CHAPTER -~ I

INTRODUCTION AND BASIC EQUATIONS

1.1 Introduction

The present work is concerned mainly with computation
of plane steady inviscid transonic flow past thin profiles at
zero angle of lncidence. A floﬁ field where.hoth subsonic and
supersonic regions are present and are significant in deter—
mining the overall character of the flow fleld is known as a
transonic flow field. The subsonic and supersonic reglons are
separated by sonic lines {in case of two dimensional Fflow) or
by sonic sﬁrfac&s; where the flow velocity ig esqual to the
local speed of sound. It ls frequently observed that in a
transonic flow field the acceleration from subsonic flow to
supersonic flow is smooth. that is continuous. whereas during
decelaration from supersonic to subsonic £low & shoek
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T:&ngonic flow flelds appear in a large variety of
aerodynamic probiams like flow in nozzles, aroqnd'blﬁnt
bodies flving supersonically and pear alrplane wings flying
close to Mach numbar.unity; study of such flow fieldg has
become particularly important with the developmnent of modern

hich speed alrcrafts. It is one of the most efficient flight



regimes, and such studies have become important for
speeding up the performance of gubsonic aircrafts. More~
over, the problem of drag reduction in flight at

transonic speed range ls of much interest.

The complexity of the high speed vehlcles reguires
thousandsof costly wind-tunnel testing_to study the
complete flow field for thelr development and design. Even
then it 1s not always possible to match correctly the wind-
tunnel results to real flight conditions. With the advent
of electronic digital computers, several numerical technigues
give economical alternatives for the experimental data and .
in some cases it is possible to el?minate éampletely thg fé:

need for experimental testing (Kutler {1975}}.

Under the assuwmptions of small perturkbation theory,
the basic gasdynamiec equation for the velocity potential may
be linearised in the cases of purely subsqnic or purely
supersonic flowe. But in case of transonic flow. it remains
non~linear, #grictly speaking quasi~linear, even under the
agsgumption of small perturbation. Furthar,'tha_eqﬁafion is
of mixed elliptic~-hyperbolic type. being of ellipt1c typa |
in subsonic flow and of hyperbolic type in supersonic f£low.
Their line of demarcation, viz. the sonic line is not koown a
priorl and is to be foumd.A out as a part of the solution.
This leads o écnsiderablp mathsmatical 4l fflculty. Por



subsonic flow, under the assumption of small perturbation.
the linearised form of the gasdynamic equation with linear-
ised boundary conditions may be solved by Prandtl-Glauert
rule (Oswatitsch (1956)) and the solution cbtained is of
first-order accuracy. Solutions with higher order accurscy
may also be obtained as presented by Van Dyke (1954) and
Gretler (1965). In case of purely supersonic flows solution.
wlith desired accuracy can be obtained by the method of
characteristics (Oswatitsch (1956)) even for the quasilinear
equation. The methods for solving quaal-linear egquations of

mixed type are only ¢f recent origin.

There are generally two types of transonic aero-
dynamic problems : (i} the direct problem in which the free-
stream Mach number and th& airfoil shape are prescribed and
the resulting flow field is to be determined and (ii} the
desigﬁ problem belonging to the category of indirﬁct'prablems
' where the body shape is to be determined for prescribed
pressure distrihutiun at the airfoil and the free-stream
Mach number. s

For flow paat a profile, as the free-sgtream Mach
number increasasa, the wvzlue of the maxisum velocity at the
profile also increases. When M_ < cxbgcrit* + the flow
is purely subsonic. Here (Hagcrit. is the value of M_,

for which the maximum value of the velocity at the profile



