Abstract

The growth of big data in domains such as Earth Sciences, Social Networks, Physical Sciences,
etc. has brought to an immense need for efficient and scalable linear algebraic operations. One of
the examples is the creation of environmental and climate models that are used for weather
prediction and require evenly spaced meteorological datasets at a very high spatial and temporal
resolution to facilitate the analysis of recent climatic changes. However, due to the small number
of weather stations available, often the data collected from them are scattered and inadequate for
such model creation. For this reason a very high resolution gridded meteorological surface is
developed by interpolating the available scattered data points to fulfill the need for various
ecological and climatic applications. Among various interpolation techniques, Ordinary Kriging
(OK) is one of the most popular and widely used gridding methodologies with a sound statistical

basis providing a possibility to obtain highly accurate results. However, OK interpolation on
large unevenly spaced data points is computationally demanding and has a computational cost
that scales as the cube of the number of data points as it involves multiplication and inversion of
matrices of large cardinalities infeasible for computation on a single node.

Meanwhile, Apache Spark has emerged as a large scale data processing engine with a
fault-tolerant data-structure (Resilient Distributed Datasets (RDDs)) and a dedicated machine
learning library (MLLib) for processing large matrices and therefore can be used for large scale
kriging analysis with considerable time. In this thesis, we explore the distributed scalable
block-recursive matrix computation approaches which are particularly suitable for data
distributed parallel processing engines like Spark. We consider two important matrix operations
— multiplication and inversion which are two essential operations in distributed OK
implementation.

In the first work, we present a fast and highly scalable distributed matrix multiplication
algorithm, called Stark, based on Strassen’s matrix multiplication algorithm. Stark preserves
Strassen’s seven multiplication scheme in a distributed environment and thus achieves
asymptotically faster execution time. It creates a distributed recursion tree of computation where
each level of the tree corresponds to division and combination of distributed matrix blocks stored
in the form of Resilient Distributed Datasets (RDDs). It processes each divide and combine step
in parallel and memorizes the sub-matrices by intelligently tagging matrix blocks in it. We report
a detailed complexity analysis for the proposed algorithm, taking into account computation and
communication costs. Experimental results suggest that Stark outperforms existing distributed
matrix multiplication implementations on Spark — Marlin and MLLib, for high matrix sizes (
16384 x 16384). Our experiments reveal optimal block sizes for each matrix size, which is also
shown in theoretical analysis. We also show that the experimental and theoretical running times
for Stark match closely. It is also shown experimentally that Stark exhibits strong scalability with
an increasing number of executors.



Existing methods for efficient and distributed matrix inversion using big data platforms rely on
LU decomposition-based block-recursive algorithms. However, these algorithms are complex
and require a lot of side calculations, e.g. matrix multiplication, at various levels of recursion. In
the second work, we propose a different scheme based on Strassen’s matrix inversion algorithm
(mentioned in Strassen’s original paper in 1969), which uses far fewer operations at each level of
recursion. We implement the proposed algorithm, and through extensive experimentation, show
that it is more efficient than the state of the art methods. Furthermore, we provide a detailed
theoretical analysis of the proposed algorithm and derive theoretical running times that match
closely with the empirically observed wall clock running times, thus explaining the U-shaped
behavior w.r.t. Block-sizes.

Finally, we present a fast distributed Ordinary Kriging algorithm and provide an efficient and
simple distributed matrix inversion scheme to accelerate the execution of a distributed OK
algorithm. We employ Strassen’s direct method for matrix inversion and the acceleration is
achieved by exploiting the symmetry nature of the variance-covariance matrix of the OK
equation to invert the matrix. We show experimentally that our distributed inversion scheme
enables us to invert a 16000 x 16000 matrix with 51%, and 38% less wall-clock time than
distributed Spark-based LU and Strassen’s based inversion schemes.

Keywords: Numerical Linear Algebra, Ordinary Kriging, Distributed Matrix Computation,
Strassen’s Algorithm, Apache Spark.



