
Abstract

Software debugging is both challenging and expensive. It consists of two main

tasks: localization and correction of bugs. Between these two tasks, the task

of fault localization is usually much more expensive. Any improvements to this

activity can significantly reduce the total software debugging expenses. The main

motive of this research is to improve upon the fault localization (FL) techniques

that make use of available execution information from the test cases, in a way that

is effective, efficient and scalable and also able to handle programs with multiple

faults.

To meet the identified objective, first we present a Fisher’s Test based statisti-

cal fault localization technique. Our proposed Fisher’s Test based technique, which

we have named FTFL, uses statement coverage information and test execution re-

sults to compute the suspiciousness of the executable statements. Experimental

results show that FTFL technique requires 34.61% less statement examination

than existing FL techniques.

Subsequently, we present two hierarchical approaches to FL. We first compute

the suspiciousness scores of all functions. After that, most suspicious functions are

analyzed at statement level to localize the fault. For prioritizing the functions, we

have define different function-level features, viz., function execution ratio, func-

tion complexity metric, and function dependency relations. Using our proposed

hierarchical approaches, we could obtain at least 50% reduction in the candidate

statements while localizing bugs as compared to the existing techniques such as

DStar, Tarantula, Crosstab, Ochiai, BPNN and RBFNN.

We also report an extension to our proposed hierarchical approaches for local-

ization of multi-fault programs based on the idea of parallel debugging. It involves

partitioning of the failed test cases into different clusters such that each cluster

targets a different fault. We combine all the passed test cases with each failed

test case clusters. The resultant test suites are used to localize different faults.

13



After gathering all the changes detected by failed test case clusters, the program

is retested. If any test case fails, the same process is repeated again. This process

continues until all the test cases pass.

We finally use an ensemble of different fault localization techniques viz., spectrum-

based, mutation-based, and neural network-based techniques for FL. Our ensem-

ble based approach, which we have named EBFL, classifies the statements into

two classes: suspicious and non-suspicious and helps to reduce the search space.

EBFL model performs, on an average, 58% more effectively compared to the ex-

isting FL techniques and at least 16.95% more effectively than our other proposed

techniques, FTFL, HieDeep, FDMLN, and DD∗.

Keywords: Fault Localization, Debugging, Program Analysis.

14


