Where the additional parameter /A& is called the cross-
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viscosity. The coefficients .}L and f{A, are, in general,

functions of the three invariants of tﬁg rate~of-strain fen-
sor besides being the functions of the material properties,
The equation (1.3.2) was proposed by both Reiner (1945} and
Rivlin (1948). The introduction of the cross-viscosity term

in the constitutive equation is responsible for attributing

to the fluid the Weissenberg and Merrington effects,

Although the eQuation (1.3.2) explains most of the
non-Newtonian behaviours, it gives in simple shearing flow
that the normal stresses in and perpendicular to the plane
of sheep are equal. However, in most of the real fluids, it
is found that the difference of the normal stresses is a func-
tion of shear rate., Hence there is no real fluid which is

governed by the equation (1.3,2).

(i1) Rivlin-Bricksen flwids

Rivlin and Ericksen (1953) considered a visco~
elastic fluid which is isotropiec when stationary and for
which the stregs components 4%k~ at any instant are
expressible as polynomials in the gradients of wvelocity,
acceleration, second accdleration, - r‘,(ﬁxmi)ﬂ\ acce-
leration., They showed that the stress matrix 'PL::: “ “3*\0
can be expressed as a mabtrix polynomial in M, kinemabie

matrices ﬁ‘) Ao PR A«x s flefined in terms of the

>
velocity components NS, by



(1)

"‘“" ﬂ “ — H‘\9,L k‘\"wy_ 1” (1.3.3)
and b‘ﬂ) BRLK
nv+1”‘” R "l = “ =i +43(hh *ﬂ“ i>k
(\) .
Ah)' ”J)t\l (e = ‘)”f) ces mel)

(1.3,4)

The coefficients in this matrix polynomial are poly-

nomial invariants of P\U ﬂz) ‘5 Rq\, .

ol

R:Lvlin (1955) pointed out that if the stress matrix

P can be expressed as a matrix polynomial
’H’-

in two klnematlc matrices, say || Apll= A and

e 1.,(_“ = R y then P can be expressed by a re-

lation of the form

(P — “ 43{;“ =‘—/{A01 '1‘/11 A ‘\‘/uz %'t-/ﬂg ﬂz'\'/)qt%z-
s (A81B) + e 13+ 847)
+ g (A2 ) et g2

where I 1s the unit matrix and /AYU (CU =9,l, 2, - ,)g)
are polynomials in'fhe ten matrices ﬂ,,'?,) [\Q'J BD‘) RB

. 2 e id 4
BS) R .prL?’ 5 p'E and  f{ B If the fluid is

(1.3.5)
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incompressible then A, can be replaced by an arbitrary
quantity:-—-% .
The filuids governed by the eguation (1.3.5) are

galled Rivliin-Erieksen fluids.

Rivlin (1956) obtained exact solutions for many
viscometrie flows using the constitubtive egquations (1.3.5).
His solutions accounted for shear-dependent viscosity and
normal stress effects but did not account for stress relaxa-
tion effects and therefore another type of theory was given

by Noll (1958), and Coleman and Noll (1960).

(11i) Coleman and Woll's second order fluids

In 1960, Coleman and Noll proposed the constitutive

eduation for an inc_ompressible second order fluid as

}Pa‘\a = —bbay + M Aw e Jﬂ/‘*zﬁu-)ﬂc

(1.3.6)
+ Ms Ayea Ayae

where _ﬁ(‘){g — ’\91-)\;'1‘ C\Qk){ N

and 9,(.2_) T e ach\g_ +akﬂ' -‘;—2'19%)1: "\9"W\JK

8 ively the coefficients
nd N‘) _/uz. and \/‘*5 are respectively the ki nts
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Of wviscosity, elastico-viscosity and cross-viscosity, aLi

is the acceleration wvector,

The constitutive equation: (1,3,5) of Rivlin-Ericksen
fluids reduces to (1,3.6) when squares and products of ﬂGﬂfK
are neglected and the coefficients of the remaining terms are
taken to ‘bhe constants., Markovitz and Coleman (1964) vroved
that J/&z_ is negative and J}ls is positive, The solu-
tion of poly-iso-butylene in cetane behaves as a second order
fiuid and the material constants for this sociution at various
concentrations were determined experimentally by Markovitz

and Brown (see Truesdell, 1964).

(iv) Oldrovds Rlagbtico-Viscous fluids

0ldroyd (1950) proposed an invariant generalization
of the one-dimensional empirical rheological equations of
state so that it is universally valid and can be applied to
three dimensionsl problems. He assumed that the rheological
properties of a flowing material are independent of the
position and motion of the material as a whole in space but
may depend st any time &£3 upon the previous rheological
states through which the material has passed (i.e. the rheo-
logieal history which consists of the deformation history,
the stress history, the temperature history, the time-lag
and the physical constants associated with the material).

The invariant properties of the universally valid equations

28



29

of state should therefore, be independent of (a) the frame
of reference, (b) the translational and rotationsl motions
of the material element and (¢) the rheological history of
the neighbouring particles. This reguires thet instead of
chooging a frame of reference fixed in space, one should
consider a curvilinear coordinate system erbedded in the
material and convected with it as it flows, deforms or rota-
tes, When a convected system of reference is set un with
coordinate surfaces g’ = constant, any material element
having the coordinates ‘.‘:_',j will remain the same for all
tines and fthe equations describing the behaviour of 2 typi-

b at time ‘\‘. can be exnre-

3

cal naterial element at =
. - . ,
ssed as functions of g‘ ,E L E and an earlier tine

-\;' (__.od_, < 1:’ < 1 ) . The covariant nmetric tensor

t
\? N Lzé 3 "t') -at tine '}, will provide complste informa-
tion about the distance d& hetween any pair of neighbou-
. . P - ' /
ring particles g'j and -gJ _H{-EJ at time -l; R

through the equation

Da(t*)f: ﬁﬂ EA)ddk | e

The deformati.on history of eny infinitesimal mate-
rial element around g‘i , upto the time t is sneci-
fied completely by the function- i (_‘g):[;’) of any
previous time .3(' (g_ ,}:) . The stress history ‘{(_dl('gj(f)



and the temperature history T(’g) '\;,) are related to

deformation history by equations of gtate
G) =« (&) -pEX)T, (5 )
TLJ'l 5,t) = T(’JL("G” - ! “%fc 5
(1.3.8)
where }F(‘é )3(") is an arbitrary isobtropie pressure, to-

gether with an invariant integro-differential equation (or

. {
set of equations) relating the following functions of 'l'_

QJQ@’-‘:’) ? TLJ'l (:EJ{) )Ttgﬁ-’) > -1 (.stféi)

(1.2.9)

The successive time derivatives of the metric tensor,

at any material element are related to the local first, second,

third, etc, rate-of-gtrain tensors ' - 1{“_ (:g)){))‘rﬁ%{ g;l')).-) Lj
{ ‘: (‘.E-t) = -
G‘SJL i ] LN SRZAEl ()1.3.10)

and the incompfr'essiblity condition can be written as
jﬂ N W |
{ (E)\;) ie .l@?ﬁc') =0 (1.8.11)
J d

Where the usual summation convention ls adovted for repeated

indices (see Oldroyd (1965) ).
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In a more usual fixed system of curvilinear coordi-
nates xﬁ , the rheological equations of state of the
general elastico-viscous liguid will be obtained by.trans—
forming them fronm a convected coordinate systen Ef . Using
corregponding Greek and Latin letters to denote the convected
and fixed components of the same tensor, we can write the

equations of state as

}P“&kj’c) = )P’m(x){) - )\DL'A)%) %[F(K) . (1.3.12)

f

'
together with a set of six equations relating to 4%3:( K.

is the part of stress tensor related to the change of shape
of a material element) and -£ép{K « In general, this will
be an integro-~-differential equation, involving the operations
of convected differentiation and convected integration with
respect to time 'U following the fluid, connecting mea-~
sures of the part -@ﬁk of the stress, of rate of strain,
and of temperature, each primarily asscciated with a pagt

!
time t  and with the material that later finds itself at
A¥  at the current time F .

The convected derivative following a material, of
any tensor k):' (?L)"l:) is the counterpart in a fixed
system of reference, of the partial time derivative in a

convected system and is defined as



Ll k..

gpé.fi...‘btﬁ)‘__ 3)591_ 9 l?k ‘{’Z’U‘Tq_ ..
U

xm YA

(1.3,13)

. T
Where Mﬁ denotes a contravariant velocity vector at 2(
. t .
at time % )2 (Z} ) denotes sum of all similar terns,
one for each covariant (contravariant) suffix and a comma
followed by a suffix denotes a covariant. differentiation.

The successive strain-rate tensors have fixed components

N Mg (!
p o} = 5 S G (ot (1.3.14)

< 2 3N :
in particular,
W I | ) (1.3.15)
kﬁ?&ﬁﬂ - QJLRSﬁJK-¥\DK;l 2

QJ ia Y
Y = L) 1k
€ 5 ot = > +__-2~BJC +f19fu Y f\ﬁL
(1.3 16)

The concept of convective coordinate allows the addition of
the tensor quantities associated with different times to be
added component by component yielding similar quantities as

the sun.
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In order to demenstrate the complete process of for-
mulating the rheological equation of state, Oldroyd (1950)
proceeds with the structural model proposed by Frohlick and
Sack (1946) which is given by

(A'Jfk‘ a’c)f\o % 2'{7\.0[ )L*p\z{%‘“t)é‘iik , (L.3,17)

where '{\' is the coefficient of viscosity, )\‘l the stress
o

relaxation time and )\L (_4 }\,‘) the rate-of-strain re-
tardation time. The relaxation time )\‘ has the physical
significance that, if the motion is suddenly stopped, the
stresses will decay as _w C"":t /7\,1) s and the retarda-
tion time ?\_2_ has the significance that, if all stresses
are removed, rates of shear will decay as s (_—-"t (Az)

The equation (1.3.17) was earlier obtained by Jeffery (1929},

If equation (1.3,17) is to be expressed in terms of
spatial ccordinates satisfying the requirements of material
indifference then the partial derivative B‘/ at must be
revlaced by the convective derivative 5/ S": , defined by
(1.3,13). Thus the two obvious generalizations of equation

(1.3.17) are

(&—1—7\‘ 3—)/\0 =2 (‘i+)\2.§3€) U (1.2,18)

ana (/L‘tN go-g) “"Q’Tl U’Q\LZ@E) & . (1.3.19)



Liguids characterized by equations (1.3.18) and (1.3.19)
are called Oldroyd liquid A and O0ldroyd liguid B res-
pectively., Oldroyd (1950,1951) made theoretical studies in
simple shear behaviour of these two liquids and found that
liguid B exhibits properties nearer to known exverimental
behaviour of non-Newtonian fluids., When equations (1.3.18)
and (1.3.19) are written after substitubting for the convec-
tive derivatives in spatial description, it is found that
the terms, thus obtained, are linear in stresses, bilinear
in stresses and velocity gradients taken together and of
second degree in velocity gradients alone. ZKeeping this in
view and introducing more constants, Oldroyd (1958) proposed

an eight constent model as (in Cartesian coordinates On ;)
Ff -h,X.._-_w («J i
ot MR e () e

/ D\ \ ‘

erjnﬁjq Sn: ] R (1.3.20)

%1’1‘; aiﬂi\f.
2%

. , | (1.8.21)
2t e ¥ byt gy
where })L,, 5 ju‘) )u?_ 5 and /U are five more arbitrary

scalar -physical constants, each with the dimensions of time
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occurring at high rates of shear, I’fk is any covariant
tensor, 4N 'CV_[ = '}i L’Ug,f_ — '\.‘}1;_,\() ] is the vorticity
tensor and E@Aﬂt denotes the material derivative which makes
- allowance for the rotational as well as the translational
motion of the material element. Since raising or lowering
of indices does not affect the material derivative 5&/35£

in Carbesian coordinates (or physical components of the quan-
tities referred to orthogonal curvilinear coordinate system),
equation (1.3.20), as it stands, may be considered as valid
generalization of equations (1.3.18) and (1.3.19). Equation
(1.3.20) represents Oldroyd liquid. A when

N yo, AT "/‘*\7)\ #‘j*z 70 , /Uo"—-'%'—*-?;_f‘—o (1.3.22)

and Oldroyd liquid B when

7L,>°; M= Az:ju?— Z0 , Mo =N = =0 . (1.3.2)

Newtonian fluids can be regarded as special case of equation

(1.3.20) in which all material constants except N vanish.
[+

Oldroyd (1958) has discussed a number of flow prob-
lems, viz. the shearing flow between two rotating cylinders,
flow through tubes of eirenlar and arbitrary cross-section,
shearing flow between two rotating cones and found that by
suitable éhoice of the material constants, most of the essen-

tial featﬁres_observed in non-Newtonian fluids ecan be explained
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in the following manner. They possess a shear-dependent
viscesity which decreases with increasing rates of shear
from a limiting value " at low rates of shear to a lower
1limiting value YL\ at high rates of shear. They exhibit
Weissenberg climbing up effect and possess a distribution of
normal stresses corresponding to an extra tension along the
streamlines with an isotropié state of stress along the plane

perpendicular to the streamlines.

Sharma (lgsga)has investigated the rotation of an
infinite disk in Oldroydts elastico~viscous fluid, Rauthan
(19682, 1968b) has considered the torsional cscillation of
an infinite disc and fluetuating flow near a stagnation point,
Subba Raju (1967&, 1967b) has studied the foreced flow against
a rotating disk and flow between two rotating disks. Mishra
(1965a, 1965b, 1965¢) has considered Couette flow through
porous walls, shear flow past a porous flat plate and heat

transfer in a circular cylinder.

1.4, Basic equations

The basic equations governing'the motion of an incoli
pressible, viscous and electrically conducting liguid in the
bDresence of a magnetic field and heat sources or sinks are

(in rationalized MKS system of units),
the equation of continuity

|
Vie=e (1.4.1)



the modified Navier-Stokes equationy

f ! ', ) bt F f(I*ﬁ) (1.4.2)

% i)
the energy equation
=13 T . 3 -t—Q.
f CPL:S{ *“JT’J) i ¥ ¢ + 2 (1.4,3)
Maxwell's equations
g-@
cd € = — =t | (1.4.4)
- = |
B = Mol (1.4.5)
dew® =o (1.4.8)

and the Chm's law

7= |+ 9 xB ] - (1.4.7)

Again from equations (1.4.4) to (1.4.7) we get the

magnetic induction eguation
~3
== '\1‘7'2‘}_{3 < c,w&(fﬁx H) ] (1.4.8)

The various symbols are:
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1 =
NG = qj the velocity vector
F'\: the non-electric force per unit volume e,g.
for free convection flow it is _gﬁ_a s 5}? being the force
of gravity per unit mass;
}PTJ' the stress tensor related to the rate-of-

strain tensor _elu- by various equations for different

fluids as exnlained in the preceding section of this chapter)

'B—? ".::/*e__ﬁ the magnetic indugtion vector,
\j the magnetic field,
f the electric current denéity,
f the electric field,
T the température,
o the electrical conductivity,
1{ the thermal conductivity,
GP the specific heat at constant pressure,
}L‘Q_ the magnetic permeability,
f . - the density,
(fx f) : the Lorentz force per unit volume,
Q the heat source or sink per unit volume,

"1 = Weo~ the magnetic diffusivity,
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< — =) 2
»_:.[5____ — O‘“Y,t. + ﬁx’fb’)] the Joulean heat per unit

volume,

In equations (1.4.1) to (1.,4.3) a comma followed by a suffix
denotes covariant differentiation, @ is the viscous di-

ssipation per unit volume and is given by
§ = ey
— u By

/
where 4>ti is the deviatorie stress tensor which is, when
referred to an orthogonal Cartesian frame of reference CbLfJ

given by
)P’ ,LJ — )\D‘lj "\" x\’ ()(Jt) 51\£ ’.

r
1) being an arbitrary isotropic pressure. 7 1is the
Laplacian operator and for an orthogonal Cartesian frame Oy,

it is given by

2.,
2 2 L2 &
Vo= Seteat e

| In deducing the above equations, the displacement
current, the free electric charges and Hall currents have
been neglected and the fluid has been considered to be non-
magnetic, These equétions govern the motion of the fluid
and render a problem fully determined with the appropriate

boundary conditions,
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Boundary conditions

The boundary conditions to be satisfied are the usual
boundary conditions imposed on the velocity (namely, the no
slip condition at the boundary for viscous fluids), and the
temperature fields together with certain electromagnetic

boundary conditions.

The electromagnetic properties of the fluid will
change abruptly to those of the solid at the solid bhoundary.
Across such a surface of discontinuity, the electromagnetic

variables have to satisfy the following conditions

b ]
(D The normal component of the magnetic induction D
is continuous across the interface
(2) If none of the regions (fluid, solid or vacuum) ad-

joining the boundary is perfectly conducting, the tangential
component of the magnetic field F? is continvous across
the interface. If, however, at least one of two media in

-~

contact is perfectly conducting then the magnetic field H

must satisfy the condition

5 -3 >
el = I

-3~y
Where ﬁ? is the unit vector normal to the surface,chﬂzh
are the values of the magnetic field on two sides of the

-
interface and Jg is the surface current density.

(3) ' The tangential component of the electric field

is continuous acroSs the interface.
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1.5, Qutline of the thesis

This thesis deals with a few nroblems of fully
developed laminar flow, Most of thenm belong to the class
of Magﬁetohydrodynamics, the science of the motion of
electrically conducting fluids under magnztic fields.
However, in view of a variety of non-Newtonjan fluids that
are being produced by modern industries and which are, in
general, electrically non-conducting, bubt possess some
peculiar properties foreign to the ordinary viscous fluids,
a chapter has been devoted to the study of an elastico-
viscous fluid flowing through a porous channel., In most
engineering bhranches, a knowledge of the temperature field
in a flovw »nroblem becomes essential along with the velocity
field, Further, suction and injection through the boun-
daries often play an important role in modifying the heat
transfer and the shearing stresses at the boundaries., To
make a composite study of all such phenbmena we have dis-
cussed temperature fields and the influence of suction at

the walls in some of the problems.

In Chapter II, a discussion nas been presented in
two parts, of the boundary layer flow in convergent chan-
nels, The first part deals with the MHD velocity and
thermal boundary layers in a.convergent channel with porous
walls. The second part is a study of the thermal boundary
layer of a viscous fluid cbmtaining temperature dependent

heat sources and flowing between converging walls.



In Chapter III, we have considered the combined
natural and free convection HHD flow in vertical channels
under the influence of traasversely applied magnetic fieid
and external circuit wall conditions. The walls of thé
channel are having the same temperature gradient along their
lengths, but they are kept at different temperatures. Con~
sideration has been given ﬁo the heat sources present in the

fluid and viscous and Joulean dissipatiwvns,

The Chapter IV has been devoted to the study of
unsteady hydromagnetic boundary layer flow along a semi-
infinite flat plate, Faf away from the plate, the applied
magnetic field as well aé the free stream are parallel to
the plate itself. The two-Gimensional boundary layer equa-
tions have been separated into two sels of equations, one
representing the steady part and the other the unsteady
part of the motion. These two sets of equations are solved

in seguence,

In Chapter V, we have discussed the unsteady hydro-
magnetic forced flow against a rotating disk of infinite
radius, A suitable get of.similarity_transformations has
been introduced and the system of reduced equations has

been solved by Kdrmén-Pohlhausen method,

Chapter VI is devoted to a theoretical investigation

of the problem of the flow and heat transfer of an elastico-
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viscous fluid in a vorous channel., The constitutive equa~
tions used are those proposed by Oldroyd (1958). The ten-
peratures of the walls are varying linearly along their
lengths in the major flow direction. The velocity and
temperature profiles are obtained for various values of the
suction and visco-elastic parameters and the corresnonding
viscous drags and the Nugselt number at the walls are com-

puted,





