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Chapter 1

Introduction and Literature Survey

1.1 Introduction

It has been observed that a large class of problems in science, engineering, economics,

management, operations research etc. can be represented through the following optimiza-

tion problem:

min f(x)

subject to

g(x) ≤ 0,

h(x) = 0,

x ∈ X,

where f is a real valued function on R
n and g, h are mapping from R

n to R
m and R

p,

respectively. The function f is called the objective function, g is called an inequality

constraint, h is called an equality constraint and x ∈ X ⊆ R
n is called an abstract

constraint. The above problem as a whole is termed as a “Mathematical Programming

Problem”. The presence of x can be suppressed by taking X into whole of R
n. If one of

the functions involved in the above optimization problem is nonlinear, then it is called

nonlinear mathematical programming problem. There are many real life applications of
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Chapter 1: Introduction and Literature Survey

the mathematical programming problem, for example (see Bazaraa et al. (1993), Craven

(1995) and Jahn (1996)).

1.1.1 Duality Principle in Mathematical Programming

A basic result in mathematical programming problems is the duality theory which asserts

that, given a (primal) minimization problem the infimum value of the primal problem

cannot be smaller than the supremum value of the associated (dual) maximum problem,

and the optimal values of the primal, and dual problems are equal. Many of these duality

principles are based on the geometric relation. It states that the shortest distance from

a point to a convex set is equal to the maximum of the distances from the point to a

hyperplane separating the point from the convex set. Hence, the original minimization

over vectors can be converted to maximization over hyperplane. This result is more

applicable in several computational applications, where the choice is often made so that

evaluating the dual maximum is comparatively easier than solving a primal minimization

problem. Over the years, many generalizations of this result to non differentiable convex

problems (see Schechter (1979)), and differentiable non-convex problems (see Hanson

(1981), Pini and Singh (1999), Mishra and Rueda (2002)) have appeared in the literature.

Varaiya (1967), Ritter (1967), Chandra (1969), Behera et al. (2008) have discussed the

concept of duality in Banach spaces and also established some duality results.

Unfortunately unlike the linear programming case, for the general nonlinear programs

the dual of dual need not be the original primal. The concept of symmetric dual programs,

in which the dual of the dual equals the primal, was introduced by Dorn (1960) for the

nonlinear programming problems. Duality is not defined uniquely. This has led to the

introduction of some other forms of dual such as the Mangasarian type, the Wolfe type

and the Mond-Weir type duals. The beauty of Mond-Weir type dual is that the objective

function is same as in the primal problem. Mond and Hanson (1968b) extended symmetric

duality to variational problems, given continuous analog of the previous results.
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1.1. Introduction

Consider the following pair of optimization problems:

(P1) min f(x) subject to x ∈ S,

(D1) max φ(u) subject to u ∈ F .

A point x∗ ∈ S is a local optimal solution of (P1) if there exists δ > 0 such that f(x) ≥
f(x∗) for all x ∈ S, ‖x− x∗‖ < δ. If f(x) ≥ f(x∗) for all x ∈ S, then x∗ is called a global

optimal solution of (P1).

Weak Duality Theorem: Weak duality theorem states that for all x ∈ S and for all

u ∈ F , f(x) ≥ φ(u).

Zero Duality Gap: Zero duality gap says that if (P1) reaches a minimum at x = x∗,

then (D1) reaches a maximum at u = u∗, satisfying f(x∗) = φ(u∗).

Converse Duality Theorem: Converse Duality Theorem says that if (D1) reaches a

maximum at u = ū, then (P1) reaches a minimum at x = x̄, satisfying φ(ū) = f(x̄).

Weak Duality implies that the objective value at a primal feasible solution is greater

than or equal to the objective value at a dual feasible solution. This property allows the

possibility of the duality gap between a minimum, f(x∗) of (P1) and a maximum, φ(u∗),

for D1 namely f(x∗) > φ(u∗). Zero duality gap is the statement that there is no duality

gap. Converse duality is the related statement, that under suitable conditions the solution

of the primal is also the solution of the dual and the objective values of the primal and

dual are same.

If the programs (P1) and (D1) satisfy the properties of weak duality and zero duality

gap, then (D1) is called a strong dual of (P1) (see Ben-Israel (1986), Craven (1988)). If

weak duality and strong duality hold, then (P1) is a converse dual of (D1). If all the

three properties, weak duality, zero duality gap and converse duality hold then, (D1) is

called a proper dual of (P1). If the problem (P1) has some special structure, then (D1)

may happen to be considerable simpler than (P1). Moreover, since (given strong duality)

(P1) can be solved by solving (D1) instead, algorithms for solving the dual problem can

be used.
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Chapter 1: Introduction and Literature Survey

1.1.2 Second and Higher Order Duality

Consider the nonlinear programmnig problem:

(P) min
x

f(x)

subject to

g(x) ≤ 0, (1.1)

where f and g are twice differentiable functions from R
n to R and R

m, respectively.

The first order dual problem is:

(FD) max
u,y

f(u) + yTg(u)

subject to

∇
[

f(u) + yT g(u)
]

= 0, (1.2)

y ≥ 0, (1.3)

where y ∈ R
m. Mangasarian (1975) formulated the following second order dual by intro-

ducing an additional vector p ∈ R
n.

(SD) max
u,y,p

f(u) + yTg(u) − 1

2
pT∇2

[

f(u) + yT g(u)
]

p

subject to

∇
[

f(u) + yT g(u)
]

+ ∇2
[

f(u) + yTg(u)
]

p = 0, (1.4)

y ≥ 0. (1.5)
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1.1. Introduction

Further, by introducing two differentiable functions h : R
n×R

n → R and k : R
n×R

n →
R

m, Mangasarian (1975) established the higher order dual

(HD) max
u,y,p

f(u) + yTg(u) + h(u, p) + yT k(u, p)

subject to

∇ph(u, p) + ∇p

(

yT k(u, p)
)

= 0, (1.6)

y ≥ 0, (1.7)

where ∇ph(u, p) and ∇p

(

yT k(u, p)
)

denote the gradient of h and yT k, respectively with

respect to p is of dimension n × 1.

The study of second and higher order duality is useful due to the computational ad-

vantage over first order duality as it gives bounds for the value of the objective function

when approximations are used (see Mond (1974), Mangasarian (1975), Jeyakumar (1986),

Mond and Zhang (1998), Mishra and Rueda (2000)). Motivated to the concept of second

and higher order duality in nonlinear programming problems which was introduced by

Mangasarian (1975), Hanson and Mond (1987) generalized the class of invex functions to

a new class named Type I functions.

Here, we introduce second order V -ρ − (η, θ)-Type I and higher order ρ − (η, θ)-Type

I functions and also state the weak duality theorems for both second and higher order

duality cases.

Let K be the constraint set of (SD) given by (1.4) and (1.5), let η(x, u), θ(x, u), p(x, u)

be the vector functions from K × K to R
n and ρ ∈ R.

The objective function f(x) is said to be a second order V -ρ − (η, θ)-Type I objective

function and gi(x), i = 1, 2, ..., m is said to be second order V -ρ− (η, θ)-Type I constraint

functions at u ∈ K with respect to η(x, u), θ(x, u) and p(x, u) if for all x ∈ K,

f(x) − f(u) ≥ η(x, u)T [∇f(u) + ∇2f(u)p(x, u)]

−1

2
p(x, u)T∇2f(u)p(x, u) + ρ‖θ(x, u)‖2, (1.8)
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Chapter 1: Introduction and Literature Survey

and

−gi(u) ≥ η(x, u)T [∇gi(u) + ∇2gi(u)p(x, u)]

−1

2
p(x, u)T∇2gi(u)p(x, u) + ρi‖θ(x, u)‖2, i = 1, 2, .., m. (1.9)

Theorem 1.1.1 (Weak Duality) Let x and (u, y, p) be feasible solutions for (P) and

(SD) respectively. Suppose that f is second order V -ρ−(η, θ)-Type I function and g
,
is (i =

1, 2, ..., m) are second order V -ρi − (η, θ)-Type I functions defined over the constraint sets

(P) and (SD), respectively and ρ, ρi ∈ R with ρ + ρi ≥ 0. Then

infimum (P) ≥ supremum (SD).

Now, we define the higher order ρ − (η, θ)-Type I functions for the objective and

constraints functions of (HD). Let L be the constraint set of (HD) given by (1.6) and

(1.7), let η(x, u), θ(x, u), p(x, u) be the vector functions from L×L to R
n and ρ ∈ R. Let

h(u, p) and k(u, p) be the vector functions from L × R
n to R and R

m, respectively.

The function f(x) is said to be a higher order ρ − (η, θ)-Type I and the function

gi(x), i = 1, 2, ..., m are said to be higher order ρ − (η, θ)-Type I at u ∈ L with respect

to η(x, u), θ(x, u), p(x, u), h(u, p) and k(u, p) if for all x ∈ L, (for notational convenience

take p and η in place of p(x, u) and η(x, u), respectively.)

f(x) − f(u) ≥ ηT∇ph(u, p) + h(u, p) − pT∇ph(u, p) + ρ‖θ(x, u)‖2, (1.10)

and

−gi(u) ≥ ηT∇pki(u, p) + ki(u, p) − pT∇pki(u, p) + ρi‖θ(x, u)‖2, i = 1, 2, .., m. (1.11)

Theorem 1.1.2 (Weak Duality) Let x and (u, y, p) be feasible solutions for (P) and

(HD) respectively. Suppose that f is higher order ρ− (η, θ)-Type I function and g
,
is (i =

1, 2, ..., m) are higher order ρi − (η, θ)-Type I functions defined over the constraint sets

(P) and (HD), respectively and ρ, ρi ∈ R with ρ + ρi ≥ 0. Then

infimum (P) ≥ supremum (HD).
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1.1. Introduction

Now we consider some numerical examples, which show that the second order duality

gives tighter bound than the first order dual and the higher order duality gives tighter

bound than the first as well as second order dual.

Example 1.1.1 Consider the problem:

min f(x1, x2, x3) = x1x2 + x2x3 + x3x1 (1.12)

subject to

g1(x1, x2, x3) = x2
1 − x3 ≤ 0, (1.13)

g2(x1, x2, x3) = −x1x3 + x2
2 ≤ 0, (1.14)

g3(x1, x2, x3) = −2x2 + x2
3 ≤ 0. (1.15)

We have

∇f =





x2 + x3

x1 + x3

x1 + x2



 , ∇2f =





0 1 1
1 0 1
1 1 0



 ,

∇g1 =





2x1

0
−1



 , ∇2g1 =





2 0 0
0 0 0
0 0 0



 ,

∇g2 =





−x3

2x2

−x1



 , ∇2g2 =





0 0 −1
0 2 0
−1 0 0



 ,

∇g3 =





0
−2
2x3



 , ∇2g3 =





0 0 0
0 0 0
0 0 2



 .

From the inequalities (1.13)-(1.15) it is clear that x1, x2 and x3 are nonnegative and the

minimal value is 0 at the point
(

0 0 0
)T

. Suppose it is unknown and we desire to

examine the value of an approximate solution.

From Theorem 1.1.1, we see that the infimum value of the primal problem (P) can not

be smaller than the supremum value of the associated second order dual problem (SD). To
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illustrate second order duality let us compare a lower bound to the minimal value given

by by this approximation (u1 = 1, u2 = 1, u3 = 1) in problem (SD) with a lower bound

in (FD). The value of (P) at
(

1 1 1
)T

is 3, which is thus an upper bound to the true

optimal value.

We show that the point
(

1 1 1
)T

is not a feasible point of (FD) and hence it does

not provide a lower bound at
(

1 1 1
)T

. Suppose
(

1 1 1
)T

is a feasible point of

(FD). Thus it satisfies

∇
[

f(u) + yTg(u)
]

= 0,

and y ≥ 0.

That is,

2y1 − y2 + 2 = 0, (1.16)

2y2 − 2y3 + 2 = 0, (1.17)

−y1 − y2 + 2y3 + 2 = 0, (1.18)

y1, y2, y3 ≥ 0. (1.19)

Adding (1.16), (1.17) and (1.18) we have y1 + 6 = 0, which implies that y1 = −6 which

contradicts to (1.19) and hence
(

1 1 1
)T

is not feasible solution for (FD).

We now find expressions for y = (y1, y2, y3), η = (η1, η2, η3), θ = (θ1, θ2, θ3), p =

(p1, p2, p3) and ρ ∈ R for which the functions f, g1, g2 and g3 are second order V -

ρ − (η, θ)-Type I and satisfy the constraints of (SD). Although such expressions are not

necessarily unique, here we assign arbitrary although it happens that we find a set with

best possible.

Now we develop a relation between η, θ, p and ρ such that at u1 = 1, u2 = 1, u3 = 1;

f, g1, g2, g3 are second order V -ρ − (η, θ)-Type I.

8
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(a) For f(x):

f(x) − f(u) ≥ η(x, u)T [∇f(u) + ∇2f(u)p(x, u)] − 1

2
p(x, u)T∇2f(u)p(x, u) + ρ‖θ(x, u)‖2.

That is

x1x2 + x2x3 + x3x1 − 3 ≥
(

η1 η2 η3

)





p2 + p3 + 2
p1 + p3 + 2
p1 + p2 + 2





−1

2

(

p1 p2 p3

)





p2 + p3

p1 + p3

p1 + p2



 + ρ(θ2
1 + θ2

2 + θ2
3),

since x1, x2, x3 ≥ 0 we require at most the following inequality

−3 ≥ (p2 + p3 + 2)η1 + (p1 + p3 + 2)η2 + (p1 + p2 + 2)η3

−p1p2 − p1p3 − p2p3 + ρ(θ2
1 + θ2

2 + θ2
3). (1.20)

Similarly,

(b) for g1(x):

0 ≥ 2η1 + 2p1η1 − η3 − p2
1 + ρ1(θ

2
1 + θ2

2 + θ2
3), (1.21)

(c) for g2(x):

0 ≥ −η1 + 2η2 − η3 − p3η1 + 2p2η2 − p1η3 + p1p3 − p2
2 + ρ2(θ

2
1 + θ2

2 + θ2
3), (1.22)

(d) for g3(x):

0 ≥ −2η2 + 2η3 + 2p3η3 + 2p2
3 + ρ3(θ

2
1 + θ2

2 + θ2
3). (1.23)

Conditions for f, g1, g2, g3 satisfy the constraints of (SD) at u1 = 1, u2 = 1, u3 = 1.

∇
[

f(u) + yTg(u)
]

+ ∇2
[

f(u) + yTg(u)
]

p = 0,

and y ≥ 0.

9
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That is,

(2 + 2p1)y1 − (1 + p3)y2 + p2 + p3 + 2 = 0, (1.24)

(2 + 2p2)y2 − 2y3 + p1 + p3 + 2 = 0, (1.25)

−y1 − (1 + p1)y2 + (2 + 2p3)y3 + p1 + p2 + 2 = 0, (1.26)

y1, y2, y3 ≥ 0. (1.27)

If we put p1 = −1, p2 = −1 and p3 = −1 in the constraints of (SD), we have

y3 = 0,

y1 = 0,

and y1, y2, y3 ≥ 0,

so we obtain a set of feasible solution of (SD).

At u1 = 1, u2 = 1, u3 = 1 and p1 = −1, p2 = −1, p3 = −1, the objective function in (SD)

has the value

f(u) + yT g(u)− 1

2
pT∇2

[

f(u) + yT g(u)
]

p

= −y1 − y3

= 0.

The conditions for which f, g1, g2 and g3 be of second order V -ρ − (η, θ)-Type I at

u1 = 1, u2 = 1, u3 = 1, and p1 = −1, p2 = −1, p3 = −1 are:

(a) −3 ≥ −3 + ρ(θ2
1 + θ2

2 + θ2
3)

(b) 0 ≥ −η3 − 1 + ρ1(θ
2
1 + θ2

2 + θ2
3)

(c) 0 ≥ ρ2(θ
2
1 + θ2

2 + θ2
3)

(d) 0 ≥ −2η2 + 2 + ρ3(θ
2
1 + θ2

2 + θ2
3),

10
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which are all satisfied if η2 = 1, η3 = 1, θ1 = 2
3
, θ2 = 1

3
, θ3 = 2

3
, ρ = −1

2
, ρ1 = 2, ρ2 = −1

3
,

ρ3 = −5
6

and there is no restriction on η1.

As 0 is the optimal value of (P) and the objective value of (SD) at u1 = 1, u2 = 1, u3 = 1

is also 0 for the values of y = (y1, y2, y3), η = (η1, η2, η3), θ = (θ1, θ2, θ3), p = (p1, p2, p3),

ρ, ρ1, ρ2 and ρ3 that we have obtained, these values are best possible by Theorem 1.1.1,

though not necessarily unique. Of course in general problem we would not know the

optimal value of the primal problem, and would not know if the values for y, η, θ, p, ρ

are best possible, but any set of values satisfying the conditions imposed will give a lower

bound for the optimal value of the primal problem.

Example 1.1.2 Consider the problem:

min f(x1, x2, x3) = ex1 + x2
2 + x2

3 (1.28)

subject to

g1(x1, x2, x3) = x1 − x2
3 ≤ 0, (1.29)

g2(x1, x2, x3) = x1x2 + x2x3 + x3x1 ≤ 0, (1.30)

g3(x1, x2, x3) = x2
1x2 + x1x3 − x2

3 ≤ 0. (1.31)

We have

∇f =





ex1

2x2

2x3



 , ∇2f =





ex1 0 0
0 2 0
0 0 2



 ,

∇g1 =





1
0

−2x3



 , ∇2g1 =





0 0 0
0 0 0
0 0 −2



 ,

∇g2 =





x2 + x3

x1 + x3

x1 + x2



 , ∇2g2 =





0 1 1
1 0 1
1 1 0



 ,

11
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∇g3 =





2x1x2 + x3

x2
1

x1 − 2x3



 , ∇2g3 =





2x2 2x1 1
2x1 0 0
1 0 −2



 .

From (1.29) we have x1 ≥ 0 and the minimal value is clearly 0 at the point
(

0 0 0
)T

.

Suppose it is unknown and we desire to examine the value of an approximate solution.

To illustrate the higher order duality let us compare a lower bound to the minimal

value given by the approximation (u1 = 0, u2 = 1, u3 = 1) in the problem (HD) with a

lower bound in (FD). The value of (P) at
(

0 1 1
)T

is 1, which is thus an upper bound

to the true optimal value.

To adopt the similar approach of Example 1.1.1 one can easily see that the point
(

0 1 1
)T

is not a feasible point of (FD) as well as (SD), whereas the the point
(

0 1 1
)T

is a feasible point of (HD).

Even the functions f, g1, g2, g3 are second order V -ρ− (η, θ)-Type I and satisfy the con-

straints of (SD), and higher order ρ − (η, θ)-Type I and satisfy the constraints of (HD),

respectively at u1 = 0, u2 = 1, u3 = 1, p1 = 0, p2 = −1 and p3 = −1 with respect to same

η, θ and p. The conditions for which the functions f, g1, g2 and g3 are second order

V -ρ − (η, θ)-Type I and higher order ρ − (η, θ)-Type I are as follows

(i) 0 ≥ η1 + ρ(θ2
1 + θ2

2 + θ2
3)

(ii) 0 ≥ η1 + ρ1(θ
2
1 + θ2

2 + θ2
3)

(iii) 0 ≥ η3 + ρ2(θ
2
1 + θ2

2 + θ2
3)

(iv) 0 ≥ ρ3(θ
2
1 + θ2

2 + θ2
3)

(v) −1 ≥ 6η3 + ρ(θ2
1 + θ2

2 + θ2
3)

(vi) 1 ≥ η2 − 2η3 + ρ1(θ
2
1 + θ2

2 + θ2
3)

(vii) −1 ≥ 2η2 + ρ2(θ
2
1 + θ2

2 + θ2
3)

(viii) 1 ≥ −η2 − η3 + ρ3(θ
2
1 + θ2

2 + θ2
3)

which are all satisfied if η1 = −1, η2 = −1, η3 = −1, θ2
1 + θ2

2 + θ2
3 = 1, ρ = 1, ρ1 =

−1, ρ2 = 1 and ρ3 = −1.

Now we consider the following functions to verify the feasibility of (HD) at the point

12



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

1.1. Introduction

(

0 1 1
)T

.

h(u, p) = p1u
2
1 + p2u1u2 − 3p2

3u
2
3 − 1, (1.32)

k1(u, p) = p1u1 + p2u
2
2 − 2p3u3, (1.33)

k2(u, p) = p1u
2
1 + p2u2 + p2u3 − p3u1u3, (1.34)

k3(u, p) = p1u1 − 2p2u
2
2 − p3u

2
3 + p2u3. (1.35)

For p1 = 0, p2 = −1, p3 = −1, the constraints of the higher order dual (HD) at u1 =

0, u2 = 1, u3 = 1 is given by

y1 + 2y2 − y3 = 0,

2y1 + y3 − 6 = 0,

and y1, y2, y3 ≥ 0,

and the objective function is

y3 − 2.

Therefore the point
(

0 1 1
)T

is a feasible point of (HD) and one solution is y1 =

3
2
, y2 = 3

4
, y3 = 3 and the value of the objective function is 1.

Since the optimal value of (P) is 1 and the objective value of (HD) at u1 = 0, u2 =

1, u3 = 1 is also 1 for the values of y = (y1, y2, y3), η = (η1, η2, η3), θ = (θ1, θ2, θ3),

p = (p1, p2, P − 3), ρ, ρ1, ρ2 and ρ3 that we have obtained, these values are best possible

by Theorem 1.1.2, though not necessarily unique.

In our examples fortunately we find best possible solutions in both second and higher

order duality cases. Also we verify that the solution is not unique. In Example 1.1.1

both the objective and the constraints functions satisfy second order V -ρ− (η, θ)-Type I

13
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conditions with same η, θ and p and it shows that the first order dual have no solution but

the second order dual have solutions. In Example 1.1.2, the objective and the constraints

functions satisfy simultaneously both second order V -ρ − (η, θ)-Type I and higher order

ρ − (η, θ)-Type I conditions at the same point with same η, θ and p. And it shows that

the first as well as the second order dual have no solution whereas the higher order dual

have solutions.

1.1.3 Generalized Invexity

Convexity plays a key role in variational, control and mathematical programming prob-

lems. Many significant results have been derived under convexity assumptions. In the

classical theory of optimization, the theorems on sufficient optimality conditions and du-

ality are based on convexity assumptions, which are rather restrictive in applications. An

important feature in the use of convexity is that local optimality implies global optimal-

ity. Another much used property of convex functions is that they are always bounded on

one side by their tangent hyper planes at any point, which facilitates the use of linear

bounds and approximations. But a number of problems arising in the real world are still

non-convex in nature. Generally, it is not easy to handle such type of problems. Solutions

of these problems are analytically challenging and practically useful. Though it is ana-

lytically tough to solve these general non-convex problems, yet many attempts are being

made in this direction by many researchers, notable among them are Hanson, Craven,

Mond, Kaul and Kaur, Zhang, Bector, Jeyakumar and Zalmai etc.

In this thesis, attempts are being made to extend the range of applications of some

familiar results of convex programming to more general situations which involves differ-

entiable functions. A differentiable function f : R
n → R is convex if and only if

f(x) − f(y) ≥ (x − y)T∇f(y), ∀x, y ∈ R
n. (1.36)

Hanson (1981) observed that term (x− y) on the right hand side of the above inequality

plays no role in the proof of the sufficiency of the Karush-Kuhn-Tucker (KKT) conditions.
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1.1. Introduction

This motivated Hanson (1981) to introduce a class of differentiable functions f : R
n → R

which satisfy

f(x) − f(y) ≥ η(x, y)T∇f(y), ∀x, y ∈ R
n (1.37)

where η : R
n × R

n → R
n is a vector valued function. If η(x, y) = x− y then f becomes a

convex function. Hanson (1981) also proved that the KKT conditions are sufficient if the

objective and constraints functions satisfy the above inequality with the same η(x, y). A

differentiable function satisfying (1.37) was termed ‘invex’ by Craven (1981a) and showed

that the class of invex functions is equivalent to the class of functions whose stationary

points are global minimum. Mond and Hanson (1984) extended the concept of invexity to

polyhedral cones while Craven (1981b) defined it for more general cones and gave second

order conditions for invexity.

The class of invex functions defined by Craven (1981a) is quite large due to the flex-

ibility of the term η(x, y). But that does not mean that all functions can be shown to

be invex with some η(x, y). For example, (see Ben-Israel and Mond (1986), Pini (1991)),

the function f : R → R, defined by f(x) = x3 is not invex with any η(x, y), since the

invexity relations breaks down at x = 0. Craven (1996) defined invexity at a point; and

noted that a function which is invex at a point with some η(x, y), need not be invex over

the whole domain.

After that a number of other generalizations of invexity such as pseudoinvexity and

quasiinvexity have been appeared. Later, the concept of ρ−(η, θ)−invexity was introduced

by Zalmai (1990) as a generalization of invex functions. Nahak and Nanda (2005) studied

the vector optimization problems under ρ − (η, θ)−invexity assumptions.

Definition 1.1.1 A differentiable function f : R
n → R is said to be ρ − (η, θ)−invex at

a point u ∈ S ⊆ R
n if there exist η : S × S → R

n, θ : S × S → R
n and ρ ∈ R such that

for each x ∈ S,

f(x) − f(u) ≥
〈

f ′(u), η(x, u)
〉

+ ρ‖θ(x, u)‖2
.
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Chapter 1: Introduction and Literature Survey

Definition 1.1.2 A differentiable function f : R
n → R is said to be ρ−(η, θ)−pseudoinvex

at a point u ∈ S ⊆ R
n if there exist η : S ×S → R

n, θ : S ×S → R
n and ρ ∈ R such that

for each x ∈ S,
〈

f ′(u), η(x, u)
〉

+ ρ‖θ(x, u)‖2 ≥ 0 ⇒ f(x) ≥ f(u).

Definition 1.1.3 A differentiable function f : R
n → R is said to be ρ−(η, θ)−quasiinvex

at a point u ∈ S ⊆ R
n if there exist η : S ×S → R

n, θ : S ×S → R
n and ρ ∈ R such that

for each x ∈ S,

f(x) ≤ f(u) ⇒
〈

f ′(u), η(x, u)
〉

+ ρ‖θ(x, u)‖2 ≤ 0.

Remark 1.1.1 (i) for ρ > 0, we say f is “strongly invex”,

(ii) for ρ = 0, we say f is “invex”,

(iii) for ρ < 0, we say f is “weakly invex”.

Also we see that the above function f(x) = x3 which is not invex at any η will be

ρ − (η, θ)−Invexity for suitable η and θ. Hanson (1993) introduced the second order

invexity and studied the some duality results. Again Hanson (FSU Technical Report

Number M-883) showed that the second order duality give tighter bound than first order

duality. Recently, Gulati and Gupta (2009) mentioned about the higher order invexity

for a pair of symmetric mathematical programming problems.

Definition 1.1.4 A function f : R
n → R is said to be higher order invex at u ∈ S ⊆ R

n

if there exist η : S ×S → R
n, h : S ×R

n → R and ρ ∈ R such that for all (x, p) ∈ S ×R
n,

f(x) − f(u) ≥ η(x, u)T [∇xf(u) + ∇ph(u, p)] + h(u, p) − pT∇ph(u, p).

In our work we introduce the concept of generalized higher order invexity which follows

as:
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1.2. A Literature Review on Duality Theory

Definition 1.1.5 A function f : R
n → R is said to be higher order ρ − (η, θ)−invex at

u ∈ S ⊆ R
n if there exist η, θ : S × S → R

n, h : S × R
n → R and ρ ∈ R such that for all

(x, p) ∈ S × R
n,

f(x) − f(u) ≥ η(x, u)T [∇xf(u) + ∇ph(u, p)] + h(u, p) − pT∇ph(u, p) + ρ‖θ(x, u)‖2.

Remark 1.1.2 (i) If ρ = 0, then the above definitions reduce to higher order invexity

with respect to η and h, for example see Gulati and Gupta (2009).

(ii) When h(u, p) = 0 and ρ = 0, then higher order ρ − (η, θ)−invexity reduces to

invexity with respect to η (see Chandra and Kumar (1998)).

(iii) If h(u, p) = 1
2
pT∇xxf(u)p and ρ = 0, the above higher order ρ − (η, θ)−invexity

reduces to second order invexity defined by Gulati et al. (2001) and Suneja et al.

(2003).

Many authors have worked on symmetric, variational and control problems under gen-

eralized invexity assumptions. For example see (Mond and Hanson (1967), Chen (1996),

Chen (2000), Nahak and Nanda (2000) etc.).

1.2 A Literature Review on Duality Theory of Symmet-

ric Mathematical Programming Problems, Varia-

tional problems and Control Problems

In this section we describe some earlier results on symmetric programming problems,

variational problems and control problems.

1.2.1 Symmetric Duality

In mathematical programming, a pair of primal and dual problems are called symmetric

if the dual of dual is the primal problem; that is, if the dual problem is expressed in the

form of the primal problem, then its dual is the original primal problem. The symmet-

ric dual programs have applications in the theory of games. However, the majority of
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Chapter 1: Introduction and Literature Survey

the dual formulations in the nonlinear programming do not possess this property. The

first symmetric dual formulation for quadratic programs was proposed by Dorn (1960).

Subsequently Dantzig et al. (1965) and Mond (1965) developed significantly the notion

of symmetric duality and established the duality results for convex and concave functions

with non-negative orthant as the cone. The same result has been generalized by Bazarra

and Goode (1973) to arbitrary cones. Later Mond and Weir (1991) weakened the condition

to pseudoconvexity and pseudoconcavity with non-negative orthant as the cone. Gulati

et al. (1997) studied the symmetric duality for the variational problems. Nahak (1998a)

considered a pair of multiobjective generalized symmetric dual nonlinear programming

problems and established desired duality theorems under ρ − (η, θ)−invexity assump-

tions. Mishra (2000) studied the second order symmetric duality under second order

F−convexity/F−concavity and second order F−pseodoconvexity/F−pseudoconcavity

for the second order Wolfe and Mond-Weir type model, respectively. Later Gulati et

al. (2001) extended the results of Mishra (2000) and proved weak duality relations un-

der η1−convexity/η2−concavity and η1−pseudoconvexity/η2−pseudoconcavity assump-

tions, respectively. They also established other duality relations by assuming the addi-

tional hypothesis of skew symmetry. Nahak and Nanda (2002) studied the symmetric

duality results for a pair of multiobjective programming problems under pseudoinvex-

ity assumptions. Suneja et al. (2003) considered a pair of multiobjective second order

symmetric dual problems of Mond-Weir type and established weak, strong and converse

duality results under the assumptions of η−bonvexity and η−pseudobonvexity. Khurana

(2005) studied the symmetric duality in vector optimization problems involving general-

ized cone-invex functions. Mishra and Yang (2005) established the Wolfe and Mond-Weir

type second order symmetric duality for the multiobjective mixed integer programs over

arbitrary cones. By using the concepts of efficiency and second order invexity/second

order pseudoinvexity, they established weak, strong and converse duality theorems for

the corresponding dual models. Gulati et al. (2008) formulated Wolfe and Mond-Weir
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1.2. A Literature Review on Duality Theory

type second order symmetric duals and established appropriate duality results under

η−bonvexity/η−pseudobonvexity assumptions.

Presently many researchers are working on higher order symmetric duality in mathe-

matical programming (see Gulati and Gupta (2007), Yang et al. (2008) and Mohamed and

El-Hady (2009)). Gulati and Gupta (2009) formulated the Wolfe and Mond-Weir type

higher order symmetric duals and established appropriate duality results under higher

order η−invexity/η−pseudoinvexity assumptions. Recently, Gulati and Geeta (2010a)

extended the same results of Gulati et al. (2008) for the multiobjective programming

problem under pseudoinvexity/K − F−convexity assumptions.

1.2.2 Variational Problem and Mathematical Programming

Calculus of variation is a powerful technique for the solutions of various problems appear-

ing in dynamics of rigid bodies, optimization of orbits, theory of variations and many other

fields. The subject whose importance is fast growing in science and engineering primarily

concern with finding optimal value of a definite integral involving a certain function sub-

ject to fixed point boundary conditions. Courant and Hilbert (1943), quoting an earlier

work of Friedrichs (1929), gave a dual relationship for a simple type of unconstrained vari-

ational problem. Subsequently, Hanson (1964) pointed out that some of the duality results

of mathematical programming have analogues in variational calculus. Exploring this rela-

tionship between the mathematical programming and the classical calculus of variations,

Mond and Hanson (1967) formulated a constrained variational problem as a mathemati-

cal programming problem and using Valentine’s optimality conditions (Valentine (1937))

presented its Wolfe type dual variational problem under convexity. Later Bector et al.

(1984) studied the Mond-Weir type duality for the problems of Mond and Hanson (1967)

to weaken the convexity requirement into pseudoconvexity and quasiconvexity. After that

Mond et al. (1988) introduced the notion of invexity in variational problems. Wolfe and

Mond-Weir type duals for multiobjective variational problems were formulated by Nahak
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and Nanda (1996). They also proved weak and converse duality theorems under invex-

ity assumptions and established a close relationship between these variational problems

and nonlinear multiobjective programming problems. Again Nahak and Nanda (1997b)

generalized the results of Nahak and Nanda (1996) under pseudoinvexity assumptions.

Mishra and Mukerjee (1994) generalized (F, ρ)−convexity introduced by Preda (1992)

and based on it Ahmad and Gulati (2005) established the duality results in multiob-

jective variational problems. Nahak and Nanda (2000) studied the symmetric duality

with pseudoinvexity in variational problems. Recently, Nahak and Nanda (2007) estab-

lished optimality conditions and duality results for the multiobjective variational problems

under V −invexity assumptions. As the concept of invexity has allowed the convexity re-

quirements in a variety of mathematical programming problems to be weakened, Mond

and Smart (1989) extended the duality results for a class of nondifferentiable variational

problems, treated in Chandra et al. (1985) with Wolfe and Mond-Weir type duals.

Since mathematical programming and classical calculus of variations have undergone

independent development, it felt that the mutual adaption of ideas and techniques may

prove fruitful. Motivated by this thought, Husain and Jabeen (2005) studied a class

of constrained variational problems involving higher order derivatives. They established

many duality results for the Wolfe and Mond-Weir type duals under invexity and gener-

alized invexity assumptions. Following the approach of Mangasarian (1975), Chen (2003)

formulated the second order duality for the class of constrained variational problems

min

∫ b

a

f (t, x(t), ẋ(t)) dt,

subject to

g (t, x(t), ẋ(t)) ≤ 0,

x(a) = 0, x(b) = 0; ẋ(a) = 0, ẋ(b) = 0,
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1.2. A Literature Review on Duality Theory

and gave many second order duality results (weak, strong and converse duality) under in-

vexity assumptions. Recently, Gulati and Geeta (2010b) studied the optimality conditions

and the converse duality result for the second order multiobjective variational problems.

1.2.3 Control Theory and Mathematical Programming

The theory of optimal control attracted great attention soon after Pontryagin and his

followers had published in the late 1950. Pontryagin and his students encountered some

problems in engineering and economics that urgently needed solutions. They answered

the questions, and in the process they identically introduced a new subject named as the

calculus of variations.

Just what is control theory? Who or what is to be controlled and by whom or by what,

and why is to be controlled? In a nutshell, control theory, sometimes called automation,

cybernetics or system theory, is a branch of applied mathematics that deals with the anal-

ysis and design of machinery and other engineering systems so that these systems work,

and work better than before.

The subject is important from four viewpoints: which are given below

(i) as an intellectual discipline within science and the philosophy of science;

(ii) as a part of engineering, with industrial applications;

(iii) as a part of the educational curriculum at university;

(iv) as a force in the world related to technological, economic and social problems of the

present and the future.

The applications of control problems are very frequent, for example, to engineering prob-

lems, like the control design for autonomous vehicles or impulsive control problems (see

Pereira (2001a), (2001b)), electrical power production (see Christensen (1987), Ringlee

(1965)), economy (see Intriligator (1971)), medicine (see Swam (1984)), ecology (see Leit-

mann (1981)) and computer integrated manufacturing and Robotics (see Dakev (1995)),

among others.
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Both the mathematical programming and control theory can be naturally dichotomized

into the study of properties of solution points, i.e., necessary and sufficient conditions, and

the development and analysis of effective computational methods for obtaining a solution.

Mathematical programming is recognized by its property of necessary conditions for op-

timality: the Kuhn-Tucker theorem, whereas control theory is recognized by Pontryagin’s

maximum principle. For the detail one can refer the very fundamental book written by

Craven (1978).

Broadly, the control problem is to be chosen, under given conditions, a control vector

u(t), such that the state vector x(t) is brought from some specified initial state x(t0) = x0

to some specific state x(t1) = x1 in such a way that the given functional minimized. A

more precise mathematical formulation is given in problem (CP) below.

(CP) min

∫ t1

t0

f (t, x(t), u(t)) dt, (1.38)

subject to

G (t, x(t), u(t)) = ẋ(t), (1.39)

H (t, x(t), u(t)) ≤ 0, (1.40)

x(t0) = x1, x(t1) = x2. (1.41)

A number of duality theorems for the control problems appeared in the literature (see,

for example, (1965), Kreindler (1966)). Mond and Hanson (1968a) established dual-

ity results for the above control problem (CP) under the convexity assumptions. Mond

and Smart (1988) had proved the above problem (CP) under invexity assumptions and

also shown that for invex functions, the necessary conditions for optimality in the con-

trol problem are also sufficient. Bhatia and Kumar (1995) formulated the multiobjective

control problems with ρ−pseudoinvexity, ρ−strictly pseudoinvexity, ρ−quasiinvexity or

ρ−strictly quasiinvexity. Wolfe and Mond-Weir type duals for multiobjective control prob-

lems was formulated by Nahak and Nanda (1998b). They also established weak, strong
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and converse duality results under pseudoinvexity/quasiinvexity assumptions. Zhian and

Qingkai (2001) discussed the duality results for multiobjective control problems with the

assumptions of generalized invexity defined by Mond and Smarts (1988). Nahak and

Nanda (1997a) discussed the efficiency and duality for multiobjective variational control

problems with (F, ρ)−convexity. Park and Jeong (2004) established the weak, strong and

converse duality theorems for multiobjective fractional generalized control problems. Gu-

lati et al. (2005) studied the optimality conditions and duality results for multiobjective

control problems. Arana et al. (2009a) provided a class of functionals, called KT-invex

and showed that Kuhn-Tucker points being an optimal solutions for the control problem.

Again Arana et al. (2009b) extended this result for new weaker conditions on the involved

functionals, which is FJ-invexity. Recently, Khazafi et al. (2010) introduced the classes of

(B, ρ)-type I and generalized (B, ρ)-type I, and derived various sufficient optimality condi-

tions and mixed type duality results for multiobjective control problems under (B, ρ)-type

I and generalized (B, ρ)-type I assumptions.

1.3 Objectives and Scope of the Thesis

The main objective of the thesis is to establish various duality results of different types

of optimization problems. There are many problems in real life situations for which the

first order dual has no solution whereas the second order dual has solutions. Also it has

been observed that the first as well as second order have no solution whereas the higher

order dual may provide a solution. This motivates us to introduce the second and higher

order duality of the general nonlinear programming problems. The second and higher

order duality for the symmetric mathematical programming have been established under

generalized invexity assumptions. The variational and control problems have been given

special attention to the optimization theory which is concerned with problems involving

infinite dimensional cases. Besides this, the optimization problems in general Banach

space have also been considered.
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Convexity assumptions makes the solution of an optimization problem relatively easy

and assures global optimal results. But there are many optimization problems which

contain nonconvex functions and functionals. Therefore, it is essential to generalize the

notion of convexity and to explore the extent of the validity of results to larger classes of

optimization problems.

1.4 Organization of the Thesis

The thesis is organized in nine chapters. The first chapter presents the introduction

and literature survey on the related work. Chapter 2 to Chapter 8 deals with a relevant

contribution of the author in the field of nonlinear optimization. The last chapter includes

a brief conclusion and outlines of some unsolved problems for further investigations. The

bibliography section and the research publications of the authors are presented at the end.

The chapter wise summary of the proposed work is given below.

In Chapter 2, two pairs of second order symmetric dual programs such as Wolfe

type and Mond-Weir type are considered and appropriate duality results are established.

Second order ρ − (η, θ)−bonvexity and ρ − (η, θ)−boncavity of the kernel function are

studied. It is also observed that for a particular kernel function, both these pairs of pro-

grams reduce to the general nonlinear problem introduced by Mangasarian. (A part of this

Chapter will appear as one chapter of the book Recent Contributions on Nonconvex

Optimization , Springer Publ., 2010.)

In Chapter 3, under the higher order ρ − (η, θ)−invexity assumptions, the weak,

strong and converse duality results are established for the following pair of Wolfe type

higher order symmetric dual problems.

Wolfe type primal problem (WP)

min
{

f(x, y) + h(x, y, p) − pT∇ph(x, y, p) − yT∇yf(x, y) − yT∇ph(x, y, p)
}

subject to
[

∇yf(x, y) + ∇ph(x, y, p)
]

∈ C∗
2 ,
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x ∈ C1,

Wolfe type dual problem (WD)

max
{

f(u, v) + g(u, v, r)− rT∇rg(u, v, r)− uT∇xf(u, v) − uT∇rg(u, v, r)
}

subject to
[

∇xf(u, v) + ∇rg(u, v, r)
]

∈ C∗
1

v ∈ C2,

where C1 and C2 represent closed convex cones in R
n and R

m respectively, with non-

empty interiors. f : S1 × S2 → R, g : S1 × S2 × R
n → R and h : S1 × S2 × R

m → R

are real differentiable functions and S1 ⊂ R
n and S2 ⊂ R

m are open sets such that

C1 × C2 ⊂ S1 × S2.

To weaken the higher order ρ − (η, θ)−invexity assumptions to higher order ρ −
(η, θ)−pseudoinvexity and higher order ρ − (η, θ)−quasiinvexity, Mond-Weir type higher

order duality has also been studied. It has been observed that several known results can

be deduced as special cases. If h(u, p) = 1
2
pT∇xxf(u)p, the higher order ρ−(η, θ)−invexity

defined in Chapter 3 reduces to second order generalized invexity of Chapter 2. Fur-

thermore, Chapter 2 is a particular case of Chapter 3 for h(x, y, p) = 1
2
pT∇yyf(x, y)p,

C1 = R
n
+ and C2 = R

m
+ .

The optimization problems discussed in the previous chapters are only for finite di-

mensional. However, a great deal of optimization theory is concerned with problems

involving infinite dimensional cases. Two types of problems fitting into this scheme such

as variational problems and control problems are considered in this thesis.

Chapter 4 describes the second order duality of the variational problem (VP).

(VP) min

∫ b

a

f (t, x(t), ẋ(t)) dt,

subject to

g (t, x(t), ẋ(t)) ≤ 0,

x(a) = 0, x(b) = 0; ẋ(a) = 0, ẋ(b) = 0,
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where f and g are twice continuously differentiable functions from I×R
n×R

n into R and

R
m, respectively. Under the ρ − (η, θ)−invexity assumptions on the functions involved,

duality relations (weak, strong and converse duality) between (VP) and the corresponding

Mangasarian and Mond-Weir type second order dual problems are established. (A part

of this Chapter has appeared in Computers and Mathematics with Applications ,

60 (2010) 3072–3081.)

Chapter 5 discusses the higher order duality and higher order generalized invexity

of the variational problem (VP). Higher order weak, strong and converse duality results

for the Mangasarian and Mond-Weir type variational problems are studied under the

generalized higher order invexity assumptions. For some particular values of the functions

defined on Chapter 5, the higher order generalized invexity and duality reduce to the

invexity and second order duality of Chapter 4.

Chapter 6 describes the ρ − (η, θ)−invex and generalized ρ − (η, θ)−invex functions

for the control problem (CP).

(CP) min

∫ b

a

f (t, x(t), ẋ(t), u(t)) dt,

subject to

g (t, x(t), ẋ(t), u(t)) ≤ 0,

G (t, x(t), ẋ(t), u(t)) = 0,

x(a) = γ1, x(b) = γ2; u(a) = δ1, u(b) = δ2,

where f , g and G are twice continuously differentiable functions from I × R
n × R

n × R
m

into R, R
r and R

s respectively. Under the above generalized invexity assumptions the

second order duality results (weak, strong and converse duality) of the Mangasarian and

Mond-Weir type control problems are established. (A part of this Chapter has appeared
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in International Journal of Optimization: Theory, Methods and Applications ,

1 (2009) 302-317.)

In Chapter 7, the concept of higher order duality and higher order generalized invexity

are introduced for the control problem (CP). Higher order weak, strong and converse

duality theorems for the Mangasarian and Mond-Weir type control problems are studied

under the generalized higher order invexity assumptions. It has been observed that the

invexity and second order duality defined on Chapter 6 is a special case of Chapter 7.

The optimization problems studied in the previous chapters are over R
n, but Chapter

4 to Chapter 7 deals with infinite dimensional problems. Chapter 8 deals with the

notion of ρ − (η, θ)−invex functions and generalized ρ − (η, θ)−invex functions between

Banach spaces. Mangasarian type second and higher order duality theorems are estab-

lished under ρ− (η, θ)−invexity assumptions. To more weaken the invexity requirements

Mond-Weir type model is also discussed. (A part of this chapter will appear in Nonlinear

Analysis: Hybrid Systems(2010).)
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