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Chapter 1

Introduction

In Operations Research (OR), a real life decision making problem is transformed

into a mathematical model that attempts not only to explain the behavior of the

system but also to �nd an optimal solution of that system. A Mathematical Pro-

gramming (MP) problem is an optimization problem where we maximize/ minimize

one or more mathematical function, known as objective function subject to cer-

tain constraints imposed on the problem, which are represented as mathematical

equations or inequations with some restrictions on the decision variables. An MP

problem is often extended over a parameter space p.

Mathematically, it can be represented as:

max /min : f(x; p) (1.0.1)

subject to

g(x; p) ≤ 0 (1.0.2)

x ≥ 0 (1.0.3)

where x ⊂ Rn and the domain of the functions f and g, which map Rn :→ R.

If we consider the linearity of the functions f and g, then the MP problem can

be divided into two di�erent problems, namely linear and nonlinear optimization.
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Chapter 1. Introduction

Similarly, some known subsets of MP problem are called constrained and uncon-

strained optimization (depending on presence or absence of constraints), single

objective and multi-objective optimization (depending on the number of objective

functions), continuous, discrete, mixed integer optimization (depending on the na-

ture of decision variables), deterministic, fuzzy, stochastic optimization (depending

on the parameter space). It has been observed that the parameters which form

parameter space may be multi-choice type i.e. there may exist a set of choices

for a parameter, out of which only one is to be selected to optimize the objective

function(s). Such type of MP problem is known as multi-choice optimization.

Multi-choice problems occur in real life at di�erent situations, namely selecting

a new car, selecting a new security personnel, implementing a new policy for a

community etc.

1.1 Motivation

Healy Jr (1964) formulated a Linear Programming (LP) problem with some zero-

one variables, which he named as multiple choice programming. Typically, he

formulated a mixed integer programming, where the integer variables must be

either zero or one, and the integer variables are divided into sets such that the sum

of variables in each set is unity. Beale and Tomlin (1970) noticed that the multiple

choice programming of non-convex optimization problems can be modeled with

Special Ordered Sets (SOS) of variables, which requires at most one of the variables

in each of these sets to be non-zero in the �nal solution. Since then multiple choice

programming has received wider attention from numerous researchers in the �elds

of integer programming and combinatorics.

Two types of SOS have been noticed in literatures, namely SOS1 and SOS2.

SOS1 are sets of non-negative variables where, for each set, at most one of the

variables can be non-zero in the �nal solution. The most common application

of SOS1 is multiple choice programming which can be found in the modeling

of many integer programming problems in location, distribution, scheduling, etc.
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1.1. Motivation

SOS2 requires that, for each set, at most two of the variables can be non-zero in

the �nal solution and must be adjacent. SOS2 has been widely used in separable

programming to model nonlinear functions using sets of piece-wise linear functions.

A general multiple choice programming may be expressed mathematically as

follows:

min : Z =
n∑
j=1

cjxj (1.1.1)

subject to

n∑
j=1

aijxj ≥ bi, i ∈M = {1, 2, 3, . . . ,m} (1.1.2)

∑
j∈St

xj = 1, t ∈ K = {1, 2, ..., k} (1.1.3)

xj ≥ 0, j ∈ J = {1, 2, 3, . . . , n} (1.1.4)

xj ∈ {0, 1}, j ∈ J ′ ⊆ J (1.1.5)

where

N ⊇ S = S1 ∪ S2 ∪ S3 ∪ .... ∪ Sk (1.1.6)

Sp ∩ Sq = ∅,∀p, q ∈ K, p 6= q (1.1.7)

The MP problem in equations (1.1.1)- (1.1.5) minimizes the objective function

in (1.1.1) subject to m regular constraints (1.1.2) with the additional requirement

to satisfy k multiple choice constraints (1.1.3). The non-negativity requirement

(1.1.4) and the integrality requirement (1.1.5) divide the variables in MP prob-

lem into two major classes of variables, namely S and N − S. Those in S are

binary variables, where S is composed by k mutually disjoint multiple choice sets,

S1, S2, . . . , Sk, indicated by equations (1.1.6) and (1.1.7). Those in N − S are

non-negative continuous variables. The constraint in equation (1.1.3) is referred

as generalized upper bounding constraints.
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Chapter 1. Introduction

Generalized upper bounding constraints are considered implicitly by Dantzig

and Van Slyke (1967) to modify simplex method by manipulating a reduced basis

(working basis) during simplex iterations in order to develop generalized upper

bounding technique, which has proved to be an e�ective solution approach to an

LP problem with generalized upper bounding constraints. A relation between

`generalized upper bounding technique' and `collapsed spanning tree procedure'

has been established by Robert and Terry (1983) not only to give a theoretical

framework to the �ndings of Dantzig and Van Slyke (1967) but also to justify the

manipulation of working basis during simplex iterations. Glover (1973) has studied

the e�ect of convexity cuts in the solution space of a multiple choice programming

problem theoretically to show that generated convexity cuts in multiple choice

programming are capable of eliminating some solution points that are not removed

by using the general integer programming techniques. Glover's study summarizes

several theorems that are helpful in developing the practical solution approach to

multiple choice programming with the multiple choice constraints and the zero-one

integrality requirement considered implicitly.

Beale and Tomlin (1970) noticed that the special procedure may take better ad-

vantage of non-convex problems with `special ordered sets of variables', that exist

in the multiple choice programming problems during analysis of the branch-and-

bound procedure by Beale and Small (1965) for non-convex optimization problems.

Beale and Tomlin (1970) proposed a weighted mean method to identify a partition-

ing point for every SOS to formulate two sub-problems so that the problem can be

solved using the branch-and-bound procedure. However, the performance of the

weighted mean method depends on the proper weight assigned to each variable,

usually through a user-de�ned reference row. Armstrong (1975) has considered

the multiple choice programming problem with a maximization objective function.

The regular constraints (1.1.2) have the strict equality instead of the inequal-

ity. Armstrong incorporates the partitioning strategy of weighted mean method

into the branch-and-bound procedure to examine the e�ect of using various types

of penalty criteria, such as the improved penalty (Armstrong and Sinha, 1974)
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1.1. Motivation

and the di�erent schemes of reordering the variables in St, t ∈ K for branching.

Like weighted mean method, network transformation method (Glover and Mul-

vey, 1982), reduced cost method (Martin Dennis et al., 1985), reformulation and

transformation technique (Lin Dennis and Edward, 1991) have been studied to �nd

exact solutions of multiple choice programming problems.

Some authors, namely Martin and Sweeney (1983); Bean (1984); Cooper and

Farhangian (1984); Chang and Tcha (1985) have proposed heuristic algorithms

in order to solve multiple choice programming. Some speci�c algorithms have

also been developed to deal with specially structured multiple choice programming

problems by (Johnson and Padberg, 1981; Dyer et al., 1984). However, the global

optimum of general multiple choice programming are often found using a modi�ed

branch-and-bound procedure analogous to the one used in general mixed integer

programming. The distinction of this modi�ed branch-and-bound procedure lies

in its partitioning (i.e., branching) strategy. Two partitioning strategies have been

proposed in the literatures, namely the commonly used weighted mean method

by Beale and Forrest (1976) and the reformulation-and-transformation technique

by Lin Dennis and Edward (1991). The heuristic technique, which is studied by

Martin and Sweeney (1983) is based on `Ideal column' algorithm, where as `Pivot

and complement' algorithm is used by Chang and Tcha (1985) to solve multiple

choice programming problem. Bean (1984) has proposed a `Lagrangian relaxation'

algorithm based on heuristic technique to solve the problem.

Let Ct, t ∈ K, is the set of cost coe�cients associated with k mutually disjoint

multiple choice sets, S1, S2, . . . , Sk. If we deeply go through the multiple choice

programming given in equations (1.1.1)- (1.1.5), we observe that the constraints

(1.1.3) and (1.1.5) forces the MP problem to select exactly one coe�cients from

each Ct, t ∈ K. Hence the aim of the multiple choice programming is to select ex-

actly one cost parameter from multiple choices to minimize the objective function.

This motivates us to extend the concept to other parameters, namely aspiration

level, resource usage per unit of activity, available resources etc. in an MP problem.
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Chapter 1. Introduction

1.2 Literature Survey

The optimization problem, which is presented in (1.0.1)-(1.0.3) is well-de�ned only

if the parameter space contains deterministic parameters. Parameters depend on

data of real world applications. Uncertainty in data is inevitable in most of real

world decision making problems. If parameter space p contains uncertain param-

eters, how small uncertain may be, we have to make sure that uncertainty in data

is appropriately incorporated into the decision making process. This involves the

selection of a suitable MP problem that �ts uncertain parameters. Uncertainties

are usually categorized either in randomness or vagueness, which lead to either

Stochastic Programming (SP) or Fuzzy Programming (FP).

The selection of MP model that �ts uncertain data normally depends on histor-

ical data. It has been realized that instead of real data the moments of the data

are available. In this case the data are considered as random. Appropriate SP

model is to be selected to deal with such data. An extensive study has been made

by several researchers and practitioners on optimization under uncertainty after

the initial investigation of Dantzig (1955). Stochastic optimization with chance

constraints has been studied by Charnes and Cooper (1959). In order to study the

optimization under uncertainty where discrete distributions are considered, Van

Slyke and Wets (1969) suggested L-shaped decomposition algorithm, which was

based on the idea of Benders (1962). Optimization under uncertainty can also be

solved by sample average approximation method of Kleywegt et al. (2002).

SP with the complete knowledge of probability distribution are mentioned in

most of the optimization problems under uncertainty. Such uncertain optimization

considers two distinct stochastic programming problems, namely:

(i) Recourse programming/ two stage programming (Dantzig, 1955),

(ii) chance constrained programming/ probabilistic programming (Charnes and

Cooper, 1959).
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Charnes and Cooper (1959, 1963) have suggested a chance constrained program-

ming technique which can be used to solve problems involving chance/ probabilis-

tic constraints. They suggested three models with di�erent objective functions are

given below:

(a) the E-model which maximizes the expected value of the objective function,

(b) the V-model which minimizes the generalized mean square of the objective

function,

(c) the P-model which maximizes the probability of the aspiration level, i.e. the

goal of the objective function.

In the literature of SP various models have been suggested by several researchers,

namely Infanger (1992); Kall et al. (1994); Birge and Louveaux (1997); Biswal et

al. (1998); Sahoo and Biswal (2009); Ferstl and Weissensteiner (2010).

Sometime, the assumption of complete knowledge of probability distributions of

random parameters does not hold in reality. Such type of uncertainty is known as

distribution ambiguity. Minimax (worst-case) principle has been used by Zackova,

(1966) to study distribution ambiguity. Several choices of modeling distribution

ambiguity have been suggested by Dupacova, (2001). Solution procedure depends

on the modeling choices. Shapiro and Kleywegt (2002) developed a sample average

approximation method for a class of �nite number of distributions, on the other

hand Riis and Andersen (2005) applied cutting plane method for a class of discrete

(scenario-based) distributions. The problem of moments is related to the charac-

terization of a feasible sequences of moments. Necessary and su�cient conditions

for sequences of moments with di�erent settings are provided by Schmdgen (1991);

Putinar (1993); Curto and Fialkow (1996). Moment results can also be used to

solve optimizations over polynomial (Parrilo, 2000; Lasserre, 2001). Two di�er-

ent bibliography have been presented by Stancu-Minasian and Wets (1976) and

Dupacov (2007).
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Chapter 1. Introduction

Sometime, the historical data are not clearly available i.e. data are vague in

nature. In this case Decision Maker (DM) selects FP method to �t the model.

Ambiguity and vagueness are two type of uncertainties, which are treated in the

FP. It can be classi�ed into three categories, namely `FP with vagueness', `FP with

ambiguity' and `FP with vagueness and ambiguity' (Inuiguchi et al., 1994).

FP with vagueness represents the �exibility of the target values of objective

functions as well as elasticity of the constraints. Therefore such type of FP is

known as �exible programming. The second category in FP treats ambiguous

coe�cients of objective functions and constraints but does not treat relaxation in

fuzzy goals and constraints. Linear programming with fuzzy coe�cients has been

investigated by several researcher, namely Tanaka and Asai (1984); Orlovski (1984).

A remarkable development has been made by Dubois and Prade (1987). Since the

fuzzy coe�cients can be regarded as possibility distributions on coe�cient values,

therefore such type of FP is called as possibilistic programming. FP also takes care

of ambiguous coe�cients as well as vague preference of DM. It is called as fuzzy

robust programming. A general MP problem with fuzzy coe�cients and fuzzy

preference relation has been proposed by Orlovsky (1980). Various FP techniques

are discussed by Inuiguchi et al. (1992); Lai and Hwang (1992a). A bibliography

has been presented in Wong and Lai (2010).

Nahmias (1978) introduced the concept of fuzzy variable as a possible theoreti-

cal framework from which a rigorous theory may ultimately be constructed about

fuzziness. Zimmermann (1985) presented nonsymmetric �exible linear program-

ming problems where the data are considered to be crisp but certain constraints

are considered to be �fuzzy inequality� (Lai and Hwang, 1992b,a). It has explored

the fuzzy variable linear programming problems. In his work he mentioned that

under certain conditions the nonsymmetric �exible linear programming problem is

equivalent to a fuzzy variable linear programming problem. Mahdavi-Amiri and

Nasseri (2007) show that an fuzzy variable linear programming problem is the

dual of a fuzzy number linear programming problem, in which the coe�cients of

the cost function are fuzzy. Therefore, methods for solving fuzzy variable linear
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1.3. Multi-Objective Mathematical Programming

programming problems can be used for solving both the nonsymmetric �exible lin-

ear programming and fuzzy number linear programming problems. Maleki et al.

(2000); Maleki (2002) presented an auxiliary problem for solving a fuzzy variable

linear programming problem, having only cost coe�cients are fuzzy. Solution and

duality of fuzzy variable linear programming is studied by Hashemi et al. (2006)

where all parameters and variables are of fuzzy. Defuzzi�cation methods also have

been studied and applied to fuzzy control and fuzzy expert systems. The major

idea behind these methods is to obtain a typical value from a given fuzzy set ac-

cording to some speci�ed characters (center, fuzziness, gravity, median, etc.) Lot�

et al. (2009) discussed fuzzy variable linear programming problems of which all

parameters and variable are triangular fuzzy numbers. They use the concept of

the symmetric triangular fuzzy number to defuzzify a general fuzzy quantity. They

�rst approximated the fuzzy triangular number to its nearest symmetric triangular

number, with the assumption that all decision variables are symmetric triangular

type.

1.3 Multi-Objective Mathematical Programming

Many decision making problems have multiple objectives to be optimized simul-

taneously. These objectives cannot be optimized simultaneously since they are

con�icting in nature. For example, a transportation problem may require the

minimization of the total transportation cost and minimization of the total trans-

portation time during transportation of goods. A production planning problem

may require the meeting of demands while minimizing the use of a particular

type of resource and maximizing pro�t. Mathematical formulation of a objective

function and the constraints in an MP problem usually includes some parameters

which are multi-choice in nature. In a resource allocation problem the parameters

may represent economic values such as costs of various types of production, ship-

ment costs, etc. When the constraints and its multiple objectives of an MP can

be expressed as linear functions, we have a Multi-Objective Linear Programming

(MOLP) problem. The basic approach to solve an MOLP problem is to deter-
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Chapter 1. Introduction

mine a solution that represents an acceptable trade-o� or compromise between

objectives, or to determine a set of such solutions and allow the DM to choose

a suitable solution among them. In this type of problem it is often necessary to

replace the concept of �optimum" solution with that of �best compromise� solu-

tion. Several methods such as weighting method, utility function method, ranking

or prioritizing method, e�cient solution method have been developed by Zeleny

(1976, 1982); Triantaphyllou (2000); Wallenius et al. (2008); Ho et al. (2010) to

solve multi-objective decision making problems.

In a multi-objective programming problem, parameters such as coe�cients and

right-hand side target values of the constraints are assumed to be known as deter-

ministic real numbers. However, in some real world decision making problems, we

may �nd some situations where the expert knowledge is not so certain to specify the

parameters as real numbers and cases where parameters �uctuate in certain inter-

val. For example, demands of certain products, availability of resources/manpower

cannot be estimated as a single real number with certainty. To cope with such un-

certainties, stochastic programming approaches were proposed by Stancu-Minasian

(1984); Slowinski and Teghem (1990). In stochastic programming approaches, we

generally estimate proper probability distributions of parameters. However, the es-

timation is not always a simple task because of the following reasons: (1) historical

data of some parameters cannot be obtained easily especially when we face a new

uncertain variable and (2) subjective probabilities cannot be speci�ed easily when

many parameters exist. SP is an optimization method based on the probability

theory, has been developed in various forms, namely two stage programming prob-

lem of Dantzig (1955), chance constrained programming of Charnes and Cooper

(1959). Especially, for multi-objective stochastic linear programming problems,

Stancu-Minasian (1984, 1990) has considered the minimum risk approach, while

Leclercq (1982); Teghem Jr et al. (1986) have proposed interactive methods. For

speci�c purposes, some diversi�ed SP methods have been discussed in the liter-

ature by Abdelaziz et al. (2007); Poojari and Varghese (2008); Aouni and La

Torre(2010).
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1.3. Multi-Objective Mathematical Programming

On the other hand, we can estimate the possible ranges of the uncertain param-

eters. In such cases, one can represent the parameters by possible ranges of fuzzy

sets. Fuzzy mathematical programming representing the uncertainty or ambigu-

ity in decision making situations by fuzzy set concepts has attracted attention of

many researchers, namely Lai and Hwang (1992b); Sakawa (1993); Rommelfanger

(1996). Some of the developments in the area of FP are based on the seminal

paper by Bellman and Zadeh (1970). The �eld has been enriched by the work

of Zimmermann (1978, 2001). Three types of FP is generally considered, namely

`FP with vagueness', `FP with ambiguity' and `FP with vagueness and ambiguity'.

FP with vagueness (�exible programming) deals with right hand side uncertainties

while FP with ambiguity (possibilistic programming) takes care of uncertainties in

all the involved parameters in an MP. In all types of FP, the membership function

is used to represent the degree of satisfaction of constraints, the decision-maker's

expectations about the objective function achievement level, and the range of un-

certainty of coe�cients. Fuzzy multi-objective linear programming, �rst proposed

by Zimmermann (1978). Later various forms have been presented by several au-

thors. For speci�c purposes, many diversi�ed MP methods have been discussed

in the literature by Parra et al. (1999); Lahdelma et al. (2005); Rommelfanger

(2007).

Multi-Objective Transportation Problem (MOTP) is a special type of multi-

objective decision making problem, that usually involves multiple, con�icting, and

incommensurable objective functions. The transportation problem is one of the

earliest application of linear programming problem. Hitchcock (1941) was the

originator of transportation problem. Dantzig (1963), then followed by Charnes et

al. (1953) presented e�cient methods using the simplex algorithm in 1947. The

balanced cost minimizing transportation problem is very widely studied and has

many applications. Appa (1973) studied some useful variants of the cost mini-

mizing transportation problem. The cost minimizing transportation problem with

mixed constraints was discussed by Brigden (1974). He presented a study on a �ow

constrained cost minimizing transportation problem. Another important class of
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Chapter 1. Introduction

transportation problem is time minimizing transportation problem also called the

bottleneck transportation problem. Perhaps, original contribution in the �eld of

the time minimizing transportation problem is due to Hammer (1971). The trans-

portation problem is also used to solve the time-cost minimization problem by

Bhatia et al. (1976). Aneja and Nair (1979) presented a bi-criteria transportation

problem. Lee and Moore (1973) studied the optimization of MOTP. Diaz (1979)

and Isermann (1979) proposed the procedures to generate all non-dominated solu-

tions to the multi-objective linear transportation problem. Intensive investigations

on MOTP have been made by several researchers, namely Diaz (1978); Ringuest

and Rinks (1987); Bit et al. (1992, 1993a); Prasad et al. (1993); Li et al. (2001);

Liu and Zhang (2005); Gupta and Mehlawat (2007).

Transportation problem is a special type of LP problem stemmed from a net-

work structure consisting of a �nite number of nodes and arcs attached to them.

E�cient algorithms have been developed for solving the transportation problem

when the cost coe�cients and the supply and demand quantities are known ex-

actly. However, there are cases that these parameters may not be presented in a

precise manner. For example, the unit shipping cost may vary in a time frame.

The supplies and demands may be uncertain due to some uncontrollable factors.

Uncertainty is due to involvement of random parameters and fuzzy parameters.

However, in some cases it is believed that the demand in transportation prob-

lem may be multi-choice type. Algorithm for solving transportation problem with

fuzzy constraints is introduced by ÓhÉigeartaigh (1982). Ammar and Youness

(2005) investigated the e�cient solution and stability of MOTP with fuzzy cost

coe�cients, supply, and demand quantities. Intensive investigations on MOTP

with fuzzy parameters have been made by several researchers, namely Luhandjula

(1987); Chanas and Kuchta (1996); Hussein (1998); El-Wahed (2001).

The stochastic transportation problem is used to determine the optimal quan-

tities of a commodity to be shipped from a number of supply points to a number

of demand points, at which the amount of goods demanded is uncertain, but de-

scribed by stochastic variables with known distribution functions. The stochastic

12
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1.3. Multi-Objective Mathematical Programming

transportation problem was described by Elmaghraby (1960). Williams (1963)

studied stochastic transportation model for petroleum transport as well proposed

a cross decomposition algorithm to solve said problem. Holmberg and Joernsten

(1984) compared several di�erent methods based on decomposition techniques and

linearization techniques for this problem. Intensive investigations on stochastic

transportation problem with random parameters have been made by several re-

searchers, namely Cooper and Leblanc (1977); Qi (1987); Chalam et al. (1994);

Holmberg (1995).

If the data of the problem possess randomness then the MP model takes the form

of SP model. Stochastic programming approaches can be used to solve such type

of SP model. Similarly, if the data of the problem contains imperfect information

as vagueness then FP model can be formulated. Fuzzy programming approaches

can be used to solve such type model. Interval programming method takes care

of some mathematical programming problems, which contains the data of �nite

interval in its parameter space. All the elements of the interval are considered

when the problem is solved by mathematical programming techniques. In practice,

all parameters may not be always continuous. Therefore some discrete choices can

be considered for mathematical modeling. That is a parameter may take a set of

discrete values. Such type of MP is named as Multi-Choice Programming (MCP).

In the literature there exists a few research articles on MCP (Chang, 2007, 2008;

Liao, 2009; Lee et al., 2009; Liao and Kao, 2010; Paksoy and Chang, 2010).

MCP is an MP model, in which DM is allowed to set multiple number of choices

for a given parameter. Ravindran et al. (1987) have considered an MP model,

where a choice can be made among at least two parameters, so that only one must

hold. For example, there may be a choice out of N resources only one of them is

to be selected optimally. For this purpose they have presented an equivalent MP

model using N numbers of binary (0/1) variables.

Chang (2007) has presented an MP model, namely multi-choice goal program-

ming for multi-objective decision making problems. Multi-choice goal program-

13



Cop
yri

gh
t

IIT
 K

ha
rag

pu
r

Chapter 1. Introduction

ming allows the DM to assign multiple aspiration levels for a goal to avoid excess

deviation from the decision.

The conceptual expression of multi-choice goal programming is as follows:

min :
n∑
i=1

ωi | fi(x)− g(1)i or g
(2)
i or . . . g

(ki)
i | (1.3.1)

subject to
n∑
i=1

ωi = 1 (1.3.2)

ωi ≥ 0, i = 1, 2, ..., n (1.3.3)

x ∈ S (1.3.4)

where ωi is the weight attached to the i-th goal; fi(x) is a linear function of

x = (x1, x2, . . . , xn)T ; g(ki)i is the ki-th target value of i-th goal; S is feasible region

and x is a decision vector.

Existing GP technique cannot be used to solve the multi-choice goal program-

ming due to the presence of multiple aspiration levels. However, in order to deal

with the multiple aspiration levels multiplicative terms of binary variables can be

used in the model to �nd an equivalent MP model, which can be solved using

standard mathematical programming techniques.

The use of multiplicative terms of binary variables is not a straight forward

approach for implementation. It becomes a simple expression when the number

of aspiration levels assigned to a goal is an integral power of 2. Further, Chang

(2008) replaced multiplicative terms of the binary variables using continuous vari-

able. Although the transformed MP model does not involve multiplicative terms of

binary variables and correspond to a linear form of multi-choice goal programming

which can be solved by linear programming method. However, it is unable to take

care of all the choices of a parameter. In stead of considering discrete choices, the

transformed MP model treats the multi-choice parameter as an interval by select-

ing minimum and maximum elements from the set as lower and upper limit of the
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interval, respectively. Some authors, namely Liao (2009); Lee et al. (2009); Liao

and Kao (2010) have applied multi-choice goal programming approach of Chang

(2007) to solve some real life decision making problems. Paksoy and Chang (2010)

have applied revised multi-choice goal programming approach of Chang (2008) in

order to deal with multi-choice parameters to solve a supply chain network design

problem.

1.4 Solution Methodology

We present a Multi-Objective Mathematical Programming (MOMP) model as fol-

lows:

max /min : Z = f(x) (1.4.1)

subject to

x ∈ S, (1.4.2)

where Z=[Z1, Z2, · · · , ZR]T represents the objective function f(x) = [f1(x), f2(x),

· · · , fR(x)]T and R ≥ 2 is a vector valued function. The feasible region is the set

S = {x ∈ Rn | hi(x) ≤ bi,∀i = 1, 2, 3, ...,m, x ≥ 0}.

It can also be expressed as:

S = {x ∈ Rn | gi(x) ≤ 0,∀i = 1, 2, 3, ...,m, x ≥ 0}

where gi(x)= hi(x)− bi, i = 1, 2, ...,m.

MOMP problems arise in every branches of science, engineering, management

science, and social science. Several methods have been suggested and a wide range

of e�cient algorithms have been employed to solve MOMP problems (Evans, 1984;

Cohon, 2004; Wallenius et al., 2008; Przybylski et al., 2010).
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1.4.1 Fuzzy Programming Method

Fuzzy Programming has been applied successfully in Multi-Criteria Decision Mak-

ing (MCDM) problems and in MOMP problems as a tool. In MCDM problems

the objective functions are represented by fuzzy sets and the decision set is de-

�ned as the intersection of all the fuzzy sets associated with the constraints. The

decision rule is to select the solution having the highest membership value of the

decision set. Zadeh (1965) �rst introduced the concept of fuzzy set theory. Later

Zimmermann (1978) used fuzzy set theory concept with suitable choice of mem-

bership function and derived a fuzzy linear program, which is identical to present

day maxi-min problem. He derived that the solutions obtained by fuzzy linear

programming technique are always e�cient. Biswal (1992) has presented fuzzy

programming technique to solve a multi-objective geometric programming prob-

lem by introducing a new type of membership function. Bit et al. (1992, 1993b)

have applied fuzzy programming technique to solve a multi-objective transporta-

tion problem. Fuzzy linear programming technique has been used in many areas

in last three decades. Steps of the fuzzy programming technique are given below:

Step-1: Select the �rst objective function (i.e. Zr(x), r = 1) and solve it as a sin-

gle objective MP problem subject to the constraints. Let x(1) be the ideal solution.

Then select the second objective function and �nd the ideal solution as x(2), con-

tinue the process R times for R di�erent objective functions. Let x(1), x(2), . . . , x(R)

be the ideal solutions for the respective objective functions.

Step-2: Evaluate all these objective functions at all these ideal solutions and

formulate a pay-o� matrix (Table 1.1) of size R by R as follows.

Table 1.1: Pay-O� Matrix

Z1(x) Z2(x) . . . ZR(x)

x(1) Z11 Z12 . . . Z1R

x(2) Z21 Z22 . . . Z2R
...

...
...

...
...

x(R) ZR1 ZR2 . . . ZRR
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1.4. Solution Methodology

Step-3: From pay-o� matrix (Table 1.1) determine the bounds for r-th objective

function Zr(x), r=1,2,...,R. If an objective function is of maximization type �nd

the best upper bound U∗r and worst lower bound L−r . If an objective function is

of minimization type �nd the best lower bound L∗r and worst upper bound U−r ,

r=1,2,. . . ,R.

Step-4: Associate a membership function µZr(x) to the r-th objective function

Zr(x) as:

µZr(x) =


1, if Zr(x) ≥ U∗r
Zr(x)−L−

r

U∗
r−L

−
r
, if L−r < Zr(x) < U∗r , r = 1, 2, 3, ..., R

0, if Zr(x) ≤ L−r

(1.4.3)

6

-
0

1

L−r U∗r Zr

µZr

Figure 1.1: Membership Function of a Vector Maximization Problem

µZr(x) =


1, if Zr(x) ≤ L∗r
U−
r −Zr(x)
U−
r −L∗

r
, if L∗r < Zr(x) < U−r , r = 1, 2, 3, ..., R

0, if Zr(x) ≥ U−r

(1.4.4)

Step-5: (a) Use max-min operator with an augmented variable λ and formulate

a single objective crisp MP problem as:

max : λ (1.4.5)
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Chapter 1. Introduction

-

6

1

L∗r U−r
0

µZr

Zr

Figure 1.2: Membership Function of a Vector Minimization Problem

subject to

λ ≤ µZr(x), r = 1, 2, 3, . . . , R (1.4.6)

x ∈ S (1.4.7)

where S is the feasible region of the MOMP model.

(b) Similarly, if we use min-max operator with an augmented variable λ, a

single objective crisp MP problem can be formulated as:

min : λ (1.4.8)

subject to

λ ≥ µZr(x), r = 1, 2, 3, . . . , R (1.4.9)

x ∈ S (1.4.10)

where S is the feasible region of the MOMP model.

Step-6: Solve the crisp model by using an appropriate mathematical programming

method to �nd an optimal compromise solution x∗. Then evaluate all the objective

functions at the optimal compromise solution x∗.

1.4.2 Goal Programming Method

Goal Programming (GP) is an important technique for DM to solve MCDM prob-

lems in �nding a set of satisfying solutions. It was �rst introduced by Charnes and
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1.4. Solution Methodology

Cooper (1957) and further developed by Lee (1972); Ignizio (1985a); Tamiz et al.

(1998); Romero (2001). Ignizio (1985b); Romero et al. (1998); Biswal and Acharya

(2008) established a framework that simpli�es the problem for modi�ed simplex

method. At �rst, Ignizio developed under the name of MULTIPLEX, a uni�ed

structure encompassing the optimization methods such as: lexicographic vector

minimization, Archimedean GP, lexicographic GP, and MINIMAX GP(Chebyshev

GP).

The GP model is one in which all objectives are converted into goals. This con-

version is accomplished by an `aspiration level ' to each objective. Then one seeks

the solution that minimizes the `deviation' between that solution and the aspired

solution. This fundamental idea leads to the following analytical framework. The

general structure of the i-th goal can be expressed as:

hi(x) + ηi − ρi = bi, i = 1, 2, . . . ,m,

where m : total number of goals,

hi(x) : the mathematical expression for the i-th attribute,

bi : the target values for the i-th goal,

ηi : the negative deviational variable, i.e., quanti�cation of the under-achievement

of i-th goal (ηi ≥ 0 ),

ρi : the positive deviational variable, i.e., quanti�cation of the over-achievement

of i-th goal (ρi ≥ 0).

After the formulation of all m number of goals, the next aim is to detect the

unwanted deviational variables. The variables are unwanted in the sense that they

are ones that DM wants to minimize. To illustrate this procedure the following

cases are presented:

(i) Let's consider hi(x) ≥ bi, as case-I where goal is attached to a minimization

type objective. In this case the DM does not want under-achievement with
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Chapter 1. Introduction

respect to target bi. Consequently, the unwanted deviational variable ηi to

be minimized.

(ii) Let's consider hi(x) ≤ bi, as case-II where goal is attached to a maximization

type objective. In this case the DM does not want over-achievement with

respect to target bi. Consequently, the unwanted deviational variable ρi to

be minimized.

(iii) Let's consider hi(x) = bi, as case-III where goal is to be achieved exactly.

In this case the DM neither wants over-achievement nor under-achievement

with respect to target bi. Hence both the negative deviational variable ηi

and positive one ρi are equally unwanted, making it necessary to minimize

ηi + ρi.

The purpose of GP is to minimize the deviations between the achievement of

goals and their aspiration levels. The minimization process can be accomplished

with di�erent GP variant. Basically, there are only three GP variants reported

in literature. The most widely used is Lexicographic Goal Programming (LGP),

which attaches preemptive priorities to the di�erent goals in order to minimize

the unwanted deviational variables in a lexicographic order. The second one is

Weighted Goal Programming (WGP), which attempts to minimize a composite

objective function formed by a weighted sum of unwanted deviational variables.

The third is MINIMAX (Chebyshev) Goal Programming, which attempts to min-

imize the maximum deviation from stated goals.

We present a general goal programming model for the MOMP problem given in

equations (1.4.1)-(1.4.2) as:

Find x = (x1, x2, · · · , xn)T , so as to

lexicographically min : ā = {a1, a2, ..., aP}

= {a1(η, ρ), a2(η, ρ), ..., aP (η, ρ)} (1.4.11)
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1.4. Solution Methodology

Subject to

hi(x) + ηi − ρi = bi, i = 1, 2, 3, ...,m (1.4.12)

fr(x) + ηr+m − ρr+m = bm+r, r = 1, 2, ..., R (1.4.13)

ηi ≥ 0, ρi ≥ 0, i = 1, 2, ...,m+R (1.4.14)

ηi.ρi = 0, i = 1, 2, ...,m+R (1.4.15)

x ≥ 0 (1.4.16)

where ai(η, ρ), i = 1, 2, ..., P are the linear functions of η, ρ, and P is the number

of priorities in the achievement function ā.

1.4.3 Weighting Method

The weighting method is one of the basic method for solving multi-objective op-

timization problems. The idea of assigning weights to various objective func-

tions, combining these into a single objective function, and parametrically varying

weights to generate non-dominated solutions which has been proposed by Zadeh

(2002). A basic assumption in the weighting method is that the objective functions

are measured in the same unit. If the objective functions are not in the same unit,

it can be transformed into the same unit before applying the method.

Mathematically, the weighting method can be stated as follows:

max : Z =
R∑
r=1

wrZr(x) (1.4.17)

subject to

R∑
r=1

wr = 1, wr ≥ 0, r = 1, 2, 3, ..., R (1.4.18)

x ∈ S (1.4.19)
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Chapter 1. Introduction

where S is the feasible region of the multi-objective MP problem. The coe�cient

wr operating on the r-th objective function Zr, is called a weight and can be

interpreted as the relative weight of that objective function when compared to the

other objective functions.

If the weights of various objective functions are interpreted as representing the

relative preference of some DM, then the solution is equivalent to the best compro-

mise solution i.e. the optimal solution relative to a particular preference structure.

Also the optimal solution to the problem is a non-dominated solution provided all

the weights are positive.

1.5 Preliminaries on Fuzzy Set Theory

De�nition 1.5.1 (Fuzzy Subset) Let X be a collection of distinct objects and x

be an element of X. Then a fuzzy set Ã in X is a set of order pairs

Ã = {(x, µÃ(x)) | x ∈ X}

where µÃ(x) is called the membership function or grade function of Ã : X → M .

Usually M is considered as the closed interval [0, 1].

De�nition 1.5.2 (r-level set) The set of elements which belong to the fuzzy set

Ã at least to the degree r is called the r-level set. Mathematically, it is represented

as:

Ar = {x ∈ X | µÃ(x) ≥ r}

and

A′r = {x ∈ X | µÃ(x) > r}

is called a strong r-level set.

De�nition 1.5.3 A fuzzy number Ã in parametric form is an interval in the form

[a(r), a(r)], where a(r) and a(r) are linear functions of r, 0 ≤ r ≤ 1, which satis�es

the following conditions:
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1.5. Preliminaries on Fuzzy Set Theory

(i) a(r) is a bounded, left continuous non-decreasing function over [0,1],

(ii) a(r) is a bounded, right continuous non-increasing function over [0,1],

(iii) a(r) and a(r)are right continuous at 0,

(iv) a(r) ≤ a(r), 0 ≤ r ≤ 1.

We denote this family of fuzzy numbers by F .

A trapezoidal fuzzy number is represented as Ã=(aL, aU , aα, aβ), where the in-

terval [aL, aU ], aα, aβ denote the core, left, and right spreads of trapezoidal fuzzy

number, respectively.

The membership function of the trapezoidal fuzzy number is de�ned as:

µ(Ã)(x) =



1
aα

(x− aL + aα), aL − aα ≤ x ≤ aL

1, x ∈ [aL, aU ]

1
aβ

(aU − x+ aβ), aU ≤ x ≤ aU + aβ

0, otherwise.

(1.5.1)

Its parametric form is given by

A(r) = aL − aα + raα, Ā(r) = aU + aβ − raβ.

Support function of Ã is de�ned as follows:

Supp(A) = {x|A(x) > 0},

where {x|A(x) > 0} is the closure of {x|A(x) > 0}.

The addition and scalar multiplication of fuzzy numbers are de�ned by the ex-

tension principle of Bellman and Zadeh (Bellman and Zadeh, 1970; Zimmermann,

1978.
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De�nition 1.5.4 For arbitrary fuzzy numbers Ã= [a(r), a(r)] and B̃= [b(r), b(r)],

the distance is calculated using the formula

d(Ã, B̃) =
[ ∫ 1

0

(a(r)− b(r))2dr +

∫ 1

0

(ā(r)− b̄(r))2dr
] 1

2

(1.5.2)

1.5.1 Nearest Trapezoidal Defuzzi�cation

Let [b(r), b(r)] be the parametric form of fuzzy number B̃. To obtain a trape-

zoidal fuzzy number Ã=(aL, aU , aα, aβ), which is the nearest to B̃ (not equal), we

minimize the distance

min : d(Ã, B̃) =
[ ∫ 1

0

(a(r)− b(r))2dr +

∫ 1

0

(ā(r)− b̄(r))2dr
] 1

2

(1.5.3)

=
[ ∫ 1

0

((aL − aα + raα)− b(r))2dr +

∫ 1

0

((aU + aβ − raβ)− b̄(r))2dr
] 1

2

(1.5.4)

In order to minimize d(Ã, B̃), it is su�cient to minimize the function D(Ã, B̃) =

d2(Ã, B̃) (Saeidifar and Pasha, 2009).

min : D(Ã, B̃) =
[ ∫ 1

0

((aL − aα + raα)− b(r))2dr +

∫ 1

0

((aU + aβ − raβ)− b̄(r))2dr
]

(1.5.5)

We apply the necessary and su�cient conditions to �nd the minimum. Therefore

we take the partial derivatives of the function in (1.5.5) with respect to left modal

value aL, right modal value aU , left spread aα and right spread aβ and equate them

to zero. Thus we have four equations.

∂D(Ã, B̃)

∂aL
= 2

∫ 1

0

((aL − aα + raα)− b(r))dr = 0 (1.5.6)

∂D(Ã, B̃)

∂aU
= 2

∫ 1

0

((aU + aβ − raβ)− b̄(r))dr = 0 (1.5.7)

∂D(Ã, B̃)

∂aα
= 2

∫ 1

0

((aL − aα + raα)− b(r))(r − 1)dr = 0 (1.5.8)
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1.6. Mathematical Tools and Techniques

∂D(Ã, B̃)

∂aβ
= 2

∫ 1

0

((aU + aβ − raβ)− b̄(r))(1− r)dr = 0 (1.5.9)

Solving the equations for aL, aU , aα and aβ, we obtain

aL =
aα

2
+

∫ 1

0

b(r)dr (1.5.10)

aU = −a
β

2
+

∫ 1

0

b̄(r)dr (1.5.11)

aα = 6

∫ 1

0

b(r)(2r − 1)dr (1.5.12)

aβ = 6

∫ 1

0

b̄(r)(1− 2r)dr (1.5.13)

To check the su�cient condition we �nd the Hessian matrix of D(Ã, B̃) as:

H =


2 0 −1

2
0

0 2 0 1
2

−1 0 1
3

0

0 1 0 1
3

 (1.5.14)

All the eigenvalues of the Hessian matrix H are computed as positive. So the

Hessian matrix H is positive de�nite. Hence it satis�es the su�cient condition

(Grzegorzewski and Mrówka, 2003).

1.6 Mathematical Tools and Techniques

The blitz of the computer revolution has given a great momentum to the develop-

ment of computational techniques in OR. In order to deal with the complex real life

decision making problems e�ectively, a huge amount of computation is required.

To solve such complex problem a huge amount of time is needed. It may not be

easy to check the correctness of the solution manually. The development of com-

puters to perform arithmetic calculations thousands or even millions of times faster

than a human being is a wonderful advantage in OR. In 1980, the development of
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increasingly powerful personal computers accompanied by good software packages

for computing OR problems has attracted researchers and practitioners from in-

terdisciplinary areas. Now-a-days OR softwares are frequently used by scientists

and researchers to solve OR problems.

MP problems with multi-choice parameters are di�cult to solve due to the

multiple-choice component. There is no direct methodology to solve the prob-

lem. Some transformation techniques are presented to solve the problem. All the

transformed models are mixed integer type NLP problem.

If the objective function and the constraints are convex functions, then the mixed

integer NLP is known as convex mixed integer NLP, otherwise it is known as non-

convex mixed integer NLP. The optimal solutions to non-convex mixed integer

NLPs are local in nature, i.e. solutions are optimal within a restricted part of

the feasible region (neighborhood), but it is not the entire feasible region. This

does not happen when the objective function and the constraints are linear. The

local optima are also the global optima in case of convex-mixed integer NLP i.e.

solutions are optimal over the entire feasible region. In order to solve NLP, there is a

need of calculating the �rst and second order derivatives of the nonlinear functions

involved in the model. Therefore, the nonlinear functions are assumed to be smooth

in optimization tools. Standard �le format to express NLP/ mixed integer NLP

problems is not available due to requirement of derivatives. The introduction of

modeling languages provide a unique, intuitive, and �exible environment to express

both linear and nonlinear models. These frameworks are interfaced to most of

the modern solvers and provide a tool for computing the approximation of the

derivatives required in the NLP/mixed integer NLP case.

Mixed integer NLP problems are NP-hard as they are the generalization of mixed

integer (binary) linear programming problems, which are also NP-hard. There-

fore mixed integer NLPs are very di�cult to solve in practice. The presence of

non-convexities in the MP model makes the problems more harder to solve. The

availability of software for �nding solutions to mixed integer NLP problems via the
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modeling language makes our computation easy. Since, GAMS/LINDOGLOBAL

by Schrage (2008b) has the best score (79%) in the number of correctly claimed

global optimal solutions to general nonlinear optimization problems with continu-

ous as well as discrete variables, therefore in this thesis, GAMS/LINDOGLOBAL

Schrage (2008b) solver and LINGO Schrage (2008a) software have been used to

compute the MP models.

GAMS/LINDOGLOBAL supports most mathematical functions, including non-

smooth, discontinuous functions. The GAMS/LINDOGLOBAL optimization pro-

cedure employs branch-and-cut methods to break an NLP model into a list of

subproblems. The GAMS/LINDOGLOBAL framework allows to implement both

exact and heuristic methods in solution procedure. The GAMS/LINDOGLOBAL

solver is accessible in four ways (Lin and Schrage, 2009) as follows:

(i) LINGO modeling language as the global solver option (Schrage, 2008b),

(ii) modeling system GAMS as the global solver option LINDOGLOBAL (Brooke

et al., 2009),

(iii) spreadsheet optimizer as the global solver option (Savage, 1991),

(iv) LINDO API as a callable library (Lin and Schrage, 2009).

An optimal solution (probably global optimal) is obtained after a �nite number

of steps within given appropriate tolerances. One can use Alpha-Ecp (Westerlund

and Pörn, 2002), BARON (69%) (Sahinidis and Tawarmalani, 2005), BONMIN

(Lougee-Heimer, 2003), Cocos (76%) (Schichl et al., 2010), KNITRO (47%) (Byrd

et al., 2006) etc. in GAMS platform to solve mixed integer NLPs. The test

environment (Domes et al., 2010) can be referred for more details of updated

tools.

1.7 Objectives and Scope of the Thesis

Objectives of the present work have been de�ned after an extensive literature

survey based on state-of-the art problems of MP models and the parameter space
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Chapter 1. Introduction

associated with them. The main idea of de�ning the objectives for the present

work lies not only in formulating di�erent MP models, when the parameters are

multi-choice type but also to propose solution methodologies for MCP problems.

The main objectives are as follows:

(i) To study the solution procedure of Multi-Choice Linear Programming (MCLP)

problems using some binary variables for particular cases (for limited number

of choices) and then to extend it for a general case (for any �nite number of

choices),

(ii) to study the solution procedure of MCLP problems using some integer vari-

ables by formulating interpolating polynomials for the multiple choices,

(iii) to implement MCP methods in order to solve some probabilistic linear pro-

gramming problems involving multi-choice parameters,

(iv) to implement MCP methods for fuzzy linear programming problems involving

multi-choice parameters,

(v) to apply multi-choice programming to some real life decision making prob-

lems.

A linear programming problem has several parameters, namely cost coe�cients,

technical coe�cients, resource limits (right hand side parameters of the constraints).

In the thesis, the resource limits are considered as multi-choice type. MCP can

be solved using genetic algorithm, neural network, transformation techniques etc.

Transformation techniques have been used in order to formulate mathematical pro-

gramming model for the multi-choice parameters. MCP can be applied to other

MP problems, namely quadratic programming, geometric programming, bilevel

programming, multilevel programming, and fractional programming problems. In

this thesis deterministic, probabilistic, and fuzzy programming problems involving

multi-choice parameters are discussed within the scope of the thesis.
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1.8 The Structure of the Thesis

The research work under report and evaluation, has been organized into seven

chapters. A brief outline of the same is described as follows:

Chapter 1 introduces a brief overview on the broad area of OR. Emphasis has

been given on fuzzy programming, stochastic programming, multi-choice program-

ming, which depends on the parameter space. A brief survey on fuzzy optimization,

stochastic optimization, and MCP has been presented. It covers a review on the-

ory, algorithm, and application. A brief review on tools and techniques commonly

used in solving mixed integer Non-Linear Programming (NLP) problems are also

presented. On the basis of the parameter space of MP models, the main objectives

of the present work have been de�ned.

Chapter 2 considers MCLPs, where the right hand side parameters of some

constraints are multi-choice type. Such problems cannot be solved by standard

linear programming approaches. In order to solve such problem an equivalent MP

model is formulated. This chapter covers a detailed description of transformation

techniques of MCLPs with the help of some binary variables. It transforms an

MCLP to a standard MP model, which can be solved by existing mathematical

programming techniques. For each of the constraint there may exist multiple

number of goals, out of which exactly one is to be selected. The selection of goals

should be in such a manner that the combination of choices for each constraint

should provide an optimal value of the objective function. There may be more

than one combination which may provide an optimal solution. Binary variables

are introduced in the transformation technique to formulate a mixed integer NLP

model. Using standard nonlinear programming software optimal solution of the

proposed model is obtained. For better demonstration of the methodology, it has

been restricted to at best eight alternatives for a goal in the initial stage. Then,

two di�erent cases for a generalized transformation technique are presented to

transform an MCLP problem to an equivalent MP model. Using any one of these

transformation techniques the transformed model can be derived. Apart from
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single objective MCLP, we also consider a multi-objective MCLP problem, where

some of the right hand side parameters of the constraints are multi-choice type.

The selection of goals should be in such a manner that the combination of choices

for each set should provide best compromise solution. Transformation techniques

have been presented to obtain an equivalent multi-objective MP model, which is

solved by fuzzy programming method. Each model is illustrated with a numerical

example.

When we apply the transformation techniques presented in Chapter 2 to for-

mulate an equivalent MP model for an MCLP problem involving more number of

choices for a parameter, the following di�culties are observed:

(i) selecting binary variables,

(ii) selecting bounds for the sum of binary variables,

(iii) restricting the sum of binary variables using auxiliary constraints.

In order to avoid such di�culties, Chapter 3 describes the application of some

numerical methods, namely interpolating polynomial methods for multiple choice

parameters. Interpolating polynomials are formulated for all the multi-choice pa-

rameters. The multi-choice parameters are replaced by corresponding interpolating

polynomials with integer restrictions to formulate a mixed integer NLP problem,

which can be solved using nonlinear programming techniques. Formulation as

well as solution procedure for solving multi-choice multi-objective transportation

problem are also explained with a suitable numerical example.

Chapter 4 implements the transformation techniques to probabilistic program-

ming problem. It presents a probabilistic linear programming problem, where the

right hand side parameters are multi-choice type and rest of the parameters are

normally distributed independent random variables with known mean and vari-

ance in the probabilistic constraints. The model is transformed to an equivalent

deterministic mixed integer type NLP by applying MCP methods. The resulting

model is then solved by standard nonlinear programming techniques. The chap-

ter also considers a multi-objective probabilistic programming problem involving
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multi-choice parameters in some probabilistic constraints, which are to be satis�ed

within certain probability limits. Chance constrained programming technique is

used to convert the probabilistic programming model to an equivalent deterministic

multi-choice and multi-objective MP model. MCP methodology has been used to

deal with multi-choice parameters of the model. A goal programming formulation

has been suggested in order to solve multi-objective mixed integer NLP model.

Numerical examples are provided to illustrate the solution procedures for both the

problems.

Chapter 5 is devoted for evaluation of a fuzzy multi-choice linear programming

problem, where some of the parameters and decision variables are trapezoidal type

fuzzy numbers. In order to defuzzify a general fuzzy number the concept of nearest

trapezoidal fuzzy number is introduced. By assuming all the decision variables as

trapezoidal fuzzy number, the objective function and the left hand side of the con-

straints are approximated to their nearest trapezoidal fuzzy number. Interpolating

polynomials are formulated for all the multi-choice type parameters. Multi-choice

type parameters are replaced by polynomials with integer restrictions. Then an

equivalent multi-objective mixed integer NLP has been established. First and sec-

ond objective functions represent left and right modal values of the trapezoidal

type fuzzy number, where as the third and fourth objective functions represent the

left and right spreads of the trapezoidal type fuzzy number, respectively. By apply-

ing lexicographic method optimal solution is obtained. In addition, an illustrative

example is presented to demonstrate the solution procedure.

Chapter 6 develops a multi-choice multi-objective linear programming model

for solving an integrated production planning problem for a steel plant. Integrated

production planning aims to integrate the planning sub-functions into a single

planning operations. The sub-functions are formulated considering the capacity

of di�erent plant units, cost of raw materials from various territories, demands of

customers in di�erent geographical locations, time constraints for production of

products, production costs, and production rate at di�erent stages of production

process. Departure costs are also included during formulation of MP model. Some
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parameters are decided from a set of possible choices, therefore such parameters

are considered as multi-choice type to formulate a multi-choice and multi-objective

linear programming model. Multi-choice and multi-objective linear programming

models cannot be solved directly. Therefore an equivalent multi-objective MP

model has been formulated in order to �nd the optimal solution of such a complex

optimization problem. Computations of the MP model has been performed with

the real production data to �nd the e�ciency of the methodology.

Finally, the concluding remarks on the work carried out in Chapter 2 to 6 are

presented in Chapter 7. Further scope of future research on the topic is also

presented.
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