PREFACE

The present research work reports the development and a systematic study of structural and other properties of pure and doped AlO(OH)·xH₂O and derivatives of mesoporous Al₂O₃ in different polymorphs, Cr³⁺:Al₂O₃ nanoceramics, and Co:Al₂O₃ nanocermets. A novel chemical method using a controlled surface hydrolysis of Al-metal with nascent surfaces in water at room temperature is developed and explored to derive a mesoporous AlO(OH)·xH₂O and its controlled molecular decomposition to mesoporous Al₂O₃ powders in different polymorphs. The method is extended to obtain a precursor mixture to synthesize a mesoporous Al₂O₃ composite with Cr₂O₃ metal oxide or Co-metal of nanoparticles. Mechanical attrition is used to promote a homogeneous distribution of Cr^{3+} in AlO(OH)·xH₂O as a precursor. $Cr^{3+}:Al_2O_3$ nanoceramics appear on heating the precursor in air at 800 to 1500 K of temperature. A controlled thermal decomposition and co-reduction of Co²⁺:AlO(OH)·xH₂O gives a Co:Al₂O₃ nanocermet on heating in H₂ gas at 975 to 1125 K. The formation of the samples in different polymorphs and the structural and other properties are studied with X-ray diffraction, thermal analysis, microstructure, XPS analysis, BET studies, and IR & Raman, optical absorption, emission and EPR spectra. Microhardness and dielectric properties are studied for α -Al₂O₃. The total surface and Gibbs free energies are used to analyze and model thermodynamic stabilities and phase transformations in Al₂O₃ and Co:Al₂O₃ in nanoparticles.

The results and the data analysis are presented with discussion in seven chapters. Chapter-I gives a general introduction about the subject with the statement of the problem, reviews of the chemical methods in synthesis of fine ceramics or metals, important polymorphs of Al₂O₃ and Co-metal in nanoparticles, their typical physical properties and applications. A mesoporous composite structure and the role of pores in novel properties and applications are briefed. Chapter-II describes experimental methods followed in this study and the X-ray diffraction, microstructure, and other analytical techniques applied to characterize the samples. Analysis and modeling of the results are discussed in subsequent Chapters of III to VII. A summary of the work with important implications achieved in this work is reproduced in the last Chapter-VIII.

Subhers Rana (Subhasis Rana)