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SYNOPSIS
o

4This thesis deals with some problems in rotational 
flows* It is divided into five chapters*

* ITna motion of a solid body in a fluid endowed with vor- 
$icity is not, in general, easily amenable to mathematical, 
treatment* But some progress has been made in recent years in 
both two and three-dimensional rotational flows* When the 
motion is two-dimensional and the vortielty unifor®, the exact 
steady state equations for an inviscid, Incompressible fluid 
can be reduced to one Laplace equation for the stream function, 
which is separable in a number of coordinate systems* When 
the method of separation of variables is not applicable * the 
method of conformal transformation may bef applied* In chapter I 
the latter method is used to solve the problem of the rotatio- 
nal flow of a liquid past a cylinder of regular polygonal 
cross-section. She stream function for the flow is obtained 
and the thrust on the cylinder due to liquid motion is cal
culated* It is found that the thrust is independent of the 
number of sides of the polygon when the length of a side is 
taken as X  c£n Uvx. (7r/n) , <L^ being the radius of the 
circumscribed circle and >t- the number of sides of the 
polygon* Further, the corresponding problem for hypotrochoidal 
cylinders is also considered and the thrust is calculated in 
each ease* The results for cross-sections of equilateral
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triangle and square are compared with those of hypotrochoids 
of three and fdur cusps respectively*

c

The rest of the work deals with three-dimensional rota-
ft

tional flows with axial symmetry* The motion of bodies in a 
uniformly rotating fluid has been considered by various authprs. 
Inspite of the simplifying assumptions of an incompressible and

c..inviscid fluid, not much progress has been made in attempting 
to explain some of the experimental results theoretically* The 
solution of the exact steady state equations has been found to 
be indeterminate due to lack of sufficient boundary conditions* 
One possible reason for this indeterminascy lay perhaps in the 
manner in which the flow was started. Furthert even if a 
steady solution of the governing equation can be obtained, 
there is no guarantee, in this type of fluid motion, that the 
flow can be set up by starting the body from rest relative to 
the rotating system. Keeping this In view, various attempts<9
have been made in recent years to obtain some general features 
of the flow on the basis of the linearized equations# In** 
chapter II of this dissertation the slow uniform motion, after 
an impulsive start from relative rest, of a paraboloid of 
revolution along the axis of a rotating liquid is Investigated 
by using a perturbation method* The principal purpose is to 
explain the mechanism by which the fluid is not subjected to 
any substantial radial displacement, which is a direct conse
quence of the requirement that the circulation round material J* i i Jcircuits should be constant when the perturbation velocities •
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remain small# It appears that the mechanism is an oscillatory 
one in which the distance between any fluid particle and the 
axis of rotation oscillates sinusoidally in time with small

♦

amplitude* As time progresses, the amplitude of the oscillation 
decays to zero everywhere except on the paraboloid* w the ulti-

c

mate Action is then a rigid body rotation everywhere except on 
the body and the axis of rotation, where the perturbation velo- " 
cities continue to oscillate indefinitely with snail amplitude*

In chapter III the flow of a rotating liquid past a 
sphere in a cylindrical pipe is investigated on the basis of 
the linearized equations* Assuming the pipe radius to be 
large compared to the radius of the sphere, it is found that 
the flow in this case is also oscillatory in character* Fur
ther, there are no disturbances far upstream and waves are 
propagated downstream only* The ultimate flow is steady and 
two-dimensional#

In chapter I? the oscillation of an oblate spheroid in
■ : ■ ■ ■ ■a rotating fluid is considered. The case of a circular d±3st, 

with it’s centre on the axis of rotation and its plane perpen
dicular to this asris, which oscillates in a direction normal 
to its surface, is deduced from that of the oblate spheroid#

The basic problem in the flow of rotating flui<§ is 
to study the interaction between the rotational* motion and the 
motion in meridian planes* These two motions are not inde
pendent; changes in the angular velocity affect the centrifugal, • 
force and lead* to motions in meridian planes and these In turn

A



SHBET NO.— iZ —  
______/ «____

affect the rotation through the Coriolis force.* In the case 
of inviscid fluid these two motions are related in a simple 
manner* But when viscosity is taken Into account the relation

«

is so complicated that even the linearized equations appear
«

to be intractable for exact solution* In chapter V the Slow.
 ̂ , uniform motion of a sphere, started impulsively from rest, in 

; a viscous rotating fluid is considered. A solution valid for 
small values of the Reynold1 s number {J a. f  "p t U being 
the uniform velocity of the sphere, CL the radius of the 
sphere and y the kinematic coefficient of viscosity of 
the fluid, is obtained. It is shown that the flow tends to 
a steady state ultimately. The fluid resistance on the sphere 
is calculated and it is found that the effect of rotation of

* the fluid Is to further increase the resistance on the sphere*

«

e

t



CHAPTER I

ROTATIONAL FLOW OF A LIQUID PAST A REGULAR 
POLYGONAL CYLINDER4-

I'.l. Introduction
c

The motion of a solid in a liquid possessing vorticity 
is a problem of considerable interest. The stream function *y> 
for the steady, two-dimensional rotational flow of an incom
pressible inviscid fluid satisfies

1 2  + H L  + c j - o ,
d x 1- (l.i.i)

where the vorticity Cu> , given by

CO =
"&X (1.1.2) ̂ f

satisfies the equation

U  —  + I? ^ o (1.1.3)
-ix . !)•}

jrhere

u  = , u = - V t  ,
"dX

+ Published in the Proceedings of the Indian Academy of Sciences1, Vol.XLVI, No.3 , Sec.A, 1957, p.224. *
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*and U j y  are the velocity components of the .fluid parallel 
to*the x-axis and y-axis respectively*

The general solution of (1.1*3) is
«

U  *  S C f )  • (1 ,1 .4 )
€

and so*the vorticity is constant along a stream line# A few 
exact solutions of (1.1*1) and (1*1*4) are known when ^ }
is equal to a constant and when /("VO “ k f  » K beihg 
a constant* Recently, some Interesting solutions of (1.1*1) and 
(1*1*4) are obtained by Seth 2̂1  ̂when /("VO = e?c/> ( )  
and when / ( W) -  7/ • Also a number of investigations 
using approximate methods have been carried out by various
au th o rs<7 ),<1 2 > ,(1 5 ),<1 6 ).

When /( yO is a constant, equation (1.1*1) may be 
transformed into Laplace equation which is separable in a num* 
ber tof coordinate systems. G*I.Taylor̂ 25  ̂ has discussed the 
motion of a circular cylinder under the assumption that the 
undisturbed motion of the fluid consists of a uniform rotation 
JT- about the origin, so that the vorticity &-> is equal 
to oi, SL * The corresponding problem for the motion of an 
elliptic cylinder has been treated by M.Roy^9 .̂ These authors 
show that for a cylinder moving in any manner, in general two

*

forces X and y  and a couple are necessary to maintain 
•the motion.
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She interest in the field has been recently revived by 
a* number, of papers by Tsien̂ 29), Richardson^8^  A.R.Mitchell 
and J.D.Murraŷ 11^, ahd D e ^ * ^ .  A.R.Mitchell an£ J.D* 
Murray^*^ have investigated in detail the flow pâ t circular,

«
€elliptic and parabolic cylinders by the method of separation 

J *• of variables. By an extension of Blasius* Theorem for rota* 
fcional flow, Dê 2  ̂ calculated the thrust due to the flow past 
cylinders whose cross-sections are bounded by certain family 
of curves*

The present investigation deals with the rotational flow 
past a cylinder of regular polygonal cross-section. The prob
lem is simplified by transforming the area outside the polygon 
into the interior of a unit circle. The thrust on the cylinder 
due to liquid motion is calculated and it is found that the 
thrust is independent of the number of sides of the polygon

«

presided the length of a side is taken as Z  d.^ /8c*n C 7r/ n  ) ,
being the radius of the circumscribed circle and vl

• €

the number of sides of the polygon, $ * qua* a function
of n  , is given in (1.3*6) below. The thrust for unit
area of cross-section of the cylinder is found to decrease as
the number of sides of the polygon increases. Further, the

is Lccorresponding problem for hypotrocholdal cylinderŝ  considered 
and the thrust is calculated in each case. The results for
* cross-sections of equilateral triangle and square are compared,
c

with those of hypotrochoids of three and four cusps respective-



1*2, Formulation of the problem
Itet the undisturbed motion of th© fluid consist of

* i 

uniform velocity (J along the x-axis and unifoim vorticity
Cj j so that the stream function y* of the undisturbed

«

flow is given by

" %  -- d. 2.1)' 1
The stream function t for the disturbed flow satisfies 
the equation

V  V, + °° ~ ° ' (1*2*2)

Putting y/ -  y./ — | we have

- ° • (1*2*3)
«

Thee boundary conditions are that ^  — > o at infinity and

V z - u 3 + (1.8,4)

over the boundary*

r1*3* Gonforenal transformation •
Taking the centre of the polygon a£ origin in the 

Z. -plane, the area outside the polygon can be transformed 
into the interior of a unit circle in th© t  -plane by means



<

of the relation̂ 20)

ct 7- n
A T I  (t - t*)s. -1

2-A
(1.3.1)

where A  > 13. >.... correspond to the ^  vertices
of the polygon and lie on the circle J 11 -  I * The sym*

t c
metry of the figure shows that we can take the f * to be 
the vt. roots of t*1 = I * Thus (1*3.1) takes the simple 
form

cC z. 

J it (1.3*2)

By adjusting the constant /I , we can write

~n- z -  I
n \ ^

ctt

OC
^ ̂->v- 1 ^

51= i

&»v — 1

u;c3.8>

(lt3«4)

where
a ?v-l

t



lh (h r t - 1)

The infinite series on the right of (1,3.4) is absolutely- 
convergent for /1 | ^  I • The radius of the circums
cribed circle is given by

<=c

(1,3,5)

and a side of the polygon is

<2, (. w/tv)

Using (1,3,3). we get
I

I

n - 2 . •nt ( < - 1 )
- I dtt

2.
n. (1.3.6)

For vi = Z , if i we find

I- 3 6 U  ,

1-/9  8 2.

(1»3»7)
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Solution to the problem 
From (1*2.4) we have on the boundary

+ + c

_y_
i;

(1*4*1)

where Z. is the complex conjugate of I  . 
From (1.3.4) we have

oC

X  = £  t
ft, n - I

H.Z.K

/ ~  \  -  / i  i  a  ,  /  ^  2 . i n - a .  _ _ 2 . ? L n . - z  %

( x - z )  - ( t J )  Z - ^ n_,( t̂ -f £ _&)-+•

<- wTsn-z
Z. £ + ?.̂ = o L

( t + t
)j.

h. ^  & >

where ~t is the complex conjugate of t
c

How

(1*4.2)

©C oC
! £. £  a an-,«^-,t

/5=.o

,Vn~£>l OC
,  v\7v\ - > u n  N

= 1  k>«(* + t  ) ;
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«

where
•

• 4

«

•

• •

oC

= /  a . . CLe-— a n - I «.?v yy\ n — I
fiz. o

«
%

• i
(1 *4 *4 )

«

•Substituting these in  (1 *4 *1 ) we get «

HV I I C  ^ fu\-\ fc-n-1 n

-  i f r C T - i ) "  l ^ n . , ( t  - ?  ) ] -
i

•
•

_ *>1̂
i r ^ .  , % / ‘2- , xa.n-2 _  2 .^ -2 ..

~  T "  ( V -  7 )  +  £ . a * n - . ( <  +  < ) +

t +  £  £  *ftn-| + ? ) -  
0 0  '

OC
^  / ■n'M.

- A  £  < » ( * ■  +
-  *1>V'
*  )  ) - f  c  .

I

(1*4*5);
c  <

, Taking £ *R , 9 ) as the polar coordinates in the 
« f  -plan©, we can write on the boundary of the unit circle

k - i ,  •



r— °C
. ^  = -  U I — /Stn 6 Q  ^ vi_ ( /StVi (  f t .n -1)  & ~J

i

OC
^  Cĉ  £ 2 ^'n-~20 Q . +
U i

OC oC

+  £ i ^ n - , a * n - l  C S { ^  +  X r x - 2) e  -o o
OC

^  ^  CcS >\>n ©

>n--|
-f e

Therefore we take y> to be the imaginary part of 
where

I

(1*4*6)

_  ± -  i  CO

o«C
£

1

oC7-
t + £  «

$.= f

]

-2. h n . - Z .

oC oC

+  ̂ Z .  a sfcn-l ̂ n -1 t 
o o

%v\. +/Sh-Z ■h'ĥ ‘1
- ̂ l.K>nt J

(1*4*7)
Since

i
£Z-

00
+ £  a

1 = 1

2- z&n- 2. ‘ 
f U - l  +



I
t

we can write

•f = u c - z  + (*• +  j ) ]

u.i. 8) ‘

Therefore

CJ £

®C^  '—s
R ccs ^ j .

>m — i -J(1*4*9)

Since on the boundary R - I and

: 2_ Z2~ UT-X + 3
oC

■  £  + a  £
•n= i

the boundary condition Is satisfied*
For the flow past the cylinder we get the stream function

«

’V", = u ( r - ~ )  9 - -jf  &  i f  +■ y ** +
oC 'WH

+ C R “ “ x) - «£ ^  R co5 hw <9
R Mil

. (1*4*10) ,



1.5. Liquid pressure on the cylinder

Let X , V be the components of the resultant thrust
* *  

of the liquid on the cylinder along the axes and M  the 
moment about the origin. If £, be the direction cosines

«
t

of the. outward drawn normal to the boundary of the cylinder 
and p be the pressure, then

►

X = - f j> I t e  

= - j j. ,

Y = -  f )> ™ JLi

= J ^ JL x ,
* so that

; j >

and

- | + 2 ,

the integrals being all taken round the contour of the cylinder*
c
Now if ^ is the velocity, the pressure j> at any point is 

4 given by

' . > = K - Y f  ^  ,
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0 c

where f  is density of the liquid and K is constant
•along a stream line* Since the boundary of the cross-section

is a stream line, K is constant on the boundary* So we get

X
• • - ‘ Y = ■i- c 2.

« « A
«
and
•

•

M
c

- — f 2- 1
V
V (

4
x d.x- + y J )

= real part of - i f ( f  *. <L z

Now since

> W
V  = r 

*
r

9

we have

(U + t uQ z. = 2 2  « u  - 2 2
■*3

dy - i  d -Y  ,

( u -
® C

c l?) Ji z
"a? ax 3

On the boundary G of the cylinder <s(^ = <? i
so that on

c« e

' • (U  -+ C IP) x
€

■ = (U-tlP) ^ z. .

i



6

Therefore

%1' cLz z- (u - + <■’ 2/) C U-- L V )

Honce

*•»

(u. - C ip) d Z.

and

M  » real part of -  1~ P2. 1 7L ( U  - c l?J Z. •

(1*5.2)

,<1)The above formulae are extensions v,’t/ to the ease of rotational 
flow of the corresponding formulae of Blasius for irrotatfonal 
flow^*

From (1*4.10) the stream function for the flow past the 
cylinder is the imaginary part of

U ( t  + j )  j % '  i -  j
a- , x.

oC

=. I

>\>y\

] .



The complex velocity at any point is therefore given by

U. - c V = -L .i  CJ -Z

. . S I t\>m- / nT")

(l.S.3)

On the boundary
cC

u - i v  = w £  a Jtn_| t
h -O

an + 1

oC nrrv-l

eL%
(1,5.4)

Putting

. Gt

oC
= T i w i  t

— ?x.y\ -+ I

H
Tim—i,VK\

we may write
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and

M  i real part of - i f  \ x (G ~ + - A G  «) ^
J V <*Z y

Nov/

1
G
% dt - o

Jit (1.5*7)

and

j 6 H ott = TT£D(U+-g-co) W k€n n->3j

= rr o  U Wkc*\ IX ^  if .

(1*5.8)

He*have

dlz
■*fr

(1*5*9)

The series on the right of (1*5*9) is absolutely convergent 
for ) t 1 ~ i * Further

a.*, s oC
cC
± aI

.  (a.n-0 1 j j^  £ ! « •  
I 1

I .

Jtn-i



1

«
1 t rnrt"T1 • «• ft 9ntL 1 IXV.- JLO c

Therefore•

•
t •

cLt
Ji z

*. r- OC 9t VI *
=  ̂ L  + ■+

• •
c

oC 
f | 1 .

• «%. . 
o *  ) - • • ] .

So we find• c

\ H* cLt - __ &TT U CO + Trc Cj‘*' WJiĈ  n-, 
J <*Z 3 ' 
C

= - 3sV U 03 Wkc>l IX If . 

(1.5.10)
•

Therefore for all values of n  ^  3

Xt y - -  z t t  t f  u

or
X -  o , y  -  z  tt p y  u  .

If we define the lift coefficient as
Y

c. - .
L f  u 4) S

<
where S is the area of cross-section of the cylinder , we

, find, using (1.3.7),

a Q ( — <2/ 7T (_ O • 4 1 0 ̂  ̂
c

Wl»e n ^ = 3 ;

*



C L -  £  Tr (  q ■ 3 tf 8 ^  =■ h- •
» #

Thus we rind that C|_ decreases as the number of sides of 
the polygon increases. For a circular cylinder C L ■= &  • 

The contribution to the real part from the first and 
third integrals in (1.5.6) is clearly zero. The contribution

<
from the second integral is <Z w (j to when v\ =. 3 }

and it is zero when n ^  ^ . Therefore the moment is 
—- jr F U ^  when -iA = 3 , and it is zero when r\ If .

and

* Cylinder of hypotrochoidal cross-section

The transformation

x  =. /*. ( -£■ •+ ^  , /* > ® >

O < >rv < -L , (1 ,6.1)

where ti is a positive integer, transforms the outside of 
the hypotrochoid in the Z. -plane on to the interior of the 
unit circle in the t -plane. The parametric representation

(
of the curve in the z. -plane corresponding to the circle 
j i i ■= I in the t -plane is given by

X =. (_ CoS <j> -ha CflS n  ̂  ^
«

$ =. ^ — $Cn ̂ 4  JcVv. "H / O  •
.. . ’ ' . . — "■ " ■ '■ (3>.6.2)



If -m ■=. o tha curve is a circle; if >v — I the curve is 
•

an ellipse* When v\ - i/»* - a. and w '= = 2> j

the corresponding curves have three and four cusps, respectively 
and they resemble in shape a triangle and square respectively* 

Proceeding in the same way as before, we get the 
stream function for the flow past the cylinder to be

y  - /* v  L r - *0 * 0 - -|j- co x1" + ^  .

+  /** [ ( f -  ~».) CflS 2-e - Cn+ 0

(1*6*3)

The thrust on the cylinder for >i ^  *2, and 'Mn = I 
may be calculated as before* We find

when yx -  2-  .

x = -j: 'r /,/< ( u l 4
c

y = JL tr f  U V  >

when m. -  5

X  - o ,

y  - ±  j r f / S u c o  ;
3

when " n  s If ‘
X =  Y  n- P  A J  »
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' 4

when rv 6“

X* - o , ‘ .

y' = 0 - ir/>/»*■ u «  •
3The moment is found to bo — 5 / if TT f /* U  whefa n  c 1  

and it is zero when *n ^  3  •
Adjusting /* such that the arc length between two 

consecutive cusps of the hypotrochoid may correspond to the 
length of a side of the regular polygon, the results are 
tabulated below.

Cross-section Drag Lift Moment
Equilateral
triangle o &TT f>UcJ -7rpueo

Three-cusped hypotrochoid —(o-kk^rrpu*’
o- (T13 frfUw ‘ -£>■ 8 7 9,

+ 0176 7r/>o J irfU&o

Square 0 3L rr pU cu co

Four-cuspedhypotrochoid 0 0-2.3? rrpUto 0

Thus it appears that the lift is less in the ease of
€
cylinders with slightly curved edges as compared to cylin- 

, ders having straight edges.
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. CHAPTER II
SLOW MOTION OF A PARABOLOID OF REVOLUTION

IN A ROTATING FLUID* * .

‘2.1. Introduction
The motion of bodies in a rotating fluid has been a 

subject for a series of Investigations in recent years# The 
perturbation caused by the motion of a body in an inviscid 
fluid exhibits different characteristics according as the fluid 

f is at rest at infinity or is rotating about an axis there* Thus 
if the fluid is at rest at infinity, the flow is everywhere 
irrotational and dependent only on the instantaneous velocity 
of the body# But if the fluid is rotating about an axis, the 
perturbation in the fluid velocity depends not* only on the

e

Instantaneous velocity of the body but also on its past history 
and is in general neither steady nor irrotational; and even in 
cases where a steady solution of the governing equation can 13© 
found, there is no guarantee that the flow can be set up by 
starting the body from rest relative to the rotating system#
For these reasons it is necessary to consider an initial-value 
problem while dealing with this type of fluid motion.

+ Published in the ’Journal of Fluid Mechanics *, Vol#3, Part 4,. 
January 1968, p#404#
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Hie exact steady-state equations of motion are non
linear* . G.I#Taylor^has obtained a family of solutions of 
these equations for the case of steady motion of a .sphere alo'ng 
the axis of rotation of the fluid* All the solutions satisfied

c

the boundary condition at the surface of the sphere and also ‘ 
the condition that the relative velocity should vanish at 
infinity* It was thought possible that the indeterminacy lay 
in the manner in which the motion was started* Keeping this 
in view various attempts have been made to obtain some general 
features of the flow on the basis of the linearized equations* 

When the body moves slowly it has been customary to use 
a small perturbation theory* Using this method Stewartson^3*24) 
has investigated the slow uniform motion, after an Impulsive 
start from relative rest, of a sphere and an ellipsoid along 
the axis of a rotating liquid* In boththe&ecases he found 
that ultimately the fluid inside the circumscribing cylinder -*f 
with its generators parallel to the axis of rotation Is pushed

c

along in front ©f the body as if it were solid, while outside 
the cylinder there is a shearing motion parallel to the axis 
of rotation* There is also a swirling motion about the axis 
inside the cylinder -tf * The ultimate velocity distribution 
in the fluid is in general steady and two-dimensional (in the 
sense that the motion is the same in all planes perpendicular 
to the axis of rotation) everywhere except on the body and on 
its axis, where it oscillates finitely* In fact the linearized
equations show that every slow and steady motion must also be
__________  ______________  t e

/ > .



two-dimensional.
There is, however, an *a priori* difficulty with *

o
- *any theory which supposes that the perturbation remains small*. 

Since the circulation round any material circular circuit con
centric with the axis must remain constant, the radius of such 
a circuit must always be nearly equal to its initial radius*

c

A.t first sight this restriction on the total strain of the
m

fluid seems unlikely to be satisfied since It is inconsistent 
with any prolonged general streaming (however small) past the 
body* Nevertheless, Stewartson*ŝ 23»24  ̂ solutions do show 
that the circulation can remain constant and these solutions 
must therefore contain an explanation of the mechanism by 
which the circulation is maintained at a constant level, though 
•Stewartson does not point this out* Moreover, his solution is 
very complicated, largely due to the formation of the singular 
surface at the cylinder -g . and this rather obscures" the • ■ 
mechanism of the flow. In this chapter, therefore, a much 
simpler solution which does not have a surface corresponding 
to is obtained, the primary aim being to illustrate the
mechanism by which the circulation remains constant even when 
the perturbation remains small.

The flow considered here is that due to the slow uni-
<

form motion, started impulsively from relative rest, of a*
.paraboloid of revolution along the axis of a rotating liquid.
‘It is found that the Radius of any material circuit concentric• ,

with the axis of rotation executes small oscillations which
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are 180° out of phase with the corresponding os.ciilations in 
the azimuthal velocity component. As time progresses, the. 
amplitude of these oscillations decays to zero everywhere

«
except on the paraboloid. The ultimate flow is then steady 
and two-dimensional everywhere except on the body and on the > 
axis o*f rotation. On the body the velocity oscillates finitely 
and on the axis the velocity component parallel to the axis

•

oscillates finitely and the other components are zero. The 
swirling motion about the axis found in the case of the sphere 
and ellipsoid is absent here.

2.2. Equations of motion
The origin o of a fixed set of cartesian ctxes

Q x' , )  lies on the axis o x ' of steady rotation
of the fluid. Let V # be the velocity vector of a point
whose position vector is h. • Then the equation of conti" 

t

nuity and equation of motion of an inviscid incompressible 
fluid are

v  • v 1 ^ o , (2.2.1)

21 v '  • w '  d  F  -  j  ,3 1 r
(2.2.2)

where f  is the density of the fluid, j> is the pressure 
and f  ’ is the* body force per unit mass*



Let us now consider the motion relative to a rotating 
fl'ame, which has the same origin as the fixed frame, but which

 ̂ «
has the constant angular velocity about O X  * Let V

«
be the velocity of an element of the fluid relative to this

«

frame, so that

V — V + X ft.
(2*2*3)

Then equations (2.2.1) and (2.2.2) become^®'

(2*2*4)

+ v- v  v + i a x v  +.J1 x (jix si)
7>i

-  F ~ -J  v fr * (2*2.5)
c

The last two terms on the left hand side of (2.2*5) correspond 
to the Corlolis and centrifugal accelerations which are asso
ciated with the angular velocity St- of the rotating frame.

To simplify the problem the equations of motion are 
linearized by assuming slow relative motion. If the equations 
are written in non-dimensional form, we find that U / * &  - G 

is a dimensionless parameter of the problem* Here Q. is 
a characteristic length and U a characteristic velocity of 
the problem* Let us now assume that it is possible to write 
the solutions in the form of power series in the parameter G •



We see then that the coefficients of the first power must 
s*atisfy ,the following linear differential equations;

«

• < 

- & j i v  - -  2 2  , ‘ ^Df" ■Jx • (2*2*6)

U £  = - jLL
( 2. 2*8 )

where
^  1* a. „ x. x. >

?  = -f - i: ^  ( * + » ) , ,r (2*2*9)

and U., ^ are the components of the fluid velocity 
along x, D , respectively* In writing down the above
equations we have taken the body force F - ° * ££ F t As 
not sero but is the gradient of a potential, the analysis lai 
unaffected provided that the pressure ¥ is taken to be the 
difference between the actual pressure and the pressure when
the fluid is at rest*

It must be pointed out, however, that the conditions 
under which it is justifiable to neglect the non-linear terms 
in the equations of motion are not yet clearly established*

«It is not always possible to decide beforehand whether the
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velocities associated with a particular type of motion will or 
will not .be small* For example, the motion ahead of a sphere

c

which is moving slowly along the axis of rotation is of the
t

required type while the motion behind is not* This Is indicated 
by the experiments made by G*I* Taylor^and R*R*Long^®H < 
Taylor found that if \) J a.Jt was less than about 0*3, where 
:<x is the radius of the sphere and U the uniform velo
city of the sphere along the axis, the fluid within S  a*nd 
ahead of th© sphere was pushed along by it* Long*s experiments 
were made with a body having a spherical nose and a conical 
tail so as to minimize the effect of boundary layer separation* 
He found that for \J/  a. JL less than about 0*2, the fluid In 
the central part of was pushed ahead of ,the body, but that
the fluid near the boundary passed round to the rear of the 
body} the fluid to the rear of the body and inside was

«not, carried along with it*
The solution for a sphere obtained by Stewartson^®^ 

on the basis of the linearized equations agrees well with ‘ 
Taylor*s experimental observations^*^. But the solution 
fails to explain Long * s ^ ^  observations on the flow to the 
rear of the body* One possible reason for this failure per
haps lies in the fact that, as mentioned above, the flow 
behind the body is not of the type which allows linearization* 
However, it must be remembered that the experimantŝ 2 ?̂10^

n *were carried out with fluid inside a tube of finite radius
«

with ol/  & small. It may be therefore argued that the
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character of the flow completely changes as <*./&. tends to 
zero and, probably, this is the reason for the discrepancy ba- 
tween theory and experiment* On the whole, Stewartson’s 
solution^may be said to be in agreement with the general

«

features of the experiments* Stewartson has also pointed *out, 
that the modifications caused by retaining the non-linear terms 
in the full equations of motion are likely to be confined to 
the neighbourhood of the singular surface ♦ It therefor© 
appears reasonable to expect the linearized equations to bring 
out at least some of the general features of the actual state 
of affairs*

2.3* Solution to_the problam
We choose cylindrical polar coordinates, oz along the 

axis of rotation and £ ft- > Q ) polar coordinates In a plana 
normal to 01 * Let the unperturbed motion of the fluid 
consist of a uniform angular velocity SL about the Z.-axis*
A paraboloid of revolution (whose axis of symmetry coincides 
with the Z. -axis) impulsively starts to move along the axis 
at i  -  o with uniform velocity V * If we choose the 
origin of coordinates to be in the body, we have in effect 
superposed a uniform velocity — V on the system and brought 
the body to rest* Let the components of the fluid velocity

* along the directions of increasing h. , 6 > Z. be ^  >

' JlL k -v IS > ^  respectivelywhere U , V , ^  are '
«small. Then the linearized equations of motion ere



iu
-  Z  Jl is ~ -  22 

'dh.

where

T t

tTT

■+ <2, %/l ix.

I <3 
k "bh ( h u )

22"b2.

-+ U f  ■2>2.

?  =
I 2- a  Z*^  Jl h.2.

(2.3.1)

(2.3.2)

The boundary conditions are that

o i V — > o , w -* _ V

as -z. — =? ®c for fixed > "t ,
(2* 3*3)

and, on the body, the component of the fluid velocity normal 
to the body is zero*

As M o r g a n ^ ?-4) pointed out, the initial disturbance 
, travels with infinite velocity and the initial motion relative
• to the rotating system must be the irrotational motion with 
the given boundary conditions. Taking the velocity potential



of this irrotational flow to b©

‘ f C . X . - L )  .= - V l  +

we have at t - 0

U. - 9X
3 K

, V -  o > (*r = -V + 2 2 1
7>tl

How to take the Laplace transforms of u , IS } t*J~ 

and P , we put
®c

u
o

OC

= j ex/> (-.a*) u. ( ft., z- > , efc

Then (2*3*1) and (2.3.2) become

u. — <Z A  IS -

y -+ <2. >/2.

2JV
ZX. (2*3*4)

where N  1 = P -  X

= o

(2*3.5) .



and the boundary conditions (2.3.3) become

U  — * o , IS — * 0 j w  -- ? -
*  / O

a.8 x. --  ̂c>̂'

From {2*3*4) we get
—  & ~b NU - - — ------ —  ,

&  'n- ^ N f
Z'1'  -h L> JL1- I h

5  = - H- -  -r- —  '
h & ~b z. 

so that the continuity condition (2.3*5) becomes

J_ 3 / k iil ^ ^ + ’b ’ N 
k  ' i k  }

and the boundary condition (2.3*6) becomes

U 1  ___* o • aS * — * oc .
iz.

If the section of the paraboloid in the ( ^ » ! 
is 7L. -  ~ gl h. , the condition on the body is

&  a & u  -t- ur - o ,

(2.3*6)

(2.3.7)

(2.3.8)

(2*3*9) 

)-plane
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or _  __
Z  CL ft. u. -t 6J- -  0 ,
o

or. In view of (2.3*?1),

_ i ----  m  +  i * t  -  -  v  .
f  + k j f  3 4 J2- (2.3.10)

So equation (2*3*8) is to be solved with boundary conditions
c

(2.3.9) and (2.3.10).
Now we can easily formulate the problem in a coordinate 

system in which (2.3.8) can be solved simply and in which the 
body is a coordinate surface, by taking a suitable transforma
tion of independent variables. We introduce new coordinates 
^ ^ defined by

^  + J T  = k .

9l -  & § 7 » (2*3*11)
€

where , /1a-•j- /O + h Jl-
k = ----------£--------  •

On the paraboloid we have

5 ■ S. - ( f r f  -
With the above transformation equation (2*3*8) becomes

Q
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c
«
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ct
• •

•

+ 1 T H , ^  + 1 Ji5 ' • 
t> Jx 5 ^ 5  ,71’ 7 -47 ■ . '

(2*3.12)
•

and tfne boundary condition (2.3*10) becomes
•

• ~bN n c c --- = — Z K V I on £
c

a f. ‘ ‘
(2.3*13)

The appropriate solution of (2*3*12) is

n - ( a + a ̂  5 ) Cc + ^
•

and using (2.3*13) we get

• /v ■=. - £, l< V  ̂ icfl . a

(2.3*14)
Now

~b N  ̂ r r "b N _ m ~S fV 'N
' ^7 '9 2. & K ( 5*"+ 7X) ^' J **§

» c
z.

v 5.

r  +

Therefore c

• 3LJ1 ----* 0 O.S £ -
DZ J

*

—  ̂ °c ,

• . i
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In agreement with (2*3*9). Thus (2.3.14) is the. appropriate 
solution*

The results for u , is > bx follow immediately 
from (2*3*7). Finally, inverting these Laplace transforms, we

*find that the velocity components at any point of the fluid 
are given by

V
Y-K.’ oo 
r

U  -

*3 4.h.TTi I -
CO

Y— c °o

■y+c oo

19 =  -

Jl V
l - (1+  +kJL

CO

(2*3.15)

1 __  JLH, ,

Y -lco (2.3.16)

Y-ft oo

Ur -
O- V./S +  k J l

Y-ioa
(2*3*17)

where Y > o and

'/■- ?(/-(- ji1' 4  J
.1- v/*
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These results represent a complete formal solution to the
•

problem. For the present purpose of ascertaining the general 
features of the flow, however, it is only necessary to consi
der certain special cases of the formulae (2.3*15), (2*3*16) 
and (2.3.17).

2*4. General features of the flow
On the surface of the paraboloid the integrals (2.3.IS), 

(2.3.16), (2.3.17) simplify considerably and it is possible to 
evaluate them in the forms

Z V  GLh. &SL t
Cc&

i t & k\t a. h. ZLS lt CaS ---------—



Thus we find that the motion never becomes steady on the para* 
b&loid* More Important, perhaps, these results.show very *

«
simply the way in which the circulation round circular material

t

circuits, concentric with the axis of rotation and lying on the
c

paraboloid, remains constant. Since the radial velocity osci
llates sinusoidally in time, the radius of such a circuit must 
oscillate in a similar way, and the primary rotation then makes 
an oscillatory contribution to the circulation round the Cir
cuit. This must, in turn, be counterbalanced by an oscillatory 
contribution from the azimuthal perturbation velocity I f , 
in accordance with (2,4,1). As far as the validity of the 
linearized analysis is concerned, the essential feature of this 
mechanism is that no fluid particle is displaced appreciably 
in a radial direction from its initial position*

Similarly, on the axis of rotation we find
c

U. -  a ,

0  J ,

V «. X. 3* 'R -'t ----------CoS --------- •
(I-K, a.*.)(a,4.a)

Here again the oscillatory axial velocity implies that small 
material circuits surrounding the axis of rotation are never 
swept on to the surface of the paraboloid, thereby increasing

'their perimeter by a large factor, an essential result If the < 
azimuthal perturbation velocity is to remain small*

V  -

Lj~ -



f

From these special cases it is reasonable to infer that 
the same,oscillatory mechanism is responsible for maintaining 
the radial positions of all fluid particles, and this may be

c

verified directly when the motion is approaching its ultimate
€

form* Thus, for large values of t , the Integrals in 
(2*3*is), (2*3*16), (2*3*17) may be evaluated by inserting 
cuts in the i -plane from /5 = ±  AC Ji $, , and 

jS = ±  JL £2. along lines on which the imaginary $art 
of /& is constant and the real part decreases* The path of 
integration may now be replaced by a path round the Infinite 
semicircle ^  j ^  0 and round the four cuts* For
example, the contribution from the branch point h - z i  JI I  , 

to the integral in (2.3*15) is found to be

I t J l l , t I _£,•+(,«*) C

c c -  c / 2- ~ ~ P r2.

for large t  * In this way we find that

V
U IL Co. jQ3A  (cfC-t- az)'A

t + J L ) l  ___________

(2*4*3)



li Cak')3’/*- («?'ll'+a.z)̂ iz SL* *aflj . c<&czjie,t - +

0 0 7:
(2 t 4 i4 )

6J- V 1-4
f, U/,)

-+■ (-4
f a . C A t ) 5'1

( 2 . 4 . 6 )

Thus the only significant difference here is that the amplitude 
of the oscillations decreases to zero, so that the ultimate 
motion is in general steady and two-dimensional and the axial 
velocity of the fluid is ultimately the same as that of the 
paraboloid*

In view of the ultimate singularity in the velocity 
gradients on the axis and body it seems that the detailed form

• (but probably not the general nature) of the solution is of
• 9 doubtful validity in this neighbourhood*



CHAPTER XII c
ON THE FLOW OF A ROTATING FLUID PAST A SPHERE

IN A CYLINDRICAL PIPE ‘ it

A number of investigations regarding the slow motion of 
bodies in an inviscid rotating liquid of infinite extent have 
been carried out by Proudmand?\# Grace^, Gbrtler^®^, 
Morgan̂ 13  ̂and Stewart son̂ 23,24) # All these investigations 
are based on the linearized equations (2.3*1) and some inter* 
esting results in agreement with experiments are obtained*
The solutions of the exact steady state equations for a sphere 
obtained by Taylor̂ 26  ̂and Long^, though incomplete, indi* 
cate the wave character of the motion* Lonĝ ®̂  showed4 that 
when a symmetrical obstacle moves steadily along the axis of 
a rotating liquid, the general equations of motion reduce,to a 
single linear differential equation

f  2 2  + k >  = --s-'ua1-,
'b'Z%' -ifl*- ^  l>fL 7 & '

(3.1.1)
where and h. are the cylindrical coordinates of any 
point in the meridian plane and K = S L JL  /  ( j  ,  U  being



the uniform velocity of the body along the X  -axis and J I
•  ■the uniform angular velocity of the liquid about the ~z~ -&xis;t

if , "\9 , ur are 'the velocity components of the fluid in 
the directions of h. , and z. respectively, then they
are given by the relations

u - j_ via. - -r—  --- j
t ^  'SZ.

ur -  - -r-* *** * (3.1.2)

Expressing (3# 1*1) in spherical polar coordinates, Long 
obtained the solution for the sphere as

■=. —■ ĴL R /̂trt Q •+
& ‘

' '/z °5 "r n c0+ (KR) .«"*.£ R>+6^Tni KR)|̂ (:e»3a)
■n -  | *—  z  x  J  J

(3.1*3)

where ZJVt+A. *s 8 Bessel function, TU(eoS0) is a 
Legendre polynomial and /)>*. > &n. are constants* This 
expression satisfies the condition of uniform flow at infi
nity and uniform rotation about the axis. The condition of 
zero normal velocity on the body provides only one relation 

«
to determine t'he constants An and . Thus the problem



is left indeterminate. The solution given in (3.1*3) indicates 
t&e wave character of motion. Ofcourse it is to be expected 
that a rotating liquid would generate waves when a symmetrical

c

obstacle moves uniformly along Its axis* This Important fea
ture is not, however, brought out in the analysis based on‘ the 
linearized equations. It is mostly due to the unboundedness 
9f the fluid and the neglect of the inertia terms in the equa
tions of motion. Moreover, the linearized theory is based on 
the assumption that the dimensionless parameter SU a. J1 J U 
is sufficiently large* The ultimate flow In this case is of a 
Cylindrical character; there is no radial velocity and the 
flow is the same in every plane normal to the axis of rotation. 
Squirê 22  ̂has pointed out that the exact differential equa
tion of steady flows, equation (3.1.1) above, suggests two 
main possibilities for large values of a. JL / U = K A • 

The first possibility is that the azimuthal component of vor- 
ticity increases with K cl , no matter how large the value 
of l< cl and the motion becomes oscillatory in character *- 
The second possibility is that the azimuthal component of vor- 
ticity remains bounded when K becomes sufficiently large; 
in this case equation (3.1.1) shows that the stream function If/ 
is approximately a function of the radial distance from the 
axis only, so that the flow is cylindrical. Taylor*s experi
mentŝ 27  ̂indicate that the second alternative is the one found 
in practice for sufficiently large k «. * In view of the 

«

results obtained in Chapter II of this dissertation and the
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results obtained in the present investigation below, we conclude 
tfiat for large k  cl the motion is oscillatory in character, 
which gives way to the cylindrical flow ultimately (that is, 
as t — » )* If the inertia terms are partly taken into 
aceount (in the manner of Oseen) the analysis based on the* 
linearized equationŝ 22  ̂may be expected to throw further light 

this question#
Squirê 22  ̂pointed out that the indeterminacy in the 

solution for a sphere (3.1*3) may be removed by taking into 
account the presence of a cylindrical boundary at a finite 
distance* Thus if the fluid is contained in a cylindrical 
vessel of radius L , for small values of K the solution 
of (3*1*1) may be taken as

aC

(3.1*4)
*■where j" is the Bessel function of the first order, 

is the n  th zero of this function, so that "J' £ ■=. o ,
and -  1 ^ - * The negative and positive signs

• 1 are to be taken for the regions z. >  o and z. o

respectively* The first three values of are Jt - 3* 83 , 
a 7 - 0 2, , j5 = lo* 17 * All the values of are

therefore real if K L  <£ S* % 3 * It may be therefore



concluded that for \c.L < 3 • S? 3 , the swirling flow 
P&st a body, such as a sphere, will resemble in,its general 
features the flow without swirl, and that the presence of a

• c ' ■ . i
boundary at a finite distance will, in these circumstances, 
remove the indeterminacy which arises for a body in an unboun
ded fluid.
( On the other hand, if J»w+| ^ ^ *

the solution of (3*1*1) which is symmetrical with respect to 
X  = o is of the form

?n
-fcu ft- + a. £ .

- J*—  .J ■ >

oC

n= >vv + *

(3.1.5)
where

L

and
lov v\_ > j

, the Bn are further arbitrary constants, and, as before, the 
, • upper signs are taken for z, >  o , and the lower signs for* - 

X  <  O . This form of the solution shows that wave motion
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may arise* The wave-length in the stream direction of the 
shortest wave is

(3*1.6)

Equation (3*1*5) may be taken to determine a solution symme
trical about the origin (that is, even in I  ), which will 
include waves both upstream and downstream. But the experi
ments of R.R. Lonĝ 10  ̂ showed that waves are propagated down
stream only* Wow assuming the body to be small compared to 
the diameter of the boundary cylinder, we can subtract the 
quantity

»V - I *— -*
(3*1*7)

from the expression (3*1*5) for , without affecting the
flow near the body to the first order. The above quantity 
represents a possible standing wave motion in the unobstructed 
tube. This procedure enables the wave-like part of the solu-

• « tion (3*1*5) to be removed far upstream and corresponds to the 
procedure devised by Raleigh to make some surface-wave problems 
determinate^. Raleigh showed that a small viscosity was

*
sufficient to gamp out any upstream surface-waves in the prob
lems he considered and that such problems remain determinate,



even if the viscosity tends to zero*
By using the above procedure, Fraenkel^ investigated 

the flow of a rotating liquid past small bodies in a pipe on 
the basis of the exact steady-state equations# Though the 
problem of the flow past a body of finite size in a cylindrical 
tube has not yet been resolved, the above investigation brought 
put some general features of the flow which may be expected not 
to differ essentially from those for finite bodies* The solu
tions obtained by Fraenkel^), however, apply only for a limi
ted range of k (L , where £ is the radius of the tube* The 
upper limit of this range, where flow with no disturbances far 
upstream (as fdtind in Long*s experiments) begins to give way 
to cylindrical flow (as found in Taylor's experiments), is as

* yet unknown* However, the character of the flow for larger 
values of K £ can be ascertained by using the linearized 
equations* Moreover, before proceeding to make the solution 
(3*1*3) unique by annuling the upstream waves, it appears 
necessary to provide some theoretical justification for th© 
absence of upstream oscillations on the basis of further ana
lysis*

The present investigation studies the flow of rotating 
liquid past a sphere in a cylindrical pip© on the basis of th© 
linearized equations* Assxmim the pipe radius to be large 

. compared to the radius of the sphere, it is found that the flow 
’ is oscillatory in character* Further, it appears that the 
disturbances are not likely to appear far upstream and waves

SHEET NO.-^4--
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are propagated downstream only. The ultimate flow is steady 
and two-dimensional,

3*2* Solution to the problem
We choose cylindrical polar coordinates o z. along the

axis of rotation and ?i , <f/ polar coordinates In a plane 
n̂ormal to OX.. A sphere of radius o*. impulsively starts 
to move with uniform velocity V along the axis oz. o£ a 
cylindrical pipe of radius & , filled with liquid rotating 
with uniform angular velocity J l about the axis. On taking 
Laplace transforms with respect to time of U , v  , u r , 

the perturbation velocities of the fluid along the directions 
of increasing K. , <p , ~z~ , the equations of motion become

• (cf, 2.3.4)

£> u - Z J 1 V N

( 3,2*1)

o
(3*2*2)

^ N
'az. (3.2.3)

o .

(3.2*4)



The boundary conditions are

0 ) U. -------> O , ^  -------> O j UT - £
O.S X. CC

C'i) u  -  o on

and (iii) normal velocity is zero on the sphere
Putting

U  -
ft.

tor =
'E* 2.

( 3 .2 .5 )
«

«■

(3*2.6) 

( 3 j 2 .7 )

equation (3.2.4) is satisfied and elimination of >V between 
. (3.2*1) and (3.2.3) gives

/S -+■ h y> T-?>
Jfc1* h~ 'b h.

(3*2*8)
The solution of (3*2*8) consistent with the boundary conditions 
(3.2*5) and (3*2*6) is

oc

(3.2.9)

e



where
h

ki = ^  (& % + a ss-yA

and o(£ are the zeros of J", C ) * The negative and 
positive signs in the exponent are to be taken for the regions 
X > 0 and Z o respectively. In order to satisfy 

«the boundary condition on the sphere, we write (3.2.9) in 
terms of K , 6' , where R Cos 6 - and R 6 - ^ •

¥e havê ®-*̂

r , r « « o ) = (i n  i i . x
rr\~ o

* £ j > s ^ + 3 ( f - R) ,2.
2̂. * 

where C 2LwvCCoS O  is Gegenbauer polynomial*
Also we have(31)

C^Cco-se) = TL.+, O se) 'f-na

where 0} is Legendre polynomial and dash
denotes differentiation with respect to Cos 6 . How using
the result̂ 28^



e x K  x R C M  e )  c Cos e )

= H i  ( ¥ & ) ? ' ( cos e j
>v= I

where

4C Zn+0 2>n
-t-0 /C4m^•O/Q-n-.z. j*Qj 

nCn + i) j.oC><.0 -nn-ij)( *

'/x.
X . C p - ( ^  + 0 ( i )  I ^ C O .

In.+ iX § ") being a modified Bessel function, we get -

?  = V  R% +

-f- R-/8t>t 0 1 * ( ?  « f  2l= I >t-o
2.0̂  PC7* * ! : )

P ( ^ +  2.)
oC

nr:|



Now using the condition (3.2*7) on the sphere, Viz. ’dty/d 6 - o 

when ft - a. , and making use of the Legendre equation

^  /
£in 0 (^Cos 0") — <Z Cos 6 £Cos 0} + ̂ (^+0 CCoS 0) = o>

c

we get 
«

^  + 1 .  ^  u  x*
* ^ £ £r. r r « + o

X W J- T )  -  °

(3*2.11)
. an el

2 . A<(<• t ) ;'k  ?  r e ™ * * !  T  a.x 
. fr. * ,fr0 r(-»+i)

x l  ( kiv) = 0 , ,tl )■« ' *L
•n. = 2., 3 , ............ « (3*2.12)

The $t- can be now determined by solving these simultaneous 
equations.

3*3* General features of the flow
In order to ascertain some of the general features of 

the flow, we assume that the radius of the cylinder is large 
compared to the radius of the sphere; now retaining the terms



/

corresponding to »a = o only in (3.2.11) and.(3*2*12) we 
get

Vo.
*

(3*3*1)
and

oC 'A

= 0.

£

(3*3*2)

By carrying out tha detailed calculation it is found that the 
values of the &i decrease fairly rapidly as i increases* 
Therefore as the first approximation we may take for z > o

% - — —  9l -+ VcL 
T ~ £ f  €’?CH(> f T O  j )  -

(3*3*3)
where

% /a- %. <s=j.
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j o 9 t
1 6C S H E E T  N O — S i -------

Now U , V , tor can be written down in the forms 1

v-t-1 oo

Y+i'oo (3*3*4)

V -  - ZJLV a. _j__
i, 2- TT L

Y-i co

r , ( % ■ * ) * *
* «■

St

£•

r+co©

0(&  J

«

(3*3-5)
= - V  - V —  1 £ 2-TTi

Y-i do

_

%

&t

&
d&

Q . 3 . 6 >



/

When f i t  is small the values of K ,  V ,  ^  can be found
by expanding the integrand in a series of descending pcways of

i,

$ * Thus we get

. [(V, ) ’A  ex/. (■--L x )|  (+ (  *  z *  i) ^ -  - j ^ i )

& j %  * « / ( - £  *.)[/+ ( a i x ,

y  -

(3*3,7)
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*■*-}>c I T  70(£*)J

(3.3,9)

The above results show that for small J i t  the perturbation 
velocity components u  } if , remain small# Whan A t

is large the Integrals in (3*3,4)* (3,3,5) and (3.3*6) may be 
evaluated by choosing a suitable contour, In view of the 
approximation we have made, the integrands have branch points 
at -  o and $  -  ±  £  l SI , We insert cuts in the 

h -plane from % - o and = -± 3, t J2- to infinity 
along lines on which the imaginary part of & is constant 
and the real part decreases. The path of Integration may be 
now replaced by a path round the infinite semicircle

\ \ <  o and round the three cuts provided that 
t  >  d j* ./2-J lL  * The contribution to the first term in

* the integral in (3,3*4) from the branch point /5 =. o is 
found to be



oC

-a it .x e <LU •
(3.3*10}

The contributions from the branch points £  = ± <Z c J2  

are respectively ‘
oC

v r T F . - 3 T ^ * )  & { = £ .

and

a :
ot,z.£z;s2-*t)
CkiJLcL-JL^y/z. tjt-i0

%*- v/2. ̂  — eK 3
C2- ^  - oi)3A

-Jite ^
(3.3.11)

<3. j_
£ Z/Tc

oCr

, «T «. . C Z-CJL +«i)

1 <■ " o
Z. t 2.C ,>1 4oO V  

h- )

x --------------  e JiA .
c Oc\£ + «0%-

(3.3.12).
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The asymptotic expressions for U? and OS can be written
down in the same way* The above expressions show that the flow

<0
is characterised by wave-motion. Also the contributions from

flow is steady and two-dimensional. Further, if t <• £
the path of integration is to be taken round the infinite semi-

clude any singularities of the integrands, the integrals are 
zero. Thus it appears that the disturbances are not likely 
to appear far upstream.

In general, it is likely that the singularities of /4C- t 

*qua* functions of %> , obtained from (3.2.11) and (3.2*12), 
all lie on the imaginary axis in the -plane or some of 
them may lie on the negative real axis. The contribution from 
the imaginary branch points corresponds to oscillatory motion 
aijd this contribution tends to zero exponentially with time* 
Also the contribution from branch points with negative real 
part tends to zero ultimately* However, the contribution from 
the poles will not die out as ± — * oc , and this corres
ponds to the steady-state solution*

The flow for o may be discussed on similar
lines and it will be found In this case that for all X. the 
flow is characterised by wave-motion. As the body moves, the 
waves generated are thus propagated downstream*

the branch points die out as t -->■ and the ultimate

since this contour does not in
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CHAPTER IV

OSCILLATION OF AXISYMMETRIC BODIES IN A 
ROTATING FLUID• —  ir-tmr i "H

4.1. Introduction
We consider an axisymraetric body oscillating along jLts 

axis in an inviscid, incompressible fluid rotating about the 
axis with uniform angular velocity JX « The linearized equa
tions of motion referred to a system of axes rotating with 
uniform angular velocity J l , are (cf. 2.3*1)

J  u '

is!
Ttt

-  & A . V '  -  -  l l !
litI

■+ SL Jl u '  -  °  >

where

_L_ 2~ /  \ u 1) = o , (4.1*1)ft. J  '

?' = - -k ■

Her© we have taken the origin o at the centre of the body,
6 Z. along the axis of rotation and & , 0 polar coordinates



\

in a plane normal to O X .  The components of fluid velocity 
along the directions of 9l > e , X  are u .' > J l  •+ ‘ V ' 
and U r' respectively, where u. ’ , V 1 j (*r' are small*
Now if the motion is an oscillation of frequency <t~ / 2. tt , 
we may take

U  ' -  U  (  C cr- t )  ,

V '  ^ IP i C a - t )  ,

M  ' -  Us <LX-j> t  c O- t )

' -  f  ( c cr-1 ) •

How from the equations (4*1*1) we get

and

cr-2"
i. h. > JL

(4.1*2)

According to the theory of second order linear differential 
equations the above equation is of elliptic type for cr- > 2-J2 

and of hyperbolic type for o~ <  2. J l t For high frequen
cies ( cr- »  2. JL ) the motion may be expected to resemble 
in general character the motion in irrotational flow, whereas 
for low frequencies or high angular velocities ( cr- 2. J l ) 
there are real characteristic surfaces of revolution across 
which discontinuities may arise* These surfaces cut the (2,\).«



plane in lines which make an angle -±. Y  with the z  -axis, 
wliere

fee*. Y -
C h j f -  e-'-y /i-

If the frequency of oscillation is very small ( ^  ̂  2. >/2 ), 
then the characteristic surfaces tend to become cylindrical 
with generators parallel to the Z -axis.

Gortler^5  ̂ has pointed out the connection between osci
llations of very low frequency and steady slow motion. As a 
slowly oscillating body passes through its position of equili
brium, it may be supposed that the flow will resemble the slow 
steady motion of the same body with the same velocity. In the 
oscillatory motion the characteristic surface corresponding to 
the boundary of the body will be the circumscribing cylinder 

*, in the steady motion this cylinder has been shewn to 
separate regions in which the flows are different*

Morgan^13  ̂ has investigated a number of problems of 
forced oscillations. Patting £ o-2~— /  cr-*3- - £  in
the equation (4*1*2), we find a physically admissible solution

? '  = A «*/(-■£-O  J^kfc) « / ( < > « . ,

(4.1.3)

c ’ where l< and A are arbitrary oonstants, k real and
positive# If o- 3. fL , putting (J+ <t?~ )^  ~ k~ >
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we get

? '  = A ex.b ( L *  x) X  (k*) £ t ' W ) ‘
' K *

(4*1*4)
e

«

If we. compare the forms of solution (4.1.3) and (4.1.4) we see* 
immediately that in the former the disturbances tend to zero 
with increasing x  > whereas In the latter they propagate 
throughout the entire fluid.

Morgan was primarily interested to know as to how a 
steady two-dimensional motion could be set up, when the dis
turbance moving in the rotating liquid was three-dimensional. 
So, to facilitate the study of the physical phenomena involved 
in the problem, he considered a few particular cases of the 
above solutions (4.1.3) and (4.1.4) without reference to par
ticular boundaries. Using a similarity law, he obtained, 
however, the solution* for the case of a circular disc oscilla
ting with frequency cr- > 2. J l . ♦

In this chapter we consider the flow due to the osci
llation of an oblate spheroid along the axis of a rotating 
liquid. The cases of a sphere and a circular disc are deduced 
from the spheroid.

4.2. Qblate spheroid oscillating along theaxis
Let the section of the oblate spheroid in the ( Z, ft.)~

o c

plfcne be
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•
•

•

7- x.
^  -  A  -  1 •a 1, V-

•

Now equation (4.1*2) is to be solved with the following boun
dary conditions; 

• •
*

e

U  --> o , I S ---> o J UT -- 0 as X  --? ,
•

and
=  hr +  —  A. u. - U

on the body, where (J tx.j? <f~t) is the velocity of the
body along the 7i -axis.

We
• • introduce new coordinates ^ defined by

x  = j-. ( f  7 i
c

•
%. = c (/ + C i-y'’)'/3~ ,

(4.2.1)
where i.•u „ X- * °~

c - I - — --------  *
cr~̂ ~-ii Jl1-

On the body we have
© c

)

o

o  *
o

£ — £ ^

(4.2.2-)
O '



With the above transformation equation (4.1*2) becomes

J l
o

(4. a. 3)

and the boundary condition on the body becomes

C 1 1  
^ 5 - ^ j .  5

(4.2.4)
The solution of (4.2*3) consistent with the condition at infi« 
nity is

?  a  7 [ 5  h - \ r r  +  2 0 -

(4.2.5)

Using the boundary condition (4.2.4) w© get

1

(4*2*6)
How

IE
■a a.

a ?  -  - 1 1  

T>y 1
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*
0 1 -

ft•

"d P - & I A h. ^
It ft f t  f + 7 i. K ' + n <•

<» (4.2.7)

c and „
“d? ^  ̂  z  p + f  > P  + ' - y ^ v p l

•  $ X~ c1-c C ^ 7 V [ _  5 7i ? 
j 7

e £ (r^ -itji^ y/^ L f + c' | i + 7 :
(4*2*8)

Also we have from (4*2.1)

* S-
£ c

jT

Z. CT-1* 2- 2- {, ■V T-~l
+  M  *- + 7 ^ 1 ^  + c  i “ 4 e  J  ,

(4.2.9)
•t- %. j— '1- >»•?*“ v v~l

£ e  7 = r f ^ + _ r ---x + e }  - *c * J  •

X-- < A ' +[ o~ i- 2. z. - e

o



Now the expressions for the velocity components- UL , 19* t i*J' 
may be written down in terms of and Z by losing the .above 
relations and

U

V

-  &

= X ,

l cr

cr- ii Jl %

- SiJl "b R

l l  ex./, ^ > 0  ,

*- 2) h.
t-X-J’ t L er-t") j

«' = S t —  ^  ax/  C i < r t )  .

(4.2.11)
where denotes the real part.

From (4.2*7) and (4*2.8) ve find that the velocity
'3U

components U ' , 72 ' , ^ ' become infinite when J •+ -*) =. a,

that is, when

o.
?L + i- ' 2 4- C 1- 'J-

i.@*i when

(t =b e) cr'7-

Thus we find that if cr* ^  £  &  , there are real chara
cteristic cones across which discontinuities arise* The 
sections of these cones in the ( ^ )**plsne are given by



As cr- —> o } these cones tend to cylinder with its generators 
parallel to the Z -axis and circumscribing the body.

<•

4*3* Sphere as a limiting case of spheroid
In the case of a sphere of radius CL we have

X-G -
— Lf a. JL

(7- v— Jl?~ 
i <r
2JL

On the axis =. o we have

U -  o ,

V 1 -

LS u
& «g~- zJL \ 

<j- + z J l )
4 cr-Jl 
a - ^ - V  JL '

Li A o~ J2. Z.

If. ctJl2- -  cr ‘
CoS cr-t

(4 * 3 .1 )

lor cr- <Z Jl ,

and
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J*_— ---------- ---—

tor U

L d\ 2. Jl + o-J if Ji.2-- a-2-)

[  " X  h
2.J2 — <r~ 

2 J I + 0-
k crJl 

kJL
2-O.JL- o~Z 
2. O.SL -f cr"Z.

4 <3. crJl X

h J r j t - S - * )  SCoS
tr[ h 2 - a . J l  — C7~X k  c r - J l  21

2 « ^ +£r-Z lu f j f - t r - 2-*.*- 

L\ JL

- L '1
‘2.JL — er-
2.JL -h-f C7~

^  / S i n  c r  t ~ j

(4*3*2)
ti Jl — cr-3"

for cr* 2 JI .

The resultant pressure on the sphere is parallel to the axis 
of rotation and is equal to

SI <L S

h. irp «. U 
5 U o~A.

<r-*-- if Jl1-

<3 fov cr >  2.J1 j (4.3.3)



- f r r f c C U

7T2' + ? £oq
L 2j2 -+

— ^
C7“

 ̂cr̂v/2
4*/Z

r-Jl l 2- 
X— 0-*\j

/6 7T̂ - ^  x .

X i T L t ---. CoS a-t + s TT cr +
r  /6 7TJ2

+ ■£«a~k ooi^H 
K /Scvv. er- £

7^— - -1-i.»/2 *+ <t- _yj

fofc cr <  ZSL
(4.3*4)

4.4.
The case of circular disc of radius Z , with its 

centre on the axis of rotation and its plane perpendicular to 
this axis| which oscillates in a direction normal to this axis,
may he considered by taking - ° and C = & .

Eras we have

?  =  L  u  ( ’ j  [ j  /. j

(4.4.1)
and the velocity components ^ ^ ^  may be written 
down as before. In particular on the plane * - o » we L
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have from (4*2*9) and (4.2.10)

and

? -  & z £ t 1' 
3 i \*. > tL

- 6

7 --

Therefore on x. - o

U ~ o ,

%_ < (L

(4.4.2)

(4.4.3)

V - °  >

i* ' = aIT
r -l C &/OCH —  ——-- CoS cr- f-

(4.4*4)

for

U.
C<r*-_ t,

u_
«/., rr -----------------  Cos .

29 U *

IS  1 — -  (J  CoS c r-t
(4*4*5)

for h. L
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The above results agree with those obtained by 
Morgan^13) by another method.
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CHAPTEB V
SLOW MOTION OF A SPHERE IN A VISCOUS 

BOTATING FLUID**
5*1* Introduction

Ihen a sphere moves along the axis of a uniformly 
rotating fluid, the flow produced exhibits peculiar character
istics* Although the exact equations of motion are found to 
be Intractable for mathematical treatment, it has been found 
possible to ascertain some of the general features of the 
flow on the basis of the linearized equations. The linearized 
theory has shown, for example, that the flow does not become

0 steady on the body; further, there is a singular surface -tf , 
the cylinder with its generators parallel to the axis of 
rotation and circumscribing the body, which separates the 
regions of flow with markedly different characteristics. The 
assumption that the disturbance - velocities are small compared 
to the swirl velocity at the sphere radius gives an infinite 
relative angular velocity on the outer boundary of •

Stewartson^23* has pointed out that this singularity on 
may be removed by introducing the viscous and non-linear terms

+ Presented at the 1 Third Congress on Theoretical and Applied 
Mechanics*, Bangalore, 1957*
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fact that the flow does not become steady 
© body (the flow continues to be oscillatory) cannot *be 

explained by a similar reasoning.
A perfect fluid is assumed to slip over the* surface 

of a solid body when there is a relative motion between the 
two# ftesl fluids are distinguished from a perfect fluid by 
the complete absence of this slip. The solution of the exact 
steady-state equations for a sphere moving along the axis «of 
a rotating liquid has been made determinate by G* I* Taylor̂  
by applying an additional condition of zero slip on the body. 
Taylor pointed out that it is possible that the solution thus 
obtained nay represent the motion of a sphere in a rotating 
liquid more closely than the ordinary irrotational solution, 
in which allowance for slip is made, represents the actual 
flow in that case* Though the condition of zero slip on the 
body in the case of perfect fluid is artificial, it is* a point «■
of some importance because it indicates that viscosity may have 
to be taken into account in order to ascertain the actual, flow 
near the sphere* The above considerations lead to the ques
tion! what is the effect ot viscosity, in general, on the 
predictions of the linearized theory i

We consider the perturbation in the velocity of a vis-I
cous incompressible fluid rotating about an axis with uniform 
angular velocity J l * due to the slow uniform motion after 
an impulsive start, of a sphere along the axis. When a symme
trical body moves along the axis of a rotating fluid, the flow I
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produced is due to the interaction between the rotational
©  ‘

motion and the motion in meridian planes. These two motions 
are not independentJ changes in the angular velocity affect 
the centrifugal force and lead to motions in meridian planes 
and these in turn affect the rotation through the Coriolis *
Tore©* In the case of inviscid fluid these two motions are 
related in a simple manner (cf. 3.1,2). But when viscosity 
is taken into account the relation is so complicated that &ven 
the linearized equations appear to be intractable for exact 
solution# The dynamical similarity of the flow depends on the 
two non-dimensional parameters K and k a , where R is 
the Reynolds number U a / »  , U being the uniform velocity 
of the sphere j O. its radius and P the kinematic coeffi
cient of viscosity of the fluid, and K a. is the Rossby number 
ZLfL cl y  {J m k solution valid for small values of R K a. 

iscobtained* Since the effect of viscosity is, in general, to 
remove any singularity in the velocity components of the fluid, 
no singular surface such as , which appears in the case 
of inviscid fluid, appears here. It is shown that ultimately 
the flow tends to become steady. The fluid resistance on the 
sphere is calculated and it. is found that the effect of rota
tion of the fluid is to further increase the resistance on the

sphere#
«
. S.2. n̂o-h-inns of motion

We Ghoolse fixed cylindrical polar coordinates, Oz' T

— ___ 4 — ;-------- :----- _ ------- -f.
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along the axis of rotation and ft } & polar • coordinates in © ' 
a plane normal to O x *  The basic flow consists of a uni
form angular velocity SL about the z/ -axis. A sphere of 
radius a. impulsively starts to move along the axis at t ' - o  

with uniform velocity (J • If we choose the origin of coor- © « 
dinates to be at the centre of the sphere, we have in effect 
superposed a uniform velocity —  U on the system and brought 
the sphere to rest* Let the components of the fluid velocity 
along A ' ,  <f> and i '  be U.' j V 1 > w ' respectively,
where u  1 > 2?', at * are small* Then the linearized equations 
of motion art

’bU
I t '

(5.2*1)

oI J I U
- i t 1

(5.2.2)

Dus’
7>i' 7>z'

( 5 , 2 . 3 )
J ___L  ( K1 u ‘) +
A.' I V  * z

o
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where

?' = J L  -

)> baing pres sura and p density of the fluid, and

'd 2

The boundary conditions are

U o ,  IS  '  --------> 0  ,  UT ' ------ -  (J 0 .5  x  1---------->  o C

for fixed h.1 , t ' j and on the sphere

Lt '  -  O , j s ' -  -  J I  , c j  ' -  o

In order to put the equations into the non-dimensional
6-

form, we write
u 1 v* ir . - lt 'u - u  , V  -  ^  ~ ——  >

■ v L/

k -- *'
CL

- ZL > ?  -  —  J t - t\
a. [ j2- CL

Equations (8.8.1) to (6.2.4) are now transformed into

~d U. -  a is -  - 11
'bh.

(5.2.5)



I

74SHEET NO.——

~d\9

3 UT
•at

where

a M

■+ <2 Lt

1 Z
az.

ft. hh
Pl U) -4- c) M-

R - a.
p  

«Z/ v/2
~ L IT

o.
V  S

7>V DZ.2.

(5.2.6)

(5.2.7)

(5.2.8)

As Morgan^3,4* pointed out, since the impulsive starting 
of the sphere gives rise to finite velocities at f  = o , the 
particle displacements at 't - o are still zero and so the 
rotational character of the motion has not yet become evident# 
Therefor© the initial motion relative to the rotating system 
may ije taken to be the irrotational motion with the given
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*

boundary conditions* Taking the velocity potential of this
irrotational flow to be OC h j ) * we have at t * ~ o

U. -
a

m

, V - o , UT - t X
~d z. fa.

(5*2*9)
Wow to take the Laplace transforms of U , v  , to- and po * >
w© put

oC
U - ex.|) A t  )  U C ; X; 

0
O  Air €tc.

How equations (6*2*5) to (5*2*8) become
.. ̂ t-

h  u -  - H  + T ( ^ - t O •
o (5.2*10)

& V + e «  = it v %l /
e

*

(5.2* UL)

& £x
5

- - l M  ■+ V
2--Ur >

»
© 

p * 0

JL- 3 (■*■«) +  L «  = 0 ,
't- 2* ft- "&Z.

(5*2.12)

c «
c
(5*2*13)



where
N  -  T  -  X  ,

and the boundary conditions become

U o , V is - - U as x — =>°oc

and
aJL h. 
U £

ur — o

on the sphere.

Eliminating N between (5.2,10) and (5.2*12), we
get

( v  - - **) ( if)
(5.2.14)

Patting
a  =

6J- = — ri- U L  
& 'bh. (5 .2 * 1 5 )

equation (5.2*13) Is satisfied and (5*2*14) becomes

(jb  -  R*) ' S f  “** C{ 2 V  ~ "DZ.
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where
C, = C R - _ £ ± ±  ,

P

V  = : K V
and

a- X. a-
D  : 1 .  - i i  +  1

?*,*■ * 7>ZV

Also (5.2*11) can be written as

( j f -  f t * )  v - '  e, U £  = o .
 ̂ ■az.

(5.2.17)

Equations (5*2.16) and (5.2.17) express the relation between 
the rotational motion represented by V  and the motion in 
meridian planes represented by ^  . It appears that these 
two equations cannot be solved exactly even in the case of a 
sphere# However, a solution for small values of C, may be 
obtained by the method of successive approximation. Thus 
assuming G, t o  b e  small, we may take

(5.2.18)

^ y, ,•*■**' 811(1 > V, , Vz ) • • * iwhere t . Ti > t*.

are functions of & and X
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Substituting f0r u  „; ^  and \/ from (5.2,1 8) in (5.2.16) and
•2.17) and gating the coefficients of equal powers of C, ,

we get

( D  -  RZ>) i f f -  o ,

(5.2.19)

- o , etc ..

(5.2.20)

(5.2.21)

( j R i )  V, - 0 - o 
"d z.

e^c

(5.2.22)
c%

If we restrict ourselves to the first order solution for V , 
that is, a solution containing first power of C, , and a 
second order solution for f  , the above equations are to

be solved for fo > V'i > and

5.3* Solution to the problem
Hereafter we take ( & » « > * * , )  to denote spherical 

polar noordlnates* In these coordinates equation (S.2.31)
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becomes

2 ^  *»- 3e( ~ JJ  ) + k V° ~ 0 >

(5.3.1)
where A. - -R * The appropriate solution of (5.3.1)
Is

Z. . 0°V„ = /I. x " ‘  M3 O )  -«<•'*- ,
A

(5.3.2)
M

where X = /i ft. * H t/ ( *-) is the second Hankel function
/%■

of order 3/2- and &o is an arbitrary constant. Using 
th© boundary condition on the sphere, viz.

y, — — ----- Jstvi B
UA9

when h. ~ f 1 we get « *

y0 - _ ^  L. f . S-CfU)*/2-
t/JS * 1 ■+

./jl;X. - ( * . ■ A) &LK$..,

Again, the appropriate solution of (5.2*19) is

( 5 .3 .3 )



■c*

SHEET NO. SO

The boundary condition at infinity gives 130 
and the boundary condition on the sphere, viz*

(5.3,4)

i / u  ,

U -  o

when h  - I > gives

ls -  o

ik k

and
& 3 £x.}> C t O

<Z<$ t A.

So we get

i -+
Cr a ) 'h +  —  \ i r  +

3_

Substltuting the value of V« from (5.3.8), equation 

(,5.2.20) becomes

e*b f -(& -*)( R&) x̂ \ S , i VI «• %
1 — I ' + T c m - )(5.3.5)



3D 7f/\ +  A. 2>~

/A . v
= Aa K *. *cn<9 CoS e  >*

%

(5.3*. 6)
where

_  2_ &C>\ B 2_  
9lu IB

and y>j  —  x  FC z) '£*■*1 & & )

(5.3.6) takes the form

( —  + C T  - ? f \ ) j ± £  + J- if +(,-
V d x % X

H ̂  i *) •
L* Va.

The solution of the above equation is

6 (*)

(5.3.7)

c«;
C  - /4 x. -+ ---  . «'•<-/
1 -v 67 l A

(5.3.8)

/  («) is the first Hankel function, andwhere ^  .. r» v +-{-> kq determined* UsingA , b ,  < ,  .S, are functions of *  t0 06 a0ua



of>
the method ̂variation of parameters, we get^^



sb -  -  e L Ao 
9 £

r a)J I V" 1 ■“
_  -TTi

It k3 [I V‘>f- <<« •£«].
_ t'A

$ k3 ( ‘ + T  + ta> < - * * 0  • .

Tims wa get

** ifot ( T  + 7x )j exK " c^ ] ^  ,
C5*3*9)

©
where B, ahd •€, are arbitrary constants.

Using the boundary condition on the body, viz.
U — o  , us -  o

when at. - A. t wa find

B
€xj|> ( - c k )

I - !LL *. (ck + 64- J2u-

and
_3_

&
tk a )



So we get
*

SI M
v, = -  -rr̂ r M - w *  J \r, 3 a \  

u L r i  i -  c « * > * 3 [ ( . '+  + iF H ) X

/ I ^ V». ■>
U  - 1 ^ 7 7 7 * i * s r ) j  ~

(5*3,10)
Ob substituting the value of from (5.3.4) t equation
(5.2*22) becomes

( — —  13. )  +  k ^ v ,^ &Ci\B *&& /

(5*3*11)

Patting ^
V, =. x Gt C*) /*t>t 0 *-6-S & J

(5*3*11) takes the form

£  ♦ j 41 * c'~ V

■ ' ‘ - l ^ - ( t f ' t  " ‘- H**- c ^ (5*3*12)



By using the same method as before, the appropriate solution 
of (5.3.11) is found to be

I r \_ I +
CRS)'A )^+[3+-

- k )  ' J

ex.̂  £-fil-iK «-s/1]] Cos 0 .

(5.3*13)

Thus we have

I +
T , ] i(R/5)/2- ' R* 1 K 

%
3

-------------------------- *.( r»)'At i /Sen —

U 1- L  **-(. /+ l« .*> Vx)  IS- +
+ - L - >

%( i ----- i?----- -A +  W / +

£(«»/%-* + -| ^ - e CoS * 
, 4 I 1+ j

(‘5.3*14)
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and
_____l - c k - o m * ) * 1. j  ;■ | +  I C R S ) 'V = IM

+ - M -  -u L  * ( (RA)#/a- Rb J 2. /5Z

S I -t- & ('R&y*’ ? . > )---------- - f /*i>t*
c /+ (/e*;/*- J-

cI + 0?a) & )
]

•v-<SCn̂  Cos 0.

(5*3.15)

If we now denote by U( the velocity along the radius vector, 
by is, the velocity at right angles to it, in a meridian 
plane, and by IS, the azimuthal velocity, in non-dimensional
form, we have

U., - i _
;S

i
£ I +

(ft*)'/2- I? &

3 **/> »)*%,- , 
c«&y/z- i l4" ~

)
»
*3

-h

+

V

u
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[ ( +  6 + (R&)yx. *  T i l  ~
£2.- 3 Sirt'e')

or, =
*• [ +‘ ^  [ ' +  3£ 2.,$

(5.3.16)

+ 1  } 1  _  
(R^y/i. u  j ^

2 « ^ x p .  exj> [-(^ -iX ^ ^ / z' j

t>* L  ̂( 1 + + - J _ i  +

6 N Z' \ t.
X * "  * o + ( * « ^ W 4 W }  +

/

13.
[  (to/4* * •+ (m y /* .' &z>5l

2. & ,8

,(5-3.17)



I

iaJL
u i r l>; /+ J*—  + A. \ — 

(jix>y/r. **) a

i

Z 3:

O - c ^ X 1 + s.1-**) 

f  i +  ___$_____  +  3  ^ s
A ’n0 .

( 5 .3 .1 8 )

By taking the inverse transforms of u, , Mi > ^  we 
can find the components of the fluid velocity at any instant.

«

For points near the sphere, we find, as t  — >> >

3 i_
a. JI

1 — ( \ + ~  ^ CoS 0 -f- ------0  ( 2.- 3 &\' V 2. a.3 & {J V  ̂ J  >

(5 .3 .1 9 )

CL J3L~
OS I = ( - I 4- -— r + 'j Atw # —- ------- (I— ^ * 0  CoS0 ,

^  4  ft.5  4  ft. '  8 t J  V  ^9 U  V

29f - - olJL

U ^
ctJl

( 3  A .-
9 >> S.

( 5 .3 .2 0 )  
ĉv\̂ « C05& .

'(5.3.21)
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Thus we see that the flow tends to steady state ultimately, 
low if 19̂  , lPg , denote the actual velocities along 
h , e ) <f> respectively, we have

A  -- 1,0. 
2. ft.

(5*2*22)

3 />*- a. J-i
9 ^

<1
(  I _  £ _  ) flCv^0 CoS
\ a<t J

e
(5.3.23)

■ V j 5_  ̂ /Sew £> —  
4*-

§ >> ( 33-
«_

2-gL « ) /Scvv 0 C*S£ 
h *J (5.3.24)

5.4. lesistancQ-pn the sphere
The force on the sphere may be now calculated from the

stress •formulae^)
tV*. - -  j> + A  >

K e  ~ + ^  e&® '

— “ j? + >



where

We find,

c

_L P .  DVh.

j_  e  = i .  U f . . v*. ,
2- 2- }8 St
( ^ _ v*. + ^  c°«g ,

P _ « 1- / ]£» A + -i- iii J" '3*. (. % 7 & "3<9

£ A _ 0 _2- / 'N
B ?  ~  \  L. M * 0  )  1

e t* -  ~ K ii ( ) 

on the sphere

A.h. &0

-  O * ^ 6 j >  ~ °  ’

e .  9 - 3 J i  &Cvk.6> — a —  - cos &

i.
P  - __i_ a ^  $ > 1 ^ 6  Cob e  .

~ 2. ii
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The resultant force is found to be

P U Jl +  I TT f> )> a. U  +  jf~ P a!1 V
h

2. ir p a f j f u

(5.4.1)

along the direction of X  -negative.

c
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Slow motion of a paraboloid of revolution in a rotating
fluid

By L . V. K. VISWANADHA SARMA 
Indian Institute of Technology, Kharagpur

(Received 1 August 1957)

S u m m a r y

The slow uniform motion, after an impulsive start from relative 
rest, of a paraboloid of revolution along the axis of a rotating fluid 
is investigated by using a perturbation method. The principal 
purpose of the note is to illustrate the mechanism by which the 
fluid is not subjected to any substantial radial displacement, which 
is a direct consequence of the requirement that the circulation 
round material circuits should be constant when the perturbation 
velocities due to the motion of the paraboloid remain small. It 
appears that the mechanism is an oscillatory one in which the 
distance between any fluid particle and the axis of rotation oscillates 
sinusoidally in time with small amplitude. As time progresses, 
the amplitude of the oscillation decays to zero everywhere except 
on the paraboloid. The ultimate motion is then a rigid body 
rotation everywhere except on the paraboloid and the axis of 
rotation, where the perturbation velocities continue to oscillate 
indefinitely with small amplitude.

1. I n t r o d u c t io n  ,

The motion of bodies in a rotating fluid has been a subject for a series 
of investigations in recent years. The perturbation caused by the motion 
of a body in an inviscid fluid exhibits different characteristics according as 
the fluid is at rest at infinity or is rotating about an axis there. Thus if the 
fluid is at rest at infinity, the flow is everywhere irrotationa)»and dependent 
only on the instantaneous velocity of the body. But if the fluid is rotating 
about an axis, the perturbation in the fluid velocity depends not only on 
the instantaneous velocity of the body but also on its past history and is 
in general neither steady nor irrotational; and even in cases where a steady 
solution of the governing equation can be found, there is no guarantee that 
the flow can be set up by starting the body from rest relative to the rotating 
system. For these reasons it is necessary to consider an initial-value problem 
while dealing with this type of fluid motion.

When the body moves slowly it has been customary to use a small 
perturbation theory. Using this method Stewartson (1952, 1953) has 
investigated the slow uniform motion, after an impulsive start from relative 
rest, of a sphere and an ellipsoid along the axis of a rotating liquid. In both

N v.. .
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these cases he found that ultimately the fluid inside the circumscribing- 
cylinder C with its generators parallel to the axis of rotation is pushed along 
in front of the body as if it were solid, while outside the cylinder there is a 
shearing motion parallel to the axis of rotation. There is also a swirling 
motion about the axis inside the cylinder C. The ultimate velocity distri
bution in the fluid is in general steady and two-dimensional (in the sense 
that the motion is the same in all planes perpendicular to the axis of 
rotation) everywhere except on the body and on its axis, where it oscillates 
finitely. In fact the linearized equations show that every slow and steady 
motion must also be two-dimensional.

There is, however, an a priori difficulty with any theory which supposes 
that the perturbation remains small. Since the circulation round any 
material circular circuit concentric with the axis must remain constant, the 
radius of such a circuit must always be nearly equal to its initial radius. 
At first sight this restriction on the total strain of the fluid seems unlikely 
to be satisfied since it is inconsistent with any prolonged general streaming 
(however small) past the body. Nevertheless, Stewartson’s (1952, 1953) 
solutions do show that the perturbation can remain small, and these solutions 
must therefore contain an explanation of the mechanism by which the 
circulation is maintained at a constant level, though Stewartson does not 
point this out. Moreover, his solution is very complicated, largely due to 
the formation of the singular surface at the cylinder C, and this rather 
obscures the mechanism of the flow. In this note, therefore, a much simpler 
solution which does not have a surface corresponding to C is obtained, the 
primary aim being to illustrate the mechanism by which the circulation 
remains constant even when the perturbation remains small.

The flow considered is that due to the slow uniform motion, started 
impulsively from relative rest, of a paraboloid of revolution along the axis 
of a rotating liquid. It is found that the radius of any material circuit 
concentric with the axis of rotation executes small oscillations which are 
180° out of phase with the corresponding oscillations in the azimuthal 
velocity component. As time progresses, the amplitude of these oscillations 
decays to zero everywhere except on the paraboloid. The ultimate flow 
is then steady13 and two-dimensional everywhere except on the paraboloid 
and on the axis of rotation. On the paraboloid the velocity oscillates 
finitely and on the axis the velocity component parallel to the axis oscillates 
finitely and the other components are zero. The swirling motion about the 
axis found in the case of the sphere and ellipsoid is absent here.

It may be pointed out that the results obtained here can be deduced 
from Stewartson’s (1953) solution for an ellipsoid by carrying out the 
usual limiting process. But the procedure adopted here is found to be 
simpler.

2 . S o l u t io n  t o  t h e  p r o b l e m

We choose cylindrical polar coordinates, Oz along the axis of rotation 
and (r, 9) polar coordinates in a plane normal to Oz. Let the unperturbed 
motion of the fluid consist of a uniform angular velocity Q about the 2-axis.
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A paraboloid of revolution (whose axis of symmetry coincides with the 
*-axis) impulsively starts to move along the axis at t =  0 with uniform 
velocity V. If we choose the origin of coordinates to be in the body, we 
have in effect superposed a uniform velocity -  V on the system? and brought 
the body to rest. Let the components of the fluid velocity along the 
directions of increasing r, 0, z, be u, ttr + v, w, respectively, where u, v, w 
are small. Then the linearized equations of motion are.

The boundary conditions are that
m —> 0 , ® - ^ 0 ,  w ^ —V, as # -s-co for fixed r, t, (2.3)

and, on the body, the component of the fluid velocity normal to the body 
is zero.

As Morgan (1953) pointed out, the initial disturbance travels with 
infinite velocity and the initial motion relative to the rotating system must 
be the irrotational motion with the given boundary conditions. Taking 
the velocity potential of this irrotational flow to be

Now to take the Laplace transforms of u, v, w, and P, we put
— f 00 1 
u = erstu(r, z, t) dt, etc.

^+2 Qm = 0,
3 w dP 
~dt ~ ~  d z ’

(2-1)

where

(2.2)

<f>{r,z) = - V z  + x(r,z),
we have at t = 0

o
Then (2.1) and (2.2) become

su-2Qd = -
3̂ r

sv + 2 Qu =  0, (2.4)

(2.5)



where N  =  P~x>
and the boundary conditions (2.3) become
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0, v -> 0, zo -> - -
s as z-±  oo. (2.6)

Solving (2.4) we get

u = -  S dff 
sa + 4 0 2 3r ’
20

v = 2̂+ 4 q2 a;. .

j *'3* ’

(2.7)

so that the continuity condition (2.5) becomes 

1 3 /  3iV\ j*+4Q232jV-
rdr\r 8 r ) + s2 dz2 _  ’ (2,S)

and the boundary condition (2.6) becomes

^ - > 0  as z -> oo. (2.9)

If the section of the paraboloid in the (z, r)-plane is z  = — ar2, the 
condition on the body is

2aru + w = 0, or 2aru + w = 0,
or, in view of (2.7),

n s2 dN , 3N  _  Tr ln x m
s* + 4Q,2 3r + dz ( ^

So equation (2.8) is to be solved with boundary conditions (2.9) and (2.10).
Now we can easily formulate the problem in a coordinate system in 

which (2.8) can be solved simply and in which the body is a coordinate 
surface, by taking a suitable transformation of independent variables. 
We introduce new coordinates (£, ij) defined by

ZT2
z + ^  = K ( ? - r f ) ,  r = 2£q, (2.11)

where _  s2 + 4Q2
“ s2

On the paraboloid we have
!  = £ ,=  {K[4a)W

With the above transformation equation (2.8) becomes
l_5N + dm+ ldN = ()! (2>12)

3£2 £ S’}2 V di)
and the boundary condition (2.10) becomes

0  = - 2 K V {o on | =  |0. (2*13)
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The appropriate solution of (2.12) is
N = ( A  + Blog£)(C  + D log v),

and using (2.13) we get _
N =  -2 K V g 0log£. * (2.14)

Now _  _
dN 1 ( J N  dN\ V£l
dz -  2 K (e  + i f)  d£ v dr) J  £2 + v2 •

Therefore dNjdz -> 0 as co, in agreement with (2.9). Thus (2.14) 
is the appropriate solution.

The results for u, v, lb follow immediately from (2.7). Finally, inverting 
these Laplace transforms, 'we find that the velocity components at any 
point of the fluid are given by

V j-r+i®/ (1 + \az)s2 + 4Q2\ est
“ ” K  J I 1--------- T?------- ) 7 ds'
V  =

Q y fv+i<» f  ̂  (l +4a^)52 + 4Q2\ e8
)7Aarni ds,

w = — V+ 2 Trijy_ix a>“ e?1 ds,

(2.15)

where y >  0 and
w2 = {(1 + 4 az)2 + + 4 0 2/f)1'2(^ + 4D2/!)1'2,

1 + Aaz +  8«2r2 — 8 ar(a2r2 + az)112/? =
/! =

( l+ 4 « s )2 + 16aV  
1 + 4az + 8a2r2 + 8 ar(a2r2 + az)112

(2.16)

(1 +4as,)2 + 16a2r2
These results represent a complete formal solution to the problem. For, 
the present purpose of ascertaining the general features of the flow, however, 
it is only necessary to consider certain special cases of the formulae (2.15).

3 . G e n e r a l  f e a t u r e s  o f  t h e  f l o w

On the surface of the paraboloid the integrals (2.15) simplify considerably
and it is possible to evaluate them in the forms

u =

v =

2 Qt

w = —

2 Var
1 + 4a2r2 C0S (1 + 4̂ a2r2)1/2 ’ 

2 Var . 2£lt 
(1 + 4a2r2)1'2" ~

4 Fa2?-2

sm

;Cos-

(1 + 4 a 2r2)1/2 ’ 
201

(3.1)

1 + 4a2r2 (1 + 4«2r2)1/2 ’

Thus we find that the motion never becomes steady on the paraboloid. 
More important, perhaps, these results show very simply the way in which 
the circulation round circular material circuits, concentric with the axis 
of rotation and lying on the paraboloid, remains constant. Since the radial



velocity u oscillates sinusoidally in time, the radius of such a circuit must 
oscillate in a similar way, and the primary rotation then makes an oscillatory 
contribution to the circulation round the circuit. This must, in turn, be 
counterbalanced by an oscillatory contribution from the azimuthal pertur
bation velocity v, in accordance with (3.1). As far as the validity of the 
linearized analysis is concerned, the essential feature of this mechanism 
is that no fluid particle is displaced appreciably in a radial direction from 
its initial position.

Similarly, on the axis of rotation we find
n n W az 2Q,t

'-0, “ --rT4Scos(TTte)S- <3-2>
Here again the oscillatory axial velocity implies that small material circuits 
surrounding the axis of rotation are never swept on to the surface of the 
paraboloid, thereby increasing their perimeter by a large factor; an essential 
result if the azimuthal perturbation velocity is to remain small.

From these special cases it is reasonable to infer that the same oscillatory 
mechanism is responsible for maintaining the radial positions of all fluid 
particles, and this may be verified directly when the motion is approaching 
its ultimate form. Thus, for large values of t, the integrals in (2.15) may 
be evaluated by inserting cuts in the s-plane from s — ± 2iLllx and 
.s =  ± 2z'Q/2 along lines on which the imaginary part of s is constant and the 
real part decreases. The path of integration may now be replaced by a 
path round the infinite semicircle &{s} <  0 and round the four cuts. For 
example, the contribution from the branch point 5 = 2i£llx to the integral 
in the first of the equations (2.15) is found to be

i-(i+4**)/i _ m  
/i (£ - /? )1,2(4 ^ /1)1'2 z1'2 

for large t. In this way we find that
V r l - ( l  +  4 ^ )/f  . , .

“ ~ ~ i 6 L  > k m 112 sm( 1 47t)
1 — (1 + 4 az)ll . f 1

__________ — _____ —  r  cos(20/x t - l i r )  +
16(ar)s!2(a2r2 + az)1!l |_

l - ( l 4 - 4 az)l\ fr> , i 1
+ - i p y ^ cos( mk

w ~ 4(arfl â  ̂+ azyii [/1(£2/1)1'5 sin(2D/l 1 ^  + ^
+ sin(20/21+i7T)]  ' 

Thus the only significant difference here is that the amplitude of the 
oscillations decreases to zero, so that the ultimate motion is in general 
steady and two-dimensional and the axial velocity of the fluid is ultimately 
the same as that of the paraboloid.

Slow motion o f a paraboloid in a rotating fluid 4 0 9
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In view of the ultimate singularity in the velocity gradients on the axis 
and body it seems that the detailed form (but probably not the general 
nature) of the solution is of doubtful validity in this neighbourhood.

In conclusion, I wish to thank Professor B. R. Seth for his kind guidance 
throughout the preparation of this paper.
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1. In t r o d u c t io n  •>

T h e  problem of* rotational flow of a liquid past cylinders has been consi
dered by many writers. A. R. Mitchell1 has investigated in detail the flow 
past circular, elliptic and parabolic cylinders. By an extension of Blasius’ 
theorem for rotational flow, De3 calculated the thrust due to the flow past 
cylinders whose cross-sections are bounded by certain family of curves;

In this paper we have considered the rotational flow past a cylinder of 
regular polygonal cross-section. The problem is simplified by transforming 
the area outside the polygon into the interior of a unit circle. We have also 
calculated the thrust on the cylinder due to liquid motion and it is found that 
the thrust is independent of the number of sides of the polygon provided 
the length of a side is taken as in (3 .4 ) . Further, the case of hypotrochoidal 
cylinders is considered and the thrust is calculated in each case. It may be 
noted that though the hypotrochoids belong to the same family of curves 
considered by De, these curves were excluded from his investigation, and his 
transformation also was different.

2. Let the undisturbed motion of the fluid consist o f uniform velocity
— U  along the x-axis and uniform vorticity — a>, so that the stream function 

of the undisturbed flow is given by

>fi2 =  Uy — \ojy2.

The stream function ^  for the disturbed flow satisfies the equation 

VYi "f w = o.
/  Putting ifi =  — tfi2, we have

V2«A =  o.

The boundary conditions are that ifi—> 0 at infinity and ,
if, =  — Uy -j-

over the boundary.

224
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»

3. Conformal transformation.— Taking the centre of the polygon as 
origin in the z-plane, the area outside the polygon can be transformed into 
the interior o f a unit circle in the 7-plane^by means of the relation2

d ■ I (t- try'”
• <?•»

where tx, t2, ----- tn correspond to the n vertices of the polygon and lie on the
circle | t | =  1. The symmetry of the figure shows that we can take the 
t’s to be the n roots o f  tn =  1. Thus (3 .1 ) takes the simple form

- ' (3 .2 ,

By adjusting the constant A , we can,,write

z =  i  (1 -  tn)2'n +  2  /  tn- 2 (1 -  /» )* /"-! dt t 0
1 oo

= 7 + 2r<WnM. (3-3)
* r—1

where

a°r~x ~  n (n — 1)*'

anw = n 0 ~  l) (2 ~ n) " • ■* (r~ 1 ~ n) |r_ (ra - 1)*
The infinite series on the,right of (3 .3 )  is absolutely convergent for j t | <  1. 

The radius o f the circumscribed circle is given by

d = \ - Y  F « rn -i>  (3 *4)
r—1

and a side of the polygon is , . ; . .

» • IT2d sin .n
4. On the boundary the stream function >p satisfies the equation 

</*= — U y +  i<ay2 - f  c

U
2 i

where z is the complex conjugate of z.

=  — 2 — z) — {z — z)2 +  c, (4 .1 )



J

From (3.2)

flrn-i*™"1 (a-i = 1),
f» 0

(z -  i ) 2 =  ( }  -  j ) 2 + |  a2rn-i C*2™"2 +  * 2ra~2 -  2)

+  f  2  arn-1asn-i {trn+sn~t2 +  7rn+sn" a
r=0 8—0

-  (trn~sn +  7rTl- sn)}, r ^ s ,  (4 .2 )

where 7  is the complex conjugate of t. '

Now

2  2  Qrn-iasn-itrn~Sn =  2 K m (tnm +  t~nm), (4 .3 )
r=0 s—0 W = 1

where
* -O O

K-m =  2  arn-iarn+mn-v (4 .4)
r=0

Substituting in ( 4 .1 ) ,we get

u r / i  i>
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* = -  a [(»~ r) + _ r'”'1>]

- *" [(? - ?y+ ,i a,™-‘ +'”"■*)
+  2? S  flrn-itfsn-i (*"•+"•-» +  FTTl+sn- 2)

-  2  ?  K m (/»"» +  7nm) ]  +  c. (4 .5)

Taking R, 6 as the polar co-ordinates in the i-plane, we can write on the 
boundary of the unit circle R =  1,

•l> =  — U  £ — sin 0 - f  2  am-i sin (rn — 1) 

y — ico [cos 26 +  £  a\n-i COS (2rn — 2 )6
. r = i .

+  E  Z a-m^ asn^  cos {rn +  sn — 2) 6
oo ,

-  2  E  K m cos nm6 +  c. (4 .6 )
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Therefore we take

<£ +  =  U  { /  -  2  artw f* - ! } .

- i i c o \ t 2 +  2  a\n^ rn-*
I r=l

+  2 S arn^asn^tm+sn-2 _  2Z (4 .7 )

Since

Z2 =  y2 + 2  f l W arn- a +  2  2  arn-iasn-itrn+sn~2t
I  r=l r=0 <bo

we can write

 ̂+'i0 =-U {— ̂ +'(#-■+

-&o>\z2 + t2-  1 -  2 j?  Km̂ J .  (4.8)

Therefore .
LIWAAm ^ *1 V

ifi — — U v +  U  (  R  — g j  sin 6

-  iw {x*  -  y* +  ( r 2 -  ^-2)  cos 26

— 2 2  K mR ”m cos nmO\ (4 . 9)OT=1 v '
Since on the boundary R  =  1 and

OO

x 2 +  y2 =  zz =  2  a 2rn-i  +  2 2  K m cos nmd, ,
m=l

the boundary condition is satisfied.

F o r the flow past the cylinder we get the stream function

=  u ( R  -  sin 9 -  io> [ x 2 +  y2 +  ( r 2 -  ^-2)  cos 26

OO 1

— 2 2  K mRnm c o s nmd\. (4 .1 0 )
m=i '

5. Liquid pressure on the cylinder.— Let X , Y  and M  be the componensj 
along the axes and the moment about the origin of the pressure thrusts on
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the cylinder. Then by an extension of Blasius’ theorem for rotational 
flow, we have4

X - i Y  =  i ip  /  (m — ivY dz ' (5 .1 )
e

and #

M  =  real part of — %p f  z(u — iv)2 dz, (5 .2 )

c being the boundary of the cylinder.

From  (4 .1 0 ) the stream function for the flow past the cylinder is the imagi
nary part of *

u  0  +  f )  “  iiw { * 2 +  y* +  tZ ~ V ~ 2 R  K^ nm\-

The complex velocity at any point is therefore given by

u -  iv =  -  {u (i - - ya ̂  + ~3

-nSYLrrjnt*™ -1) } ^ .  (5 .3 )

On the boundary

u — iv — \io> £  crre_1r rn+1 -  |u (l -  i )  -  %io> + j3

- h (5 .4 )

If

G = J/o> S  Clm-xt-™'1 0
H  =  u ( l  -  i )  -  ii<0 (< +  j ,  -

X - i Y  =  i ,p J ( G * ‘g . | . H * ! - 2 G H ) « *  '  < 5 ' 5 >

and

Now

M =  real part of -  \P J  z ( g 2 ~  +  H a ~  -  2 G h )  dt. (5 .6 )
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and

We have

$ G H  dt — ito) (V +  i  iai) when it — 3, 
=  tj'wU when n >  4.

dz 1
rf, = 7® { -  1

The series on the right is absolutely convergent for j 1 1 <  i , and

2  arn-x (rn — 1) trn <  £  | arit-i (m — 1) |.

< 1.
Therefore

dt
dz =  — t* [ l  +  2  arn-i (m ~  1) trn

+  am-\ (rn — 1) trn}2 +

So We find

dt TTl
J  H 2 dt — —  27tUco + when n =  3, 

when n~> 4.t —  —  2 l 7 U c O

Therefore for all values of n >  3 

X  -  iY  =  -  2wi>Uw

or
X  =  0 , Y  =  2wpU-co.-

Thus''we see that the force exerted is a lift force and is independent of the 
number o f sides o f the polygon.

The contribution to  the real part from the first and third integrals in (5 .6 )  
is clearly zero. The contribution from the second integral is I ttXJco when 
n — 3 and it is zero when n~^A. Therefore the moment is — 7rpUa» 
when n — 3, and it is zero when 4.

6. Cylinder of hypotrochoidal cross-section.— The transformation

1
V

(6 .1)

where n is a positive integer, transforms the outside of the hypotrochoid  
in the z-plane on to  the interior of the unit circle in the f-plane. The



parametric representation of the curve in the £-plane corresponding to thB 
cifcle 111 =  1 in the /-plane is given by

X =  \i (cos ^ +  hi cos «^)
*

y =  fx ( — sin <f> +  nt sin n<j>). (6 .2 j

If m =  0 the curve is a circle; if n =  1 the curve is an ellipse. When 
/j =  1 jm — 2 and n '=  1/m =  3, the corresponding curves have three and 
four cusps respectively and they resemble in shape a triangle and a s'quare 
respectively. %

Proceeding in the same way as before* we get the istream function for thfc 
flow past the cylinder to be

t = + J2 + M2 {(R2 - g-2)

x  cos 29 — 2w R n_fl cos (n +  1) # j j  . (6 .3)

The thrust on the cylinder for 2 and mn — 1 may be calculated as 
before. We find when n — 2,

X  =  — r̂rpfi (U 2 +  iw 2/i2),

Y  =  %rrpp,2\J to; 

when n =  3, X  =  0,

Y  =  j77/)/x2tJco;

when n =  4,

X  =  •§■TTpfJt.3lO2, Y  — j  1Tp[l2X]o} J . "

when n >  5,

' X  =  0,

.  Y  =  ( l - ^ ) W 2U W. ̂ •

The moment is found to be — 5/4 irp^JJio when n ~  2 and it is zero when
3.

Adjusting p. such that the arc length between two consecutive cusps of 
the hypotrochoid may correspond to the length of a side o f the regular 
polygon, the results are tabulated below.
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Cross-section Drag Lift Moment

Equilateral triangle . .  0 2np\Ja>  — wpUco

Three-cusped "hypotrochoid — (0-4457i-pU2 0 -5 9 3  n p U c j  — 0 -8 7 9  T rp U w

+  0 -1 7 6  irpco2)

Square . .  . .  0 Z r r p U w  . 0

Four-cusped hypotrochoid . 0  0-239 wpUaj 0

In Conclusion I wish to thank Prof. B. R. Seth for his kind guidance 
throughout the preparation of this paper.

2 .  S u m m a r y

The stream function for the rotational flow of liquid past a regular 
polygonal cylinder of n sides is obtained and the thrust on the cylinder due 
to liquid motion is calculated. It is found that the thrust is independent 
of the number of sides of the polygon when the length of a side is taken 
as 2d  sin (v/h), d  being the radius of the circumscribed circle. Further, 
the corresponding problem for hypotrochoidal cylinders is also considered 
and the thrust is calculated in each case. The results for cross-sections of 
equilateral triangle and square are compared with those of hypotrochoids 
of three and four cusps respectively.
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