ABSTRACT

Unique optical, physicochemical, and surface properties of atomically thin two-dimensional (2D) materials provide enormous opportunities for environmental remediation, clean energy conversion, and storage. Those properties are further tuned by using dopants. Due to their distinct electronic configuration and optoelectronics properties, the rare earth elements and compounds act as proficient dopants in combination with 2D materials.

In this work, 2D-graphitic carbon nitride nanosheet (2D-g-C₃N₄) is synthesized through a single-step liquid phase alcoholic exfoliation of bulk-g-C₃N₄ to use as a catalyst for synergistic decontamination of organic pollutants (methylene blue (MB), bromophenol blue (BB), and ampicillin (AMP)), solar light driven self-cleaning of methyl orange (MO) stain, and electrocatalytic oxygen evolution reaction (OER). The catalytic preeminence of the 2D-g-C₃N₄ over the bulk one is observed from the defect engineering viewpoint. These defect intensifications are examined through diffraction, spectroscopy, microscopy, and specific surface area measurement. Photo and electrocatalytic processes are also illustrated in terms of reaction kinetics and stability.

Lanthanum (La³⁺), cerium (Ce³⁺), and gadolinium (Gd³⁺) trivalent ions are decorated on 2D-g- C_3N_4 through an easily scalable chemisorption process at optimized conditions (solution pH, process temperatures, and contact times). This functionalization results in defects formation, lattice strain, morphology variation, surface area intensification, and band gap reduction. The experimental observations are further validated with the help of density functional theory (DFT) based first-principles calculations. La³⁺-2D-g-C₃N₄ is utilized for low-concentration ciprofloxacin remediation under UV light irradiation, and the reaction intermediates are determined through liquid chromatographic-mass spectroscopy (LC-MS) and highperformance liquid chromatography (HPLC) studies. Characterization studies of the reused photocatalyst confirm photocatalytic stability. Localized point defect-induced Ce³⁺-2D-g-C₃N₄ catalyst is utilized for methylene blue (MB) decontamination under visible mercury light (λ >420 nm) and sunlight (intensity of~212 K lux). Experimental FTIR spectra of Ce³⁺-2D-g- C_3N_4 are further validated with IR spectra of the DFT study. For $Gd^{3+}-2D$ -g- C_3N_4 , the highest activation energy (24.17 kJ mol⁻¹) is elucidated for Gd³⁺ chemisorption that correlates with the strong interaction energy of -34.14 eV obtained from DFT. Modified band gap energy (2.81 to 1.83 eV), highest I_D/I_G ratio (0.72 to 1.05), and the highest specific surface area (69.12 to 109.6 m²/g) make Gd³⁺-2D-g-C₃N₄ most efficient compared to La³⁺-2D-g-C₃N₄, Ce³⁺-2D-g-C₃N₄, and pristine 2D-g-C₃N₄. The magnetic catalyst shows 98 % remediation efficiency for ultrasound (US) assisted photodegradation of methyl orange (MO). Gd³⁺-2D-g-C₃N₄ is further utilized for electrocatalytic oxygen reduction reaction (ORR) and solid-state supercapacitor applications. Further, 2D-g-C₃N₄ is modified with gadolinium-2-methylimidazole (Gd-2-mim) as metalorganic framework (MOF) (Gd-2-mim/2D-g-C₃N₄) through heterostructure formation for bifunctional electrocatalytic OER and ORR capability. A stable nanoporous morphology and enhanced specific surface area of Gd-2-mim/2D-g-C₃N₄ provide improved electrocatalytic active sites by exhibiting the highest onset potential (0.85 V) and lowest charge transfer resistance ($R_{ct} = 96.2 \Omega$) for ORR and lowest overpotential (59 mV @10 mA cm⁻²) for OER among all the synthesized catalysts. A plausible bifunctional mechanism is also portraved based on the electrocatalytic reaction kinetics. Post characterizations assure the electrocatalytic stability of Gd-2-mim/2D-g-C₃N₄. The catalyst is capable of effectively substituting the stateof-the-art electrocatalysts Pt/C and RuO₂ for ORR and OER, respectively.

Keywords: 2D-g-C₃N₄; Rare earths; Metal organic framework (MOF); Chemisorption; Defect Engineering; Density functional theory (DFT); Photodegradation; Electrocatalysis; Supercapacitor; OER and ORR