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Chapter 1 
Introduction 
 
1.1 Introduction 

 
‘If a man will begin with certainties, he will end with doubts, but if he will be     

content to begin with doubts, he shall end in certainties.’ 

 Francis Bacon (1605) 

 
Uncertainty is a common phenomenon in real-world decision making problems. When 

dealing with practical decision problems, it is usually impossible to avoid uncertainty. 

Hence, in order to achieve a more appropriate outcome of a decision problem, the 

processing of uncertainties in the information has always been an issue of research since 

the 18th century. In any problem-solving situation, uncertainty arises due to the presence 

of different natures of information, such as, incomplete, fragmentary, not-fully-reliable, 

vague and contradictory. However, there are two basic types of uncertainty present in 

real-world situations, which are presented in the following: 

 
Probabilistic uncertainty - This type of uncertainty arises due to a lack of information 

about the future state of the system which may not be known completely. In literature, it 

is dealt with probability theory. 

 
Linguistic Uncertainty - People often use linguistic terms to express their own perception 

and subjective knowledge. In a situation where such linguistic terms are interpreted by 

others, some uncertainty may arise as linguistic terms/words have different or imprecise 
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meaning. One reason behind this is the semantics of languages, which are not unique 

always. Therefore, one linguistic term can be interpreted in different ways. The standard 

theory of probability is not well-suited for modeling linguistic uncertainty (Walley and 

Cooman 2001). Possibility measure (Zadeh 1965) is used to model this type of 

uncertainty.  

 
Hence, in real-life we have to face the uncertainty which essentially lies in humans 

expressions. When dealing with practical problems, it is observed that the human 

attributes like perception, knowledge, experience, attitude, reasoning, thinking etc. cannot 

be defined at all in the realm of exactness. For example, at the beginning of a consultation 

session (Dwivedi et al. 2006) a doctor asks the patient about his/her condition. When 

he/she describes the condition, there is inexactness of information viz., source of disease, 

period of suffering or about symptoms of disease. The doctor, therefore, has to deal with 

these kinds of incomplete, inexact information. Thus, the proper management of inexact 

information is necessary for decision making. The research related to the uncertainty 

which arises due to human’s subjective knowledge, would be significant in our highly 

information-oriented society.  

 
As a matter of fact, several variations of linguistic uncertainty are identified in real-world 

problems (Carey and Burgman 2008). Fuzziness representing one such variation 

addresses imprecision or vagueness present in natural language. Vague predicates are 

often used in normal everyday human communication and fuzzy set theory is a 

mathematical tool for modeling such vague or imprecise phenomena. In this thesis, we 

have focused on the uncertainty taken in this context.  

 
The idea of fuzzy sets was borne in 1965 by Professor L. A. Zadeh. Nowadays fuzzy set 

theory has become widely accepted by scientists and mathematicians, who use it in a 

wide array of applications, including decision making. Decisions making (Ross 1997) 

techniques in the deterministic framework have received a lot of attention from 

researchers over a considerable length of time. With further development of mathematical 

analysis, different kind of decision making models has become subject of intense 
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research. Decision making models, developed with a view to capture fuzziness, are 

referred as fuzzy decision making models. 

 
Ever since the theory of fuzzy sets was introduced, there have been large amount of 

research work accomplished in fuzzy related areas, covering applications and theoretical 

generalizations. Two years after the emergence of the concept of a fuzzy set, it was 

generalized by J. Goguen and L-fuzzy sets (Goguen 1967) were proposed.  Currently 

there are also some other extensions (e.g., Gorzalczany 1983, Turksen 1986) of fuzzy 

sets. Out of several higher order fuzzy sets, the concept of intuitionistic fuzzy sets (IFSs), 

introduced by Atanassov (1986), has been found to be highly useful to deal with 

vagueness. The major advantage of IFS over fuzzy set may be presented in the following 

way that, IFS differentiates the degree of membership (belongingness) and the degree of 

non-membership (non-belongingness) of an element in the set.  

 
Recently there is some terminological debate (Cattaneo and Ciucci 2006) regarding the 

appropriateness of the name ‘intuitionistic fuzzy sets’. In this regard, the first comment 

appeared several years before in the paper by Cattaneo and Nistico (1989, p. 183). Later 

an explicit discussion about this terminological controversy has been published in the 

paper of Dubois et al. (2005). The consequent answers have appeared in the papers of 

Atanassov (2005), Grzegorzewski and Mrowka (2005). However, in this thesis, we do not 

get involved in this discussion and merely use the traditional name, i.e., intuitionistic 

fuzzy sets.  

 
In the next section, the definitions, mathematical operations and the tools required for 

developing the decision making models in the linguistic framework have been discussed 

and a brief review of important literature has been presented. 

 
1.2 Preliminaries 

1.2.1 Preliminary concepts of fuzzy set theory 

The theory of fuzzy sets was first proposed by L. A. Zadeh (1965) in his pioneering 

paper ‘Fuzzy Sets’ (Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338-

353). Since then a lot of attention has been given on the development of this theory as it 
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provides an excellent mathematical tool to handle vagueness that is inherent in most 

natural language and in decision-making processes. An in-depth study of fuzzy sets and 

its applications may be found in the books by Dubois and Prade (1980), Zimmermann 

(1996), Ross (1997) etc. The concepts and mathematical operations used to model 

decision making situations with the theory of fuzzy set have been discussed below. 

 
Definition 1.1 Crisp Set 

A set is a well defined collection of distinct elements or objects. In terms of 

characteristic function, a crisp set may be defined as follows: 

 
Let X  be the universal set and A  be any subset of X . Then the characteristic function 

of A  is denoted by Aχ  and is defined by the mapping : {0,1}A Xχ →  where 

 
1,
0,A

x A
x X

x A
χ

∈⎧
= ∀ ∈⎨ ∉⎩

 

 
From the above definition it is obvious that for a crisp set, either an element belongs to a 

set (for which the characteristic function is 1) or does not belong to the set (for which the 

characteristic function is 0).  

 
Definition 1.2 Fuzzy Set  

For the case of a fuzzy set, there is no clear sense of belongingness or non-

belongingness. This statement becomes clear from the following definition of a fuzzy 

set. Let X  be the universe of discourse under consideration and A�  be a fuzzy set. Then 

the fuzzy set A�  is defined as { , ( ) : }AA x x x Xμ= < > ∈�
� . Here ( )A xμ �  is a mapping 

( ) : [0,1]A x Xμ →�  and is called the membership function of the fuzzy set A� . For 

instance, A�  may be the set of ‘beautiful girls’ in a particular class. Since ‘beauty’ is a 

subjective concept, such a collection cannot be truly represented by a crisp set. This is 

where fuzzy set theory comes into play capturing subjective or linguistic evaluation of 

the situation.  
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It is to be noted here that the membership function for fuzzy set takes values on the 

closed interval [0,1] . Therefore, there is no sharp boundary between those objects that 

belong to the set and those that do not. Here ( )A xμ �  represents the degree of membership 

or belongingness to the set. So larger the value of ( )A xμ � , greater is the degree of 

belongingness and vice versa. The membership function ( )A xμ �  may be either discrete or   

continuous. When the universe of discourse is a finite set 1 2{ , ,...., }nX x x x= , then a 

fuzzy set A�  defined on X  may be represented as follows:  

 

1 1 2 2
1

( ) / ( ) / .... ( ) / ( ) /
n

n n i iA A A A
i

A x x x x x x x xμ μ μ μ
=

= + + + =∑� � � �
�  

 
For an infinite universe of discourse X , A�  may be represented as ( ) /A

X

A x xμ= ∫ � . The 

family of all fuzzy sets in X  is denoted by ( )FS X .   

 
1.2.2 Fuzzy operators 

Some useful fuzzy logic operators (Dubois and Prade 1980, Zimmermann 1996) have 

been given below. Let A� , B� , C�  and D�  be fuzzy sets defined on X, then  

 
Equality:        A B=� �                iff  ( ) ( )BA x xμ μ=� �                           x X∀ ∈  

Subset:           A B⊂� �               iff  ( ) ( )BA x xμ μ≤� �         x X∀ ∈  

Union:            C A B=� � �∪         iff  { }( )  max ( ),  ( )BC Ax x xμ μ μ=� � �     x X∀ ∈  

Intersection:   D A B= �� �∩        iff  { }( )  min ( ),  ( )D BAx x xμ μ μ=� � �      x X∀ ∈  

Completent:   cA�                     iff  ( ) 1 ( )c AA
x xμ μ= − ��          x X∀ ∈  

Normal:                                       0( ) 1A xμ =�        if 0  at least one x X∃ ∈  

Support of A� :    supp { : ( ) 0}AA x X xμ= ∈ >�
�       x X∀ ∈  

ε -cut:           [ ]A ε
�                { }[ ] | ( )AA x X xε μ ε= ∈ ≥�

�              [0,1]ε∀ ∈  

 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Introduction 

6 

 

1.2.3 Concept of IFS 

An important development of the classical fuzzy sets theory is the theory of IFSs, 

proposed by Atanassov (1986). In conventional fuzzy set, a membership function assigns 

to each element of the universe of discourse a number from the unit interval to indicate 

the degree of belongingness to the set under consideration. The degree of non-

belongingness is just automatically the complement to one of the membership degree. 

However, a human being who expresses the degree of membership of given element in a 

fuzzy set, very often does not express corresponding degree of non-membership as the 

complement to one. This reflects a well-known psychological fact that the linguistic 

negation not always identifies with logical negation (Grzegorzewski 2004). Therefore, 

Atanassov (1986) suggested a generalization of classical fuzzy set, called IFS. 

Subsequently Atanassov (1989, 1994, 1999) had also provided important theoretical 

foundations of IFS. Fundamental knowledge concerning IFSs has been introduced below 

so as to facilitate further discussion. 

 
Definition 1.3  Intuitionistic Fuzzy Set (IFS) 

An IFS A in X is given by a set of ordered triples 
                                

{ , ( ), ( ) : },IFS A AA x x x x Xμ ν= < > ∈                                                                             
 
where , : [0,1]A A Xμ ν →  are functions such that 0 ( ) ( ) 1A Ax x x Xμ ν≤ + ≤ ∀ ∈ . For each 

x the numbers Aμ ( )x  and ( )A xν  represent the degree of membership and degree of non-

membership of the element x X∈  to IFSA X⊂ , respectively.  Figure 1.1 presents the 

geometrical interpretation of IFS. 

 
Obviously, each fuzzy set corresponds to the { , ( ), 1 ( ) : },IFS A AA x x x x Xμ μ= < − > ∈  

i.e., each fuzzy set is a particular case of the IFS. The family of all IFSs in X is denoted 

by ( )IFS X . 

 
For each element x X∈  the intuitionistic fuzzy index of x  in IFSA  is defined as: 

( ) 1 ( ) ( )A A Ax x xπ μ ν= − − . The value of ( )A xπ  is called the degree of indeterminacy (or 
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hesitation) of the element x X∈  to the IFS A. It is observed that ( ) [0,1]A xπ ∈ . If 

A∈ ( )FS X , then ( ) 0A xπ =  x X∀ ∈ . 

 

 

 

 

 

 

 

 

 

Figure 1.1: Intuitionistic fuzzy set illustration 

 

Definition 1.4 Operations and Relations over IFSs 

Let ,IFS IFSA B  be two IFSs defined on the universe of discourse X . For any given 

element x X∈ , the following operations are defined as follows: 

 
• Containment 

( ) ( ) and ( ) ( )IFS IFS A B A BA B x x x x x Xμ μ ν ν⊂ ⇔ ≤ ≥ ∀ ∈  
 

• Equality of two IFSs 

( ) ( ) and ( ) ( )IFS IFS A B A BA B x x x x x Xμ μ ν ν= ⇔ = = ∀ ∈  
 

• Complement of IFS 

 { , ( ), ( ) : }c
IFS A AA x x x x Xν μ= < > ∈  

 
1.3 Linguistic variable and fuzzy number 
A linguistic variable (Zadeh 1975) may be regarded either as a variable whose value is a 

fuzzy number or as a variable whose values are defined in linguistic terms. As for 

example, while answering the question ‘How is the weather today?’ one might observe 

‘It is warm’. The linguistic variables like ‘warm’, so common in everyday speech, 

 ( )A xμ  

X 

1 ( )A xν−  

 ,μ ν    
  
1 
 
 
1 ( )A ixν−
 

( )A ixμ
 

             0                xi 
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convey information about our environment. But this information is unquantifiable as it is 

stated in linguistic terms. Specifically, to model decision making problems experts often 

use words or predicates in natural languages while expressing the necessary information. 

Since in general, real-world instances possess vagueness, linguistic variables are used to 

represent experts’ perception, expression, knowledge etc. In this scenario, fuzzy 

mathematics becomes a natural choice since it can define the linguistic information in a 

more logical and meaningful fashion. The mathematical formalism of linguistic variable 

may be presented in the following way: 

 
Definition 1.5 Linguistic Variable 

A linguistic variable is characterized by a quintuple ( , ( ), , , )x x X G Mℑ , in which x is the 

name of the linguistic variable; ( )xℑ  is the term set of x, i.e., the set of names of 

linguistic values of x with each value being a fuzzy number defined on X; G is a syntactic 

rule for generating the names of values of x; and M is a semantic rule for associating with 

each value its meaning. The family of all fuzzy (sub) sets in X is denoted by ( )Xℑ . 

 
1.4 Basic definition and notation of fuzzy numbers 
Definition 1.6 Fuzzy Number 

A fuzzy number A�  is a convex normalized fuzzy set defined on the universe of discourse 

\ (the set of all real numbers) with a piecewise continuous membership function and 

bounded support.  

 
Definition 1.7 L-R Representation of Fuzzy Number 

A fuzzy number A�  is said to be an L-R type fuzzy number (Dubois and Prade 1980) iff  

 

1 1 1

1 2

2 2 2

L(( ) / ), for
( ) 1 for

R(( ) / ), for
A

m x m x m
x m x m

x m m x m

β β
μ

γ γ

− − ≤ ≤⎧
⎪= ≤ ≤⎨
⎪ − ≤ ≤ +⎩

�  

 
L and R are called the left and right reference functions, 1m , 2m  are the left point, right 

point and β , γ  the left and right spreads, respectively.  
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These reference functions satisfy the following conditions: 

( )i  L( ) L( )x x= −  

( )ii L(0) 1=  

( )iii  L( )⋅  is non-increasing on [0, )∞  

The left and right shape functions may be both linear and non-linear. For example, 

L( ) 1, [ 1,1]x x= ∈ − , L( ) , 0
pxx e p−= ≥ , L( ) max(0,1 ), 0px x p= − ≥  are instances of the 

left reference function. The right reference function may be defined similarly. The fuzzy 

number A�  is denoted as 1 2 LR( , ; , )A m m β γ=� . 

 
Definition 1.8 Generalized Fuzzy Number (GFN) 

A GFN 1 2( , ; , ; )A m m wβ γ=�  (Chen 1985, 1999) is a fuzzy subset on the real line \ , 

where 0 1w< ≤ , and 1 2, ,m m β  and γ  are real numbers. The membership function Aμ �  

of A�  satisfies the following conditions: 

( )i Aμ �  is a continuous mapping from \  to the closed interval [0, ]w , 0 1w< ≤ ; 

 ( )ii ( ) 0A xμ =� , where 1x m β−∞ < ≤ − ; 

( )iii ( )A xμ �  is strictly increasing on 1 1[ , ]m mβ− ; 

( )iv ( )A x wμ =� , where 1 2m x m≤ ≤ ; 

( )v ( )A xμ �  is strictly decreasing on 2 2[ , ]m m γ+ ; 

( )vi ( ) 0A xμ =� , where 2m xγ+ ≤ < ∞ . 

• If  ( )A xμ �  is a linear function of x, A�  is called a generalized trapezoidal fuzzy 

number.  

• If ( )A xμ �  is a linear function of x and also 1 2m m m= =  then A�  is called a 

generalized triangular fuzzy number (GTFN).  

• If 1w = , then the GFN A�  is called a normalized fuzzy number and denoted as 

1 2( , ; , )A m m β γ=� . If 0β =  and 0γ = , then A�  is called a crisp interval.  

• If 0β = , 0γ = , 1 2m m=  and 1w = , then A�  is called a real number. 
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If a GFN A�  denotes an expert’s opinion, then the value w  denotes the corresponding 

degree of confidence of the expert. Without any loss of generality throughout the thesis, 

to represent the linguistic assessments provided by the experts in a flexible way, we have 

considered GTFN of the form ( ; , ; )A m wβ γ=�  with m , β , γ  as positive real numbers 

and 0 1w< ≤ . 

 
Definition 1.9 ε -cut Representation 

The ε -cut representation of a GFN 1 2( , ; , ; )A m m wβ γ=�  is denoted by [ ( ), ( )]L RA Aε ε  

and is defined by 

 

1 2

inf { | ( ) } if 0
( )

inf { | [ , ]} if 0
L Ax x w

A
x x m m
μ ε ε

ε
β γ ε

≥ < ≤⎧
= ⎨ ∈ − + =⎩

�  and 

 

1 2

sup { | ( ) } if 0
( )

sup { | [ , ]} if 0
R Ax x w

A
x x m m
μ ε ε

ε
β γ ε

≥ < ≤⎧
= ⎨ ∈ − + =⎩

� . 

 
Indeed, the ε -cut of a fuzzy number is an interval number, i.e., [ ] [ ( ), ( )]L RA A Aε ε ε=� . 

In order to manipulate algebraically with intervals numbers, derived from the fuzzy 

numbers, the following interval arithmetic operations have been used.  

 
Definition 1.10 Interval Arithmetic 

Let us consider two interval numbers [a, b] and [c, d] where a≤ b and c≤ d. Then the 

operations are given as follows:   

 

    

( ) Addition:           [ , ] [ , ] [ , ]
( ) Subtraction:     [ , ] [ , ] [ , ]
( ) Multiplication: [ , ] [ , ] [min{ , , , }, max{ , , , }]
( ) Division:          [ , ] [ , ] [ , ] [

i a b c d a c b d
ii a b c d a d b c
iii a b c d ac ad bc bd ac ad bc bd
iv a b c d a b

+ = + +
− = − −
× =
÷ = × 1 ,1 ]d c

 

 
Definition 1.11 Ranking of GFNs 

In comparing GFNs, researchers have introduced various ranking methods. One of such 

methods that have been employed in the thesis is a centroid-based ranking method. The 

method has been discussed briefly as follows: 
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The centroid point ( ( ), ( ))x A y A� �  for a generalized trapezoidal fuzzy number  

1 2( , ; , ; )A m m wβ γ=�  is defined (Wang et al. 2006) as follows: 

 

2 2 1 1
1 2

2 1

( ) ( )1( ) . 2 2
3 (2 ) (2 )

m m m mx A m m
m m

γ ββ γ
γ β

⎡ ⎤+ − −
= + − + −⎢ ⎥+ − −⎣ ⎦

�  and  

 

2 1

2 1

1( ) . 1
3 (2 ) (2 )

m my A w
m mγ β

⎡ ⎤−
= +⎢ ⎥+ − −⎣ ⎦

�  

 
In particular, for a GTFN of the form ( ; , ; )A m wβ γ=� , its centroid is determined by: 
 

[ ]1( ) . 3
3

x A m β γ= − +� and 
1( )
3

y A w=�  

 
For any two different GFNs 1A�  and 2A� , the ranking (Wang and Lee 2008) may be done 

in the following way: 

 
(a)If 1 2( ) ( )x A x A>� �  then 1 2A A>� �   

(b) If 1 2( ) ( )x A x A<� �  then 1 2A A<� �  

 (c) If 1 2( ) ( )x A x A=� �  then, 

 if 1 2( ) ( )y A y A>� �  then 1 2A A>� � ; 

       else if 1 2( ) ( )y A y A<� �  then 1 2A A<� � ; 

       else 1 2( ) ( )y A y A=� �  then 1 2A A=� � . 
 
Basically, in the above ranking process 1A�  and 2A�  are ranked based on their x ’s values 

if they are different. In the case that they are equal, we further compare their y ’s values 

to rank them. 

 
1.5 Fuzzy reasoning for decision modeling 
The study of decision problems has a long history and in the last few decades has been 

one of the major research fields in decision sciences. In real-world, people have to make 
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lots of decisions during their life in the presence of multiple, usually conflicting criteria. 

Multiple criteria decision making (MCDM) addresses the general class of problems that 

involve multiple attributes, objectives and goals. According to many authors (e.g., 

Zimmermann 1996) MCDM may be broadly classified into two categories: multiple 

attribute decision making (MADM) and multiple objective decision making (MODM). 

The main difference between MODM and MADM (Lu et al. 2007) is that the former 

concentrates on continuous decision spaces with several objective functions and the latter 

focuses on problems with discrete decision spaces.  

 
The main characteristic of MODM problem is that the decision maker wants to achieve 

multiple objectives while these multiple objectives are conflict with each other. But the 

main difficulty is that usually there is no optimal solution for all the objectives. 

Therefore, the decision maker conducts some tradeoff analysis among different 

objectives to determine an acceptable solution. 

 
MADM method, on the other hand, concentrates on problems with a limited number of 

predetermined alternatives. MADM approaches begin with the task of finding the 

relevant attributes and alternatives. In MADM techniques, attributes are characteristics, 

qualities, factors, performance indices etc. Subsequently depending on multiple attributes 

decision maker selects the best among different alternatives.  

 
However, the first step towards a suitable decision for any given decision making 

problem is to develop a mathematical framework representing it. In general, a real-world 

decision making process consists of four stages, which may be represented as 

information gathering, mathematical modeling, simulation and decision/action followed 

in a sequence. In this process, due to lack or abundance of information, subjective 

estimation or vagueness and incomplete knowledge about the complex systems, 

linguistic variables are used to represent expert’s perception, expression, knowledge etc. 

Therefore, the primary task may be regarded as the capturing of these linguistic 

expressions within a mathematical framework for the sake of mathematical model 

building. Fuzzy set theory, due to its association with approximate reasoning 

(Chakraborty and Chakraborty 2004), is capable of quantifying these linguistic 
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expressions and, thus, provides a systematic approach to deal with decision situations in 

which the information cannot be assessed exactly in a quantitative form (Delgado et al. 

1992, Hsu and Chen 1997). In view of this, fuzzy expert systems (Jin 2000, Yu and Bien 

1994) are developed based on the fuzzy knowledgebase (KB). The fuzzy knowledge-

based system helps us to include the verbal and mathematical description of the real 

complicated systems. Moreover, it also facilitates in developing the techniques for the 

solution of real-life decision problems which inherently possess vagueness. 

 
Fuzzy knowledge-based computational models are potentially very useful for complex 

problems in different decision making areas. One such area, i.e., MCDM has been 

discussed earlier. Another area is fuzzy statistical decision making.  The theory of fuzzy 

statistics has widened the scope of statistics enabling us to deal with more general 

sources of uncertainty, such as, vagueness and imprecision. In recent years, many of the 

fuzzy ideas and techniques have been translated into the statistical language, yielding 

new methodological proposals, especially in the areas of regression. Statistical regression 

is problematic if the data set is too small or if the data is somewhat corrupted or if there 

is vagueness in the relationship between the independent and dependent variables 

(Chakraborty and Chakraborty 2008). These are the very situations fuzzy regression was 

meant to address. In spite of the impact of the growing literature, there is relevant area 

for further developments in several directions, including methodology and applications 

of the fuzzy approach to regression analysis. In order to make a connection between 

fuzzy set theory and statistical regression methods, an attempt has been made in the 

thesis for regression modeling with linguistic variables. 

 
1.6 Fuzzy inference methodology 
The KB of a fuzzy expert system is a set of fuzzy decision rules instead of crisp rules to 

represent expert’s knowledge, experience, perception, reasoning and thinking 

(Chakraborty and Chakraborty 2007a). A fuzzy decision rule is the basic unit for 

capturing subjective information in many fuzzy systems. A fuzzy rule has two 

components: an if-part (also referred to as the antecedent) and a then-part (also referred to 

as the consequent): 
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IF premise (antecedent), THEN conclusion (consequent). 
 

Fuzzy if-then rules have been applied to many disciplines, such as, control systems, 

decision making, medical imaging, pattern recognition. Basically, a decision making in 

fuzzy rule base, i.e., fuzzy rule based inference consists of the three basic steps and an 

additional optional step (Yen and Langari 2005) presented as follows:  

 
• Fuzzy matching: Calculate the degree to which the input data match the condition of 

fuzzy rules. 

• Inference: Calculate each of the fuzzy rule’s conclusion based on the matching 

degree. 

• Combination: Combine the conclusion inferred by all fuzzy rules into a final 

conclusion.  

• Defuzzification (optional): For applications that need a crisp output, an additional 

step is suggested to convert a fuzzy conclusion into a crisp output. 

 
Mathematicians, specialists on fuzzy logic, developed many kinds of fuzzy inference 

systems. There are three widely used fuzzy inference system: Mamdani (Mamdani and 

Assilian 1975), Tsukamoto (Tsukamoto 1979) and Takagi-Sugeno (Takagi and Sugeno 

1985). The basic difference between various models lies in the representation of the 

consequents of their fuzzy rules. A brief description of the three well-known fuzzy 

inference systems has been given as follows: 

 
1.6.1 Mamdani inference scheme 

E.H. Mamdani and S. Assilian (Mamdani and Assilian 1975) proposed the first type of 

fuzzy rule based Systems. The rules in a Mamdani fuzzy system are specified 

linguistically both for antecedents and consequents. Here Mamdani’s reasoning method 

has been briefly described. Consider the following system of p fuzzy rules: 

 

jℜ : If 1x  is 1jA�  and 2x  is 2jA�  and ….and nx  is jnA�  then z  is jC� . 

 Input:  1x  is 1y   and 2x  is 2y   and ….and nx  is ny  

 Output:             z  is C� .   
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Here ( )jk kA X∈ℑ�  is a value of the linguistic variable kx  defined in the universe of 

discourse  kX ⊂ \  and ( )jC Z∈ℑ�  is a value of the linguistic variable z defined in the 

universe Z ⊂ \ , where 1,2,...,j p=  and 1,2,...,k n= . The crisp input vector is 

1 2{ , ,..., }ny y y y= . 

 
Then the overall system output fuzzy set C�  on Z  for the given fuzzy rule base is 

computed by 
1

( ) [ ( )]
j

p

jC Cj
z l zμ μ

=
= ∨ ∧� � , where jl  is the degree to which the input matches 

the jth rule jℜ  and is computed by 
1

( )
jk

n

j kAk
l yμ

=
= ∧ �  (Here ∧  is the minimum operator and 

∨  is the maximum operator).  

 
Here the output C�  is a fuzzy set. Therefore, finally to obtain a deterministic action, this 

fuzzy output can be defuzzified using any defuzzification strategy. 

 
1.6.2 Tsukamoto’s inference scheme 

Tsukamoto’s (Tsukamoto 1979) inference scheme is characterized by the following: 
 
• In this model the consequent of each fuzzy if-then-rule is represented by a fuzzy set 

with a strictly monotone membership function. 

 
A brief description of Tsukamoto’s fuzzy reasoning method has been given below. For 

this purpose, consider the following fuzzy inference system: 

 

jℜ : If 1x  is 1jA�  and 2x  is 2jA�  and ….and nx  is jnA�  then z  is jC� . 

 Input:  1x  is 1y   and 2x  is 2y   and ….and nx  is ny  

Output:                 z  is TSz .   
 

where ( )jk kA X∈ℑ�  is a value of the linguistic variable kx  defined in the universe of 

discourse  kX ⊂ \ , and ( )jC Z∈ℑ�  is a value of the linguistic variable z defined in the 

universe Z ⊂ \  for 1,2,...,j p=  and 1,2,...,k n= . It is assumed that Z  is bounded. In 
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Tuskamoto’s (1979) fuzzy reason scheme it is supposed that each jC�  has strictly 

monotonic membership functions on Z .   

 
The procedure for obtaining the crisp output TSz , from the crisp input vector 

1 2{ , ,..., }ny y y y=  and fuzzy rule base 1 2{ , ,.., }pℜ ℜ ℜ  are described as follows:  

 
• The degree to which input matches the jth rule jℜ  is computed by 

1 21 2( ( ), ( ),..., ( ))
j j jnj nA A Al t y y yμ μ μ= � � � , for 1, 2,...,j p= , where t defines a general class 

of intersection operators of fuzzy sets. In Tsukamoto’s inference scheme usually the 

product or minimum operator is used. 

 
• In this mode of reasoning, the individual crisp control actions jz  is derived from the 

relation ( )
jj jCl zμ= � , i.e., 1( )

jj jCz lμ−= �  (The inverse of  
jCμ �  is well-defined because of 

its strict monotonicity).  

 
• The overall system output is defined as the weighted average of the individual outputs, 

where associated weights are the firing levels. Therefore, the overall crisp control 

action is computed by 1 1

1

.....
....

p p
TS

p

l z l z
z

l l
+ +

=
+ +

. 

 
1.6.3 Takagi and Sugeno fuzzy reasoning scheme 

Takagi and Sugeno (1985) introduced a fuzzy reasoning scheme. In this fuzzy reasoning 

method, a fuzzy rule is of the following form: 

 ‘If x is 1A�  and y is 2A�  then ( , )z f x y= ’ 

where 1A�  and 2A�  are fuzzy sets in the antecedent, while ( , )z f x y=  is a crisp function in 

the consequent, (.,.)f  is very often a linear function with respect to x and y. Here we 

briefly discuss the Takagi-Sugeno model. Let us consider the following architecture: 
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jℜ : If 1x  is 1jA�  and 2x  is 2jA�  and …and nx  is jnA� then 1 1 2 2 .....j j jn n jz a x a x a x b= + + + +  

Input:  1x  is 1y   and 2x  is 2y   and ….and nx  is ny  

Output:                                         z  is  TgSz  
 
where ( )jk kA X∈ℑ�  is a value of the linguistic variable kx  defined in the universe of 

discourse  kX ⊂ \ , jka  and jb  are real numbers  for 1,2,...,j p=  and 1,2,...,k n= . The 

procedure for obtaining the crisp output TgSz , from the crisp input vector 

1 2{ , ,..., }ny y y y=  and fuzzy rule base 1 2{ , ,.., }pℜ ℜ ℜ  are described as follows:  

 
• The degree to which input matches the jth rule jℜ  is typically computed using the 

relation 
1
( ( ))

jk

n

j kAk
l yμ

=
= ∏ � , for 1,2,...,j p= . 

 

• Then the individual rule outputs derived from the relationship 
1

( )
n

j jk k j
k

z y a y b
=

= +∑ . 

 

• Finally, the crisp control action is represented as: 1 1

1

.....
....

p p
TgS

p

l z l z
z

l l
+ +

=
+ +

. 

 
The main difference between Mamdani fuzzy reasoning schemes and Takagi-Sugeno 

fuzzy reasoning methods lies in the consequent of the fuzzy rules: the former uses the 

fuzzy sets where the latter employs the (linear) functions of input variables. Tsukamoto’s 

fuzzy reasoning schemes use fuzzy sets with monotonic membership functions for the 

consequent of the rule base.  

 
However, for making decision from fuzzy rule based system, depending on the nature of 

the consequent of fuzzy if-then rules, two traditional well known fuzzy inference 

mechanisms that have been employed in the thesis are: Takagi-Sugeno fuzzy inference 

scheme and Tsukamoto fuzzy inference scheme. 

 
1.7 Motivation and objective of the work done  
The goal of the thesis is to explore the applicability of fuzzy framework in developing 

realistic decision making models. In view of this objective, this work focuses on the 
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development of fuzzy expert systems in a single and group decision making 

environment. The thesis not only focuses on theoretical aspects of various decision 

problems, but also develops tools and techniques for information processing and 

subsequent modeling leading to an efficient decision support system in linguistic 

framework. Moreover, in order to demonstrate the developed methodologies different 

types of real-world applications have also been considered. The genesis of the works has 

been presented below. The means of realizing the motive behind the work done has also 

been outlined. 

 
1.7.1 An overview of GFNs: theory and applications 

In order to handle uncertain information with more flexibility, Chen (1985) introduced 

the concepts of GFNs following the study of normalized fuzzy numbers. In this respect, 

Chen (1985, 1999) had also formulated different arithmetic operations on GFNs as 

traditional fuzzy arithmetic operations can only deal with normalized fuzzy numbers. 

Later a few researches have been done on GFN theory and its applications (e.g., Chen 

and Chen 2003, Wei and Chen 2009). Some other researchers also developed 

methodologies for ranking of GFNs (e.g., Chen and Chen 2007, Chen and Chen 2009, 

Chen and Wang 2009, Lee and Chen 2008).  

 
It has been observed from the aforementioned literature review that in most of the papers 

on GFNs, to deal with the arithmetical operations, Chen’s arithmetic operators are used. 

Eventually it has been realized that Chen’s arithmetic operators make some 

approximation, therefore, the exact result may not be found. This is the motivation of 

Chapter 2 to develop the arithmetic operators on GFNs in a way so that the drawbacks of 

existing operators are overcome.  

 
Chapter 3 studies the distance measure and similarity measure of GFNs. Distance 

measures have become important due to its significant applications in diverse fields like 

decision making, remote sensing, data mining, pattern recognition, multivariate data 

analysis etc. Several distance measures for precise numbers are well established in the 

literature. Many researches have also been done to construct the distance measure 

between fuzzy sets (e.g., Kacprzyk 1997). Recently, some researchers have focused their 
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attention to compute the distances between fuzzy numbers, such as, Cheng (1998) 

introduced a distance index based on the centroid points. Diamond (1988) defined a 

measure for fuzzy numbers in the Euclidean space. Yang and Ko (1997) modified 

Diamond’s proposed measure. A fuzzy distance measure for gaussian type fuzzy 

numbers was defined by Xu and Li (2001).Tran and Duckstein (2002) introduced the 

distance concept based on the interval numbers where the fuzzy number is transformed 

into an interval number on the basis of the ε -cut. However, in the literature it has been 

observed that the distance methods basically compute crisp distance measure for fuzzy 

numbers. In this regard, Voxman (1998), Chakraborty and Chakraborty (2006) proposed 

fuzzy distance measures that can compute the distance between two normalized fuzzy 

numbers.  

 
However, eventually some shortcomings of existing fuzzy distance measures 

(Chakraborty and Chakraborty 2006, Voxman 1998) have been observed. In view of this, 

a new fuzzy distance measure that can calculate the distance measure between two GFNs 

has been developed in Chapter 3.  

 
Moreover, in case of fuzzy reasoning, the question of selecting the suitable fuzzy 

similarity measure is also very essential. Similarity measure between two fuzzy numbers 

is related to their commonality, in theories of the recognition, identification and 

categorization of objects, where a common assumption is that the greater the 

commonality between a pair of objects, more similar they are. Different methods were 

presented to calculate the degree of similarity between normalized fuzzy numbers by 

several authors (e.g., Chakraborty and Chakraborty 2004, Chen 1996, Hsieh and Chen 

1999, Lee 1999). Some researchers also have paid considerable attentions to the research 

on similarity measures between GFNs, such as, Chen and Chen (2003) proposed a 

similarity measure for GFNs based on center-of-gravity (COG) points. In 2004, Yong et 

al. proposed a new similarity measure of GFNs based on the radius of gyration points. 

Sridevi and Nadarajan (2009) proposed a similarity measure for GFNs based on fuzzy 

difference of distance of points of fuzzy numbers. Combining the concepts of geometric 

distance, the perimeter and the height of GFNs, Wei and Chen (2009) proposed a new 

similarity measure between GFNs. Subsequently Xu et al. (2010) analyzed the similarity 
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measure of Wei and Chen (2009) and proposed another new similarity measure for 

GFNs.  

 
It has been observed from the literature review presented above that all the existing 

similarity measures give crisp values for the similarities between two fuzzy numbers. 

However, often in a decision making environment it is said that two experts have ‘much 

similarity’ in their opinions, which is fuzzy in nature. In this regard, a new concept of 

fuzzy similarity measure of GFNs has also been introduced in Chapter 3.  

 
1.7.2 MADM technique under fuzzy environment 

In this section, MADM situations under fuzzy environment have been considered.  
 
Over the last few decades fuzzy MADM techniques have attracted researches due to its 

applicability for solving real-world decision making problems. For instance, Biswas 

(1995) described a computer based fuzzy evaluation method for students’ grading. A 

problem of job evaluation under fuzzy environment (Gupta and Chakraborty 1998) was 

dealt using fuzzy goal programming technique. Fuzzy MADM models and methods with 

incomplete preference information were studied by Li (1999). A man-machine interactive 

algorithm (Chakraborty 2001, 2002) was designed to represent the human perception into 

a fuzzy mathematical structure by acquisition of linguistic information. In 2004, Li and 

Yang developed a linear programming technique to solve MADM problem.  

 
Another very well known MADM approach, which was introduced by Hwang and Yoon 

(1981), is Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). 

Later researchers have extended TOPSIS technique in fuzzy environment and an 

impressive variety of fuzzy TOPSIS algorithms and applications are developed in recent 

years. In 2002, Tsaur’s et al. evaluated the service quality of airlines by applying TOPSIS 

in ranking methodology. Chen and Tzeng (2004) combined grey relation and TOPSIS for 

selecting an expatriate host country. Abo-Sinna and Amer (2005), Abo-Sinna et al. 

(2008) extended the TOPSIS for large scale multi-objective non-linear programming 

problems. Chen et al. (2006) developed a fuzzy decision making approach to deal with 

the supplier selection problem in supply chain system using the concept of TOPSIS. 
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Wang and Elhag (2006) developed a non-linear programming solution procedure using 

fuzzy TOPSIS method, which is based on alpha level concept. Jahanshahloo et al. (2006) 

extended TOPSIS method for decision making problems with fuzzy data. A fuzzy 

hierarchical TOPSIS model for the multi-criteria evaluation of the industrial robotic 

systems was proposed by Kahraman et al. (2007). Wang and Chang (2007) developed an 

evaluation approach based on fuzzy TOPSIS to choose optimal initial training aircraft. 

Wang and Lee (2007) generalized TOPSIS in a fuzzy environment by proposing two 

operators Up and Lo to find the ideal solution and negative ideal solution. Kuo et al. 

(2007) presented a fuzzy multi-criteria decision method based on the concepts of ideal 

and anti-ideal points. Li (2007) developed compromise ratio (CR) methodology. Benitez 

el al. (2007) applied a fuzzy TOPSIS methodology for evaluating the service quality of 

three hotels of an important corporation in Gran Canaria Island. Nezhad and Damghani 

(2010) assessed the performance of traffic police centers using a new TOPSIS method in 

fuzzy environment. Extensions of the TOPSIS for group decision making (GDM) under 

fuzzy environment by Chen (2000) could be assumed as one of the prior work in this 

field.  

 
Now in practice, any group decision (Kim and Ahn 1999, Kim et al. 1999, Xu 2000) 

completely depends on the available linguistic information. Ideally, it is expected that the 

linguistic assessments provided by the experts for the same criteria should be close to 

each other to some extent (Chakraborty and Chakraborty 2007b). But in reality the 

homogeneity among the responses of the experts cannot always be maintained due to 

diversity among the subjective human factors like knowledge, skills, experience, 

personality etc. In view of this, there is a need to automate a decision process to 

aggregate the fuzzy information given by individual expert into a group consensus 

opinion. A brief review of literature regarding the aggregation technique under fuzzy 

environment has been given next.  

 
Nurmi (1981) and Tanino (1984) introduced fuzzy preference relation to compute the 

strength of group fuzzy preference relation. Kacprzyk and Fedrizzi (1988), Kacprzyk et 

al. (1992) presented ‘soft’ degrees of consensus and employed the fuzzy linguistic 

quantifiers to represent a fuzzy majority. Hsu and Chen (1996) proposed a similarity 
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aggregation method. Bordogna et al. (1997) proposed a model for GDM in a linguistic 

context to evaluate a consensus judgment and a consensus degree on each alternative. 

Herrera et al. (1996, 1997) developed a consensus model in GDM under linguistic 

assessments. Herrera-Viedma et al. (2005) introduced a model of consensus support 

system to assist the experts in all phases of the consensus reaching process of GDM 

problems with multigranular linguistic preference relations. Xu (2005) studied the GDM 

problem with linguistic preference relations. Ben-Arieh and Chen (2006) presented a 

procedure for handling an autocratic GDM process under linguistic assessments. Ekel et 

al. (2009) addressed the use of a consensus scheme for achieving a consistent aggregation 

of the individual experts’ opinions. Cabrerizo et al. (2010) presented a model of 

consensus for GDM problems with incomplete unbalanced fuzzy linguistic information. 

Khorshid (2010) proposed a model for developing a soft consensus between decision 

makers under a fuzzy environment.  

 
Thus, as evident from the literature review presented above, fuzzy MADM models have 

been focused on by various researchers in the recent past. 

 
However, our view point is something different from the previous works. In any real 

decision making situation when an expert gives his response to a particular alternative, 

his/her confidence level with respect to such queries is important. In this respect, a GFN 

may be considered as a more suitable and general mathematical representation of 

linguistic expressions of the experts since it considers the degrees of confidence of 

experts’ opinions. For example, two experts give their responses to a particular query: 

first expert says ‘I have full confidence in his personality being suitable for the job under 

consideration’. Another says that ‘I am somewhat confident about his personality being 

suitable for the job under consideration’. It is to be noted here that both the experts opine 

that the candidate’s personality is suitable for the job but their opinions vary in their 

individual confidence levels. So there may be such situations where evaluation of an 

alternative may be dependent on the confidence level of an expert. In a brief review of 

the literature, it has been observed that the problem of MADM considering the 

confidence level of an expert has not yet been attended so far and this is the aspect that 
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has motivated the work of Chapter 4 and Chapter 5. In particular, with due consideration 

of the degrees of confidence of experts’ opinions, Chapter 4 and Chapter 5 provide 

techniques to solve fuzzy MADM problems in single and group decision making 

environments, respectively. 

 
1.7.3 Theoretical developments and applications of IFSs 

Chapter 6 and Chapter 7 focus on IFSs, which is regarded as another strong framework 

for handling uncertainty of real-world. In 1986, Atanassov introduced the concept of IFS. 

Subsequently Gau and Buehrer (1993) introduced the concept of vague set, which is 

another generalization of fuzzy set. Bustince and Burillo (1996) pointed out that the 

notion of vague set is the same as that of IFS.  

 
Out of several higher order fuzzy sets, the concepts of IFSs have been found to be highly 

useful to deal with vagueness. Over the last few decades the IFS theory has been 

investigated by many authors (Bustince et al. 2000, Mondal and Samanta 2001, 2002, 

Szmidt and Kacprzyk 2001 etc.) and applied in different fields, like decision making 

(e.g., Atanassov et al. 2005, Chen and Tan 1994, Hong and Choi 2000, Li 2005, Lin et 

al. 2007, Liu and Wang 2007, Szmidt and Kacprzyk 2002, Xu and Yager 2008 and 2009, 

Wei 2010, Ye 2010), logic programming (e.g., Atanassov and Georgiev 1993), medical 

diagnosis (e.g., De et al. 2001) etc.  

 
Since Atanassov originated the idea of IFSs, different similarity measures between IFSs 

have been proposed in the literature (e.g., Chen 1995, 1997, Hong and Kim 1999, Zhang 

and Fu 2006). Some researchers proposed similarity measures for IFSs and applied them 

in pattern recognition problems (e.g., Hung and Yang 2007, Li and Cheng 2002, Liang 

and Shi 2003, Liu 2005, Mitchell 2003). A set of similarity measures for IFSs were 

proposed by Xu (2007d) and also successfully applied in decision making problem.  

 
After analyzing the existing similarity measures it has been observed that, for some 

cases, they fail to calculate the measures of similarities correctly. In order to overcome 

these problems, a new similarity measure for IFSs has been proposed in Chapter 6. 

Subsequently a methodology has also been developed for estimating priority-based 
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weights of the alternatives using the proposed similarity measure under intuitionistic 

fuzzy environment.  

 
As important contents in fuzzy mathematics, distance measures between IFSs have also 

attracted many researchers. Several researchers focused on computing the distance 

between IFSs.  Atanassov (1999), Szmidt and Kacprzyk (2000) suggested some distances 

measures for IFSs, which are the generalizations of the well-known normalized 

Hamming distance and normalized Euclidean distance. Subsequently Grzegorzewski 

(2004) proposed another group of distance measures for IFSs based on Hausdorff metric. 

Wang and Xin (2005) had shown that the distance measure proposed by Szmidt and 

Kacprzyk (2000) is not reasonable for some cases and, thereafter to overcome its 

drawback they provided two new distance measures for IFSs. Huang et al. (2005) 

developed a group of distance measures to unify the distances proposed by Atanassov 

(1999) and Grzegorzewski (2004). After that they proposed a new group of distance 

measures for IFSs. Hung and Yang (2007) defined another new fuzzy distance measure 

for calculating the distance for IFSs based on pL  metric. Grzegorzewski (2003) 

investigated two families of metrics in space of intuitionistic fuzzy numbers (IFNs). 

However, the distance measures proposed by Grzegorzewski (2003) compute crisp 

distance measures for IFNs.  

 
However, the well-known fact that needs to be remembered here is that if the uncertainty 

is inherent within the numbers, this uncertainty should be intrinsically connected with 

their distance value. This is the reason why fuzzy distance measure for measuring the 

distance measure between two fuzzy numbers came into the field. For the same reason it 

is not reasonable to define crisp distance between IFNs. With this view point, in Chapter 

7 a new methodology to measure the distance for IFNs has been proposed, which will 

provide an IFN as the outcome. 

 
In order to introduce some of the key issues in decision making techniques in imprecise 

environment we have worked on a number of MADM models to help decision makers 

solving complex decision problems in a more systematic, consistent and productive way. 
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Another fundamental MCDM model that has attracted the attention of researchers for a 

long time is MODM, which has been highlighted in Chapter 8. 

 
1.7.4 MODM under fuzzy framework 

In the conventional optimization problems, the coefficients are all assumed as real 

numbers. When the coefficients are taken as fuzzy numbers, the optimization problems 

with fuzzy coefficients should be solved by invoking the efficient methodology in the 

field of fuzzy optimization. Bellman and Zadeh (1970) developed fuzzy optimization 

problems by providing the aggregation operators to combine the fuzzy goals and fuzzy 

decision space. Zimmermann (1978) first used the fuzzified constraint and objective 

functions to solve the multi-objective linear programming problems. Chanas (1989) used 

the parametric programming technique to solve the fuzzy multi-objective linear 

programming problems. After this motivation and inspiration there come out a lot of 

literature dealing with the fuzzy optimization problems (e.g., Ali 2001, Bector and 

Chandra 2005, Esogbue 1991, Lee and Li 1993, Li and Lee 1990, 1993, Mohan and 

Nguyen 1998). The collection of papers on the topic of fuzzy optimization edited by 

Delgado et al. (1994) and Slowinski (1998) gave the main stream of this topic. On the 

other hand, the books by Zimmermann (1996), Lai and Hwang (1992, 1994) also gave 

the insightful survey.  

 
However, in conventional fuzzy optimization problem the objective functions (say 

, 1, 2,..,if i m= ) are expressed as a function of decision variables. In solving practical 

decision problems, it may be possible that the functional relationship between the 

decision variables and the objective function is not completely known. We are only able 

to describe the link between objective functions and decision variables linguistically 

using fuzzy rule based system. Under these circumstances, a technique needs to be 

formulated which can transform the fuzzy rule based optimization problem to an 

equivalent deterministic one (Carlsson and Fuller 2003). In this respect, Carlsson et al. 

(1998), Carlsson and Fuller (2001) addressed fuzzy mathematical programming problems 

to find a fair optimal solution. In order to explore such an idea into fuzzy multi-objective 

optimization problems, Carlsson and Fuller (1998) proposed a theory to find a 
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compromise solution to the fuzzy multi-objective mathematical programming problem 

under fuzzy rule base.  

 
It may be said from the literature that though some theoretical analysis have been made 

for solving multi-objective optimization problems under fuzzy rules, there is a need to 

explore the applicability of this idea for solving real-world problems. In view of this, a 

fuzzy rule based system has been developed in Chapter 8, modeling the linguistic 

dependencies between the decision variables and the objectives in an improved manner. 

Subsequently the mechanism, which aims at solving a multi-objective programming 

problem depending on the given fuzzy rule base, has been illustrated. 

 
1.7.5 Contributions over fuzzy regression analysis 

Chapter 9 contains some issues in fuzzy regression paradigm. The classical regression 

analysis deals with the precise data where the fuzzy regression analysis (e.g., Peters 

1994, Tanaka et al. 1982 and 1995, Tanaka and Lee 1999) has studied to model 

linguistic information. Tanaka et al. (1982) first proposed fuzzy regression technique in 

which relation of the variables is subject to fuzziness and a fuzzy linear system was used 

as a regression model. Also Peters (1994) and Tanaka et al. (1995) revised these fuzzy 

models. Sakawa and Yano (1992) proposed a modified form of possibilistic regression. It 

should be mentioned that possibilistic regression usually leads to a mathematical 

programming problem. Diamond (1987, 1988) proposed models of least squares fitting 

for crisp input and fuzzy output and fuzzy input output. Diamond and Korner (1997) 

revised the method of least square fitting to fuzzy data. Fuzzy prediction using regression 

models was studied by Yager (1982). Jajuga (1986) presented a fuzzy approach that is 

useful for heterogeneous observations. Celmins (1987) dealt with quadratic membership 

functions to fit indicators of discord, data spread dilator etc. Xu (1997) discussed the 

problem of least squares fitting of fuzzy valued data by developing S-shaped curve 

regression model. Nather and Korner (1998) extended classical estimates with 

crisp/fuzzy input and fuzzy output using least-square approach. Wang and Tsaur (2000) 

considered a type of problem with crisp input and fuzzy output described by Tanaka et 

al. (1982) and it was then solved by a modified fuzzy least square method. Also Durso 
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and Gastaldi (2000) proposed a doubly linear adaptive fuzzy regression model using two 

linear models: a core regression model and spread regression model. Nasrabadi et al. 

(2005) developed a multi-objective fuzzy linear regression model. Nasrabadi and 

Nasrabadi (2004), Toyoura et al. (2000), Tseng and Lin (2005) reported successful 

efforts in using regression techniques in the field of engineering, dental and finance, 

respectively. Fuzzy regression method has also been successfully applied in forecasting 

(Heshmaty and Kandel 1985, Khemchandani et al. 2009). Chakraborty and Chakraborty 

(2008) developed an approach to fuzzy linear regression modeling for linguistic variables 

based on a fuzzy rule base. Lu and Wang (2009) proposed an enhanced fuzzy linear 

regression model in which the spreads of the estimated dependent variables are able to fit 

the spreads of the observed dependent variables.  

 
It may be said from the review of literature presented above that although researchers 

have made several suggestions concerning the methodologies and applications of the 

fuzzy approach to regression analysis, much however, remains to be studied.  In view of 

this, Chapter 9 deals with a linear curve fitting problem under fuzzy environment, giving 

importance to the satisfaction level of the decision maker. 

 
As evident from the above discussion, though several advancements have been made 

regarding the development of decision making models under the fuzzy framework, a lot 

of scope still remains for further development in this regard.  With this point of view, in 

the thesis some fuzzy reasoning schemes are being proposed to deal with different kind of 

decision models in imprecise environment. The objectives of the thesis are listed below. 

 
• Developing arithmetic operators on GFNs 

• Proposing a new concept of fuzzy similarity measure for GFNs 

• Developing MADM schemes with single and multiple experts considering the 

degrees of confidence of the experts 

• Estimating priority-based weights of the alternatives under intuitionistic fuzzy 

environment by employing the concept of similarity measure 

• Deriving a distance measure for IFNs 

• Solving multi-objective optimization problem under fuzzy rule constraints 
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• Developing fuzzy linear regression model in a linguistic framework 

• Treating different types of real decision problems using the proposed 

methodologies   

 
 With these above objectives, the thesis has been organized in the following manner. 

 
1.8 Organization of the thesis  
The thesis has been organized as follows: 

 
The first chapter has given an introduction to the research work along with the 

motivation and objective. 

 
In Chapter 2, different arithmetic operators on generalized trapezoidal and triangular 

fuzzy numbers have been derived by employing extension principle (Zadeh 1975). In this 

respect, the shortcomings of the existing operators of GFNs have also been analyzed.  

 
In Chapter 3, a fuzzy distance measure between two GFNs has been developed. A new 

concept of similarity measure has also been introduced with help of the fuzzy distance 

measure. Examples have been provided to compare the proposed fuzzy similarity 

measure with the other existing similarity measures. 

 
In order to solve multiple attribute single expert decision making problems, Chapter 4 

presents a fuzzy compromise ratio (FCR) methodology considering the degrees of 

confidence of expert’s opinions. An illustration of the application of the proposed 

method to a real-life problem has also been presented.  

 
In Chapter 5, a fuzzy multiple attribute group decision making (MAGDM) technique has 

been developed using GFNs to reach consensus among the linguistic 

opinions/assessments provided by a group of experts. The performance of the diagnostic 

laboratory has also been assessed in this chapter, by employing the proposed technique.  

 
A new method for estimating the priority-based weights of alternatives from 

intuitionistic preference relation has been presented in Chapter 6. For this purpose, a 



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1 

 

29 

 

similarity measure of IFSs has also been developed. A numerical example has been 

presented to illustrate the proposed methodology.  

 
The objective of Chapter 7 is to introduce a methodology to measure the distance of 

IFNs based on interval difference. This chapter also provides some useful results on 

IFNs. Furthermore, LR-type IFN has been introduced in this chapter, as IFNs of special 

type. Numerical examples have been presented for applying the proposed distance 

measure and finally the result has been compared with the existing ones. 

 
In Chapter 8, a fuzzy multi-objective mathematical programming problem has been 

considered where functional relationship between the decision variables and the 

objective functions is not completely known to us. It has been assumed that the 

information source from where some knowledge may be obtained about objective 

functions consists of a block of fuzzy if-then rules. The focus in this chapter is to solve 

the multi-objective optimization problem for the above situations. A numerical example 

has also been presented to illustrate the method.  

 
A fuzzy linear regression model using logistic membership function has been developed 

in Chapter 9, wherein both the input and output data are fuzzy numbers. The problem of 

curve fitting, using the concept of fuzzy inequality, evolves into a fuzzy optimization 

problem. Finally, the values of the regression coefficients have been estimated by 

solving the resulting fuzzy optimization problem. Numerical example illustrates the 

methodology. 

 
Finally, Chapter 10 presents the conclusions on the various investigations carried out in 

the thesis and a brief discussion on future scope and possible extensions of the present 

work. 


