
Chapter 1

Introduction

The main objective of the thesis is to obtain superconvergence results for linear and

nonlinear Fredholm integral equations of the second kind. We would like to concentrate

on Galerkin and collocation methods. For this purpose, one may use either piecewise

or global polynomial basis functions. The numerical solution of Fredholm linear and

nonlinear integral equations with piecewise polynomial basis functions and their super-

convergence results were studied by many authors (cf. Atkinson and Potra [1], Atkinson

and Potra [2], Atkinson [3], Atkinson [5], Chen et al [14], Kaneko and Xu [29], Kaneko

et al [30]). However to obtain more accurate solution one has to solve the large linear

or nonlinear system of equations which is very computationally expensive. Since, low

degree polynomials imply small system of equations, which is highly desirable in practical

computations, we employ global polynomial basis functions. In particular, Legendre poly-

nomial basis functions can be generated recursively with ease and possess nice property

of orthogonality. Further, these Legendre functions are less expensive computationally

compared to piecewise polynomial basis functions, we choose to use these Legendre poly-

nomials as basis functions. However, if Pn denotes either orthogonal or interpolatory

projection from X into a subspace of global polynomials of degree ≤ n, then ‖Pn‖∞ is

unbounded. Therefore, there exists at least one f ∈ C[−1, 1] such that Pnf 9 f. It is

the purpose of this work to obtain similar convergence rates for the approximate solutions
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Chapter 1: Introduction and Literature Survey

using Legendre polynomial bases as in the case of spline bases. For this purpose, below

we present a brief literature.

Let X be a Banach space. We consider following integral equations of the form

u−Ku = f (1.1)

where K is a linear or nonlinear integral operator. If K is a linear integral operator and

it is defined by

Ku(t) =

∫ 1

−1
k(t, s)u(s)ds, t ∈ [−1, 1],

then equation (1.1) reduces to a Fredholm integral equation of the second kind. Numerical

solutions of integral equations of the type (1.1), which are reformulations of boundary

value problems of partial differential equations has drawn much attention (see, Golberg

and Chen [20] and Atkinson [5]). Spline methods and their iterated versions for linear

Fredholm integral equations of the second kind have been studied extensively by many

researchers (see Sloan [44], Joe [24], Graham et al. [22], Chen and Xu [10]). The Galerkin,

collocation, petrov-Galerkin, degenerate kernel and Nyström methods are commonly used

methods for approximation of the Fredholm integral equations. The analysis for the

convergence of these methods was well documented in Golberg and Chen [20] and Atkinson

[5]. Faster convergence of the iterated Galerkin method for Fredholm integral equations of

the second kind was first observed by Sloan [43]. On the other hand, the superconvergence

of the iterated collocation method was studied in Graham et al. [22] and Joe [24]. The

general framework for petrov-Galerkin and iterated petrov-Galerkin methods for integral

equations of the second kind was discussed in Chen and Xu [10]. Discrete petrov-Galerkin

and discrete wavelet petrov-Galerkin methods for weakly singular integral equations were

given in Chen et al. [11], [12]. Fast collocation methods for integral equations of the second

kind were discussed in Chen et al. [13]. Multiwavelet applications to the petrov-Galerkin

method were given in Chen et al. [9]. Multi-projection methods for the approximation

of the equation (1.1) using spline bases were discussed in Kulkarni [36] and Chen et al.
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Chapter 1: Introduction and Literature Survey

[14], and obtained superconvergence results over iterated Galerkin and iterated collocation

methods.

Next let us consider nonlinear integral equation of Hammerstein type which is of the

form

x−Kψx = f, (1.2)

where Kψ(x) is defined by (Kψ)(x)(t) =
∫ 1

−1 k(t, s)ψ(s, x(s))ds, with the kernel k, f and

ψ are known functions and x is the unknown function to be determined.

In Kumar and Sloan [39] and Kumar [40], a new type of collocation method was dis-

cussed while establishing superconvergence results for Hammerstein equations. Discrete

collocation methods for Hammerstein equations were proposed by Kumar [41] and Atkin-

son and Flores [4]. A degenerate kernel scheme was introduced by Kaneko and Xu [27] for

Hammerstein equations. Superconvergence of the iterated Galerkin, iterated collocation

and iterated degenerate kernel methods were studied by Kaneko and Xu [29] and Kaneko

et al. [30], [32]. Wavelet applications to the petrov-Galerkin method and its iterated

version were given in Kaneko et al. [33]. Some recent results on the numerical solutions

of the Hammerstein equations are found in a chapter by Kaneko and Noren [31].

Now let us review the nonlinear integral equation of Urysohn type

x−K(x) = f (1.3)

where K(x) is a nonlinear integral operator defined by K(x) =
∫ 1

−1 k(t, s, x(s))ds, where

the kernel k and f are known functions and x is the unknown solution to be determined.

Projection methods and its iterated version for nonlinear integral equations were given

in Atkinson and Potra [1]. The superconvergence results for itrated solutions and its

discrete version for Urysohn integral equations were studied in Atkinson and Potra [2]

and Atkinson and Flores [4]. A survey for nonlinear integral equations of Urysohn type

can be found in Atkinson [3].
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Chapter 1: Introduction and Literature Survey

Next we consider the following Hammerstein integral equation of mixed type

x(t)−
m∑
i=1

∫ 1

−1
ki(t, s)ψi(s, x(s))ds = f(t), −1 ≤ t ≤ 1 (1.4)

where the kernels ki, f and ψi are known functions and x is the unknown function to

be determined. Numerical solvability of these type of integral equations were studied by

Ganesh and Joshi [17] and a discrete version was discussed in Ganesh and Joshi [16].

More information on these type of integral equations can be found in a book by Joshi and

Bose [25].

1.1 Preliminaries:

Let X be a Banach space and BL(X) denote the space of bounded linear operators

from X into X. For T ∈ BL(X), we are interested in the solution of the operator equation

(I − T )u = f. (1.5)

As the above problem, in general, can not be solved exactly, we consider approximate

solutions. Let Tn be a sequence in BL(X) such that ‖Tn − T ‖ → 0, or Tn is ν-convergent

to T , i.e.,

‖Tn‖ ≤ C, ‖(Tn − T )T ‖ → 0, ‖(Tn − T )Tn‖ → 0, as n→∞.

Theorem 1.1.1 Let X be a Banach space and T , Tn be bounded linear operators on X. If

Tn is norm convergent to T or Tn is ν-convergent to T , and (I−T )−1 exists and bounded

on X , then (I − Tn)−1 exists and uniformly bounded on X.

Then the equation (1.5) is approximated by

(I − Tn)un = f or fn, (1.6)

and its iterated solution is defined by ũn = T un + f.
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1.1. Preliminaries:

The error bounds are given by

‖u− un‖ ≤ C‖(T − Tn)u‖,

‖u− ũn‖ ≤ C‖T (T − Tn)u‖,

where C is a constant independent of n.

Banach contraction principle: Let (Ω, d) be a non-empty complete metric space.

Let F : Ω → Ω be a contraction mapping on Ω, i.e. there is a nonnegative real number

q < 1 such that for all x, y ∈ Ω

d(Fx,Fy) ≤ qd(x, y).

Then the map F admits one and only one fixed point x∗ in Ω i.e., F(x∗) = x∗.

Lipschitz condition: Let (Ω1, d1) and (Ω2, d2) be two metric spaces. Then a mapping

F : Ω1 → Ω2 is said to satisfy a Lipschitz condition with a Lipschitz constant k ≥ 0 if

d2(Fx,Fy) ≤ kd1(x, y), ∀x, y ∈ Ω1.

Total variation: The total variation of a real-valued function f defined on an interval

[a, b] ⊂ R is the quantity

V a
b = sup

P

n∑
i=0

|f(xi+1)− f(xi)|,

where the supremum taken over the set of all partitions P = {x0, x1, · · · , xn} of the given

interval [a, b].

Frechet differentiability (Vainikko [48]): Let X and Y be normed linear spaces and

T : X → Y be an operator (linear or nonlinear). Assume that Ω = D(T ) be an open

subset of X. Then T is said to be Frechet differentiable at x0 ∈ Ω, if for any sufficiently

small normed element h ∈ X such that x0 + h ∈ Ω, the increment T (x0 + h)− T (x0) can

be represented in the form

T (x0 + h)− T (x0) = T ′(x0)h+ w(x0;h),
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Chapter 1: Introduction and Literature Survey

where T ′(x0) is a linear continuous operator from X into Y and ‖w(x0;h)‖‖h‖ → 0, as ‖h‖ → 0.

The linear operator T ′(x0) is called Frechet derivative of an operator T at the point x0.

Note: If T : X → Y is a linear operator, then T ′(x) = T (x), ∀x ∈ X. We also note

that the Frechet derivative of an operator T : D(T ) ⊆ X→ Y at x ∈ D(T ) is a bounded

linear operator from X into Y.

Theorem 1.1.2 (Suhubi [46]) Suppose X, Y, Z be Banach spaces and T1 : X → Y

is Frechet differentiable at x and T2 : Y → Z is Frechet differentiable at T1(x). Then

H = T1oT2 is Frechet differentiable at x and H ′(x) = (T1oT2)′(x) = T ′1 (T2(x))(T ′2 (x)).

Note: Let X and Y be Banach spaces and T : X → Y be a nonlinear operator. If T is

Frechet differentiable at every vector u + t(w − u) with 0 ≤ t ≤ 1 for all u,w ∈ X, then

there exists a number 0 < δ < 1 such that

‖T (w)− T (u)‖ ≤ sup
0<δ<1

‖T ′(u+ δ(w − u))‖‖w − u‖.

Analogous to the concept of compactness of a linear operator, a nonlinear operator

T : D(T ) ⊆ X → Y is said to be compact if for every bounded subset E of X, closure of

T (E), i.e, T (E) is compact set in Y.

Theorem 1.1.3 (Joshi [25]) Suppose T : X → Y is compact and continuous and has

Frechet derivative T ′(x) at x ∈ X. Then T ′(x) is also compact and continuous operator.

Proof. Suppose T ′(x) is not compact. Then there exists ε > 0 and a sequence {xn} with

‖xn‖ ≤ 1 such that

‖T ′(x)xn − T ′(x)xm‖ > 3ε, m 6= n.

But

T (x+ h)− T (x) = T ′(x)h+ w(x, h)

and

‖w(x, h)‖ ≤ ε‖h‖ if ‖h‖ < δ for some δ.
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1.1. Preliminaries:

Thus we have

‖T (x+ δxn)− T (x+ δxm)‖ ≥ δ‖T ′(x)(xn − xm)‖ − ‖w(x, δxm)‖ − ‖w(x, δxn)‖

> 3δε− δε− δε = δε,

which is impossible since T is compact. Hence T ′(x) is a compact operator.

This completes the proof. 2

Note: If T1, T2, · · · , Tn are nonlinear compact operators on X, then (T1+T2+· · ·+Tn)′(x) =

T ′1 (x) + T ′2 (x) + · · ·+ T ′n(x) is also compact operator on X.

Let T̂ and T̃ be continuous operators over an open set Ω in a Banach space X. Let

us consider under what conditions the solvability of one of the equations x = T̂ x and

x = T̃ x leads to the solvability of the other.

Theorem 1.1.4 (Vainikko [48]) Let the equation x = T̃ x has an isolated solution x̃0 ∈

Ω and let the following conditions be satisfied.

(a) The operator T̂ is Frechet differentiable in some nbd of the point x̃0, while the linear

operator I − T̂ ′(x̃0) is continuously invertible.

(b) Suppose that for some δ > 0 and 0 < q < 1, the following inequalities are valid (the

number δ is assumed to be so small that the sphere ‖x− x̃0‖ ≤ δ is contained within

Ω),

sup
‖x−x̃0‖≤δ

‖(I − T̂ ′(x̃0))
−1

(T̂ ′(x)− T̂ ′(x̃0))‖ ≤ q, (1.7)

α = ‖(I − T̂ ′(x̃0))
−1

(T̂ (x̃0))− T̃ (x̃0))‖ ≤ δ(1− q). (1.8)

Then the equation x = T̂ x has in the sphere ‖x− x̃0‖ ≤ δ a unique solution x̂0. Moreover,

the inequality
α

1 + q
≤ ‖x̂0 − x̃0‖ ≤

α

1− q
(1.9)

is valid.
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Chapter 1: Introduction and Literature Survey

1.2 The structure of the Thesis:

The research work in this thesis has been organized into four chapters (Chapters: 2 to

5), which deals with a relevant contribution of the author in the field of integral equations.

A summary outline of the same is described as follows:

In Chapter 2, we describe the numerical solution of Fredholm integral equations of

the second kind (1.1) with a smooth kernel using multi-projection method. We consider

the approximating space Xn as Legendre polynomial subspaces of degree ≤ n. We ob-

tain superconvergence results for the approximate solutions in Legendre M-Galerkin and

Legendre M-collocation methods in both L2−norm and infinity norm. We prove that in

iterated Legendre M-Galerkin methods not only iterative solution ũM,G
n approximates the

exact solution u in the supremum norm with the order of convergence n−4r, but also the

derivative of ũM,G
n approximates the corresponding derivative of u in the infinity norm with

the same order of convergence, where r denotes the smoothness of the kernel. We also

obtain superconvergence rates for the approximate solutions in case of iterated Legendre

M-collocation method in both L2−norm and infinity norm.

In Chapter 3, we approximate the solution of nonlinear integral equations of Ham-

merstein type (1.2) with a smooth kernel. We consider the approximating space Xn as

Legendre polynomial subspaces of degree ≤ n. We discuss Legendre Galerkin and Leg-

endre collocation methods for solving the Hammerstein integral equations and we obtain

convergence rates for the approximate solutions in both L2−norm and infinity norm. We

obtain superconvergence results for iterated Legendre Galerkin solution in both L2−norm

and infinity norm. Iterated Legendre collocation solution gives better convergence rates

over the Legendre collocation solution in infinity norm. We prove that iterated Legendre

Galerkin method improves over iterated Legendre collocation method for Hammerstein

integral equations.

In Chapter 4, we consider the approximate solution of nonlinear integral equations
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1.3. Contributions of the Thesis:

of Urysohn type (1.3) with a smooth kernel. We consider the approximating space Xn as

Legendre polynomial subspaces of degree ≤ n. We obtain the similar superconvergence

rates as in the case of Hammerstein integral equations in chapter−3.

In Chapter 5, we approximate the solution of nonlinear Hammerstein integral equa-

tions of mixed type (1.4) with a smooth kernel. We consider the approximating space

Xn as Legendre polynomial subspaces of degree ≤ n. We discuss Legendre Galerkin and

Legendre collocation methods for solving the Hammerstein integral equations of mixed

type and we obtain convergence rates for the approximate solutions in both L2−norm and

infinity norm. As in chapter−3, we obtain superconvergence results for iterated Legen-

dre Galerkin solution in both L2−norm and infinity norm. Iterated Legendre collocation

solution gives better convergence rates over the Legendre collocation solution in infinity

norm. We prove that iterated Legendre Galerkin method improves over iterated Legendre

collocation method for these Hammerstein integral equations of mixed type.

1.3 Contributions of the Thesis:

In this thesis, we consider numerical solutions of linear and nonlinear Fredholm

integral equations. We propose multi-projection and iterated multi-projection methods

for Fredholm integral equations of the second kind with a smooth kernel using Legen-

dre polynomial bases. We obtain superconvergence results for the approximate solutions.

More precisely, we prove that in Legendre M-Galerkin and Legendre M-collocation meth-

ods not only the iterative solution ũn approximates the exact solution u in the infinity

norm with the order of convergence n−4r, but also the derivatives of ũn approximate the

corresponding derivatives of u in the infinity norm with the same order of convergence.

Next we consider the Galerkin and collocation methods for solving the nonlinear integral

equations of Hammerstein and Urysohn type with smooth kernels using Legendre polyno-

mial bases. We obtain convergence rates for the approximate solutions in both L2−norm

and infinity norm. Also we obtain superconvergence results for the iterated Legendre
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Chapter 1: Introduction and Literature Survey

Galerkin solutions in both L2−norm and infinity norm. We prove that the iterated Leg-

endre Galerkin method improves over the iterated Legendre collocation method for both

Hammerstein and Urysohn integral equations. We extend these results to the Hammer-

stein integral equations of mixed type with a smooth kernel using Legendre polynomial

basis functions and obtain similar superconvergence results for the approximate solutions

in both L2−norm and infinity norm.
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