Abstract

Program slicing is a program analysis technique. It can be used to
extract the statements of a program that are relevant to a given com-
putation. Some of the major applications of program slicing include
program understanding, debugging, testing, program comprehension,
program maintenance and modification, reusable component gencra-

tion, parallelization, dead code elimination ete.

A survey of the dynamic slicing techniques shows that the exist-
ing dyvnamic slicing techniques are not very efficient. We have the
following observations: (i) the space complexity and time complexity
(the time to compute a slice after execution of a statement of interest)
of cach of the existing intraprocedural dynamic slicing algorithms for
structured sequential programs are either exponential in the number of
statements in the program or unbounded, (i) The space complexity and
time complexity of cach of the existing intraprocedural dynamic slicing
algorithms for unstructured sequential programs are unbounded, (iii)
The space complexity and time complexity of cach of the existing inter-
procedural dynamic slicing algorithmms are unbouuded, (iv)the existing
dynamic slicing algorithins for parallel, distributed and object-oriented
programs are extensions of these basic algorithms for sequential pro-

grams and thus, display similar characteristics.

The high space and time requirements of the existing dynamic slic-
ing algorithms make them unsuitable for use in interactive applications
such as program debugging and testing. Therefore, there is a pressing

necessity to devise efficient dynamic slicing algorithms. With this moti-

vation, the thesis attempts to develop suitable frameworks and efficient

dynamic slicing algorithms for sequential programs.

We first introduce the concepts of stable and unstable edges. and
present an cfficient intraprocedural dynamic slicing algorithm called the
edge-marking algorithm. The space complexity and time complexity of
the edge-marking algorithm are quadratic in the number of statements
in the program. Then we explore the possibility of reducing the time
complexity and present two efficient intraprocedural dynamic slicing
algorithms called refined-edge marking algorithim and node-marking al-
gorithm. The refined-edge marking and node-marking algorithms have
space complexity quadratic and time complexity lincar in the number
of statements. We show that these algorithms are increasingly efficient

in the order of their presentation in the thesis.

We extend our framework to handle unstructured programs, and
introduce the concept of Unstructured Program Dependence Graph.
Then we present an efficient dynamic slicing algorithm for unstruc-
tured programs using the UPDG as the intermediate program repre-
sentation. The space complexity and time complexity of the algorithm
are quadratic and linear in the number of statements in the program

respectively.

For interprocedural dynamie slicing we develop a suitable interme-
diate representation, and then present the dyvnamic slicing algorithm.
We have named the algorithm as InterSlice algorithm. The InterSlice
algorithm has space complexity quadratic and time complexity lincar

in the number of statements in the program. We also discuss how our

slicing algorithms can be extended to efficiently handle arrays, struc-

tures, pointers and recursive procedure calls.

We show that our dynamic slicing algorithms compute precise dy-
namic slices, and are more cfficient than the existing algorithms. We
implement our dynamic slicing algorithms to experimentally verify their

correctness and preciseness.

