Abstract

The universal adjacency matrix U (H ) of a finite, simple, and undirected graph H is a
linear combination of the adjacency matrix A(H ), the degree diagonal matrix D(H ), the
identity matrix / and the all-ones matrix J, thatis U(H) = a A(H)+ BD(H)+~I+nJ
and «(#£ 0), 5,7v,n € R. From this matrix, one gets several matrices as special cases,
namely, the adjacency, Seidel, Laplacian, signless Laplacian, normalized Laplacian,
generalized adjacency, convex linear combination of the adjacency and degree diago-
nal matrices, and also the bivariate polynomial of H. Moreover, choosing appropriate
values of the parameters «, 3,y and 71, we get all the above mentioned matrices for the
complement of graph H. In this thesis, our objective is to study the universal adja-
cency spectrum and its associated eigenvectors of some graphs obtained from algebraic
structures like rings and groups. For any square matrix with an eigenvalue A and a cor-
responding eigenvector v, the pair (), v) is called an eigenpair of the matrix. For an
algebraic graph H considered here, we find some eigenpairs of U(H) explicitly and
show that the remaining eigenpairs can be obtained from a symmetric matrix. However,
in some particular cases, we determine the full universal adjacency spectrum explicitly.
It may be noted that neither the universal adjacency spectrum nor the eigenvectors of

any kind were computed before for the algebraic graphs considered here.

The zero divisor graph I'(R) of a finite commutative ring R with unity is a simple
undirected graph with the set of all non-zero zero divisors of R as vertices, and two
distinct vertices x and y are adjacent if and only if 2y = 0. We obtain some structural
properties of I'(Z,,) and then study the spectrum of U (I'(Z,,)) in terms of distinct proper
divisors of n, where Z,, is the ring of integers modulo n. Further, if n is a prime power,
say n = p*, then we explore the characteristic polynomial of the symmetric matrix as-
sociated with U(I'(Z,)). The looped zero divisor graph I'(R) of R is the same graph as
I'(R) together with a self-loop at vertex x if and only if 22 = 0. We extend the definition
of universal adjacency matrix to a looped graph, and then study some structural prop-
erties of I'(R) and eigenpairs of U (I'(R)), where R is an arbitrary finite commutative

o

ring with unity. We also get some additional results on the spectrum of U(I'(Z,,)), and
find all the eigenpairs of U (f‘(qu)) and U (f(ZPQq)), where p and ¢ are distinct primes.
Moreover, we discuss some structural properties and the universal adjacency eigenpairs

of the looped zero divisor graph on a reduced ring.

Next, we consider the cozero-divisor graph I'(R) of a finite commutative ring R
with unity, where ["(R) is a simple undirected graph with the set of all non-zero non-



units of R as vertices, and two distinct vertices = and y are adjacent if and only if x ¢ yR
and y ¢ xR. We discuss some structural properties of I''( R) and then obtain eigenpairs
of U(I"(R)). We get additional information on the spectrum of U(I"(R)) when R is a

reduced ring and Z,,.

Finally, we consider the commuting graph A(G, 2) and non-commuting graph
m defined on a finite non-abelian group GG, where (2 C (. The commuting graph
of (G is a simple undirected graph with vertex set €2, and two distinct vertices = and y
are adjacent if and only if xy = yx. The complement of A(G, Q) is the non-commuting
graph of the group G. We find the universal adjacency eigenpairs of the commuting
and non-commuting graphs for an arbitrary AC-group G with Q@ = G or G — Z(G).
Moreover, we determine the full spectrum of U(A(G, 2)), when G is the quasi-dihedral
group, group of order pq (for distinct primes p, ¢), Hanaki groups, generalized quater-
nion group, metacyclic group, dihedral group, generalized dihedral group, group of or-
der p3, (p + 2)-centralizer groups for a prime p, groups with commuting probability
P(G) € {3,53.2. 3. Pzgg’—l}, and also when % is some particular kind of groups
like the Suzuki group, dihedral group and non-cyclic group of order p?.
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